507,995 research outputs found

    Floppy swimming: Viscous locomotion of actuated elastica

    Full text link
    Actuating periodically an elastic filament in a viscous liquid generally breaks the constraints of Purcell's scallop theorem, resulting in the generation of a net propulsive force. This observation suggests a method to design simple swimming devices - which we call "elastic swimmers" - where the actuation mechanism is embedded in a solid body and the resulting swimmer is free to move. In this paper, we study theoretically the kinematics of elastic swimming. After discussing the basic physical picture of the phenomenon and the expected scaling relationships, we derive analytically the elastic swimming velocities in the limit of small actuation amplitude. The emphasis is on the coupling between the two unknowns of the problems - namely the shape of the elastic filament and the swimming kinematics - which have to be solved simultaneously. We then compute the performance of the resulting swimming device, and its dependance on geometry. The optimal actuation frequency and body shapes are derived and a discussion of filament shapes and internal torques is presented. Swimming using multiple elastic filaments is discussed, and simple strategies are presented which result in straight swimming trajectories. Finally, we compare the performance of elastic swimming with that of swimming microorganisms.Comment: 23 pages, 6 figure

    Fish swimming in schools save energy regardless of their spatial position

    Get PDF
    For animals, being a member of a group provides various advantages, such as reduced vulnerability to predators, increased foraging opportunities and reduced energetic costs of locomotion. In moving groups such as fish schools, there are benefits of group membership for trailing individuals, who can reduce the cost of movement by exploiting the flow patterns generated by the individuals swimming ahead of them. However, whether positions relative to the closest neighbours (e.g. ahead, sided by side or behind) modulate the individual energetic cost of swimming is still unknown. Here, we addressed these questions in grey mullet Liza aurata by measuring tail-beat frequency and amplitude of 15 focal fish, swimming in separate schools, while swimming in isolation and in various positions relative to their closest neighbours, at three speeds. Our results demonstrate that, in a fish school, individuals in any position have reduced costs of swimming, compared to when they swim at the same speed but alone. Although fish swimming behind their neighbours save the most energy, even fish swimming ahead of their nearest neighbour were able to gain a net energetic benefit over swimming in isolation, including those swimming at the front of a school. Interestingly, this energetic saving was greatest at the lowest swimming speed measured in our study. Because any member of a school gains an energetic benefit compared to swimming alone, we suggest that the benefits of membership in moving groups may be more strongly linked to reducing the costs of locomotion than previously appreciated

    Modeling hydrodynamic self-propulsion with Stokesian Dynamics. Or teaching Stokesian Dynamics to swim

    Get PDF
    We develop a general framework for modeling the hydrodynamic self-propulsion (i.e., swimming) of bodies (e.g., microorganisms) at low Reynolds number via Stokesian Dynamics simulations. The swimming body is composed of many spherical particles constrained to form an assembly that deforms via relative motion of its constituent particles. The resistance tensor describing the hydrodynamic interactions among the individual particles maps directly onto that for the assembly. Specifying a particular swimming gait and imposing the condition that the swimming body is force- and torque-free determine the propulsive speed. The body’s translational and rotational velocities computed via this methodology are identical in form to that from the classical theory for the swimming of arbitrary bodies at low Reynolds number. We illustrate the generality of the method through simulations of a wide array of swimming bodies: pushers and pullers, spinners, the Taylor=Purcell swimming toroid, Taylor’s helical swimmer, Purcell’s three-link swimmer, and an amoeba-like body undergoing large-scale deformation. An open source code is a part of the supplementary material and can be used to simulate the swimming of a body with arbitrary geometry and swimming gait

    Swimming of an assembly of rigid spheres at low Reynolds number

    Full text link
    A matrix formulation is derived for the calculation of the swimming speed and the power required for swimming of an assembly of rigid spheres immersed in a viscous fluid of infinite extent. The spheres may have arbitrary radii and may interact with elastic forces. The analysis is based on the Stokes mobility matrix of the set of spheres, defined in low Reynolds number hydrodynamics. For small amplitude swimming optimization of the swimming speed at given power leads to an eigenvalue problem. The method allows straightforward calculation of the swimming performance of structures modeled as assemblies of interacting rigid spheres.Comment: 14 pages, 5 figure

    Comparative jet wake structure and swimming performance of salps

    Get PDF
    Salps are barrel-shaped marine invertebrates that swim by jet propulsion. Morphological variations among species and life-cycle stages are accompanied by differences in swimming mode. The goal of this investigation was to compare propulsive jet wakes and swimming performance variables among morphologically distinct salp species (Pegea confoederata, Weelia (Salpa) cylindrica, Cyclosalpa sp.) and relate swimming patterns to ecological function. Using a combination of in situ dye visualization and particle image velocimetry (PIV) measurements, we describe properties of the jet wake and swimming performance variables including thrust, drag and propulsive efficiency. Locomotion by all species investigated was achieved via vortex ring propulsion. The slow-swimming P. confoederata produced the highest weight-specific thrust (T =53 N kg^(–1)) and swam with the highest wholecycle propulsive efficiency (η_wc= 55%). The fast-swimming W. cylindrica had the most streamlined body shape but produced an intermediate weight-specific thrust (T=30 N kg^(–1)) and swam with an intermediate whole-cycle propulsive efficiency (η_wc =52%). Weak swimming performance variables in the slow-swimming C. affinis, including the lowest weight-specific thrust (T=25 N kg^(–1)) and lowest whole-cycle propulsive efficiency (η_wc=47%), may be compensated by low energetic requirements. Swimming performance variables are considered in the context of ecological roles and evolutionary relationships

    PENGARUH KEKUATAN LENGAN, KETEBALAN LEMAK, DAN BODY MASS INDEX TERHADAP PRESTASI RENANG GAYA CRAWL 50 METER

    Get PDF
    The objective of this research study is to reveal the influences of pull and push strength of arms, skin fold thickness, and body mass index towards 50-meter-crawl-style swimming achievements. The results of this research are expected to reveal the factors influencing the achievement on swimming, especially in the crawl style. This research used the survey method. The populations involved in this research were the athletes of Tirta Alvita Swimming Association under PRSI D.I. Yogyakarta (National Swimming Association Yogyakarta). The populations of this research were 8 athletes who were also the samples of this research since it used the total sample technique. The instruments used in this research were 1) pull and push strength test dynamometer to measure the arm strength in pulling and pushing, 2) skin fold thickness to measure fat thickness, 3) body mass index of ideal body weight to measure body height and weight, and 4) the achievements in 50-meter-crawl-style swimming taken from the latest swimming championship held in Tirta Kembar swimming pool, Purwokerto on 29 August 2006. The results of this research show that: 1) there were no significant influences of the pulling and pushing strength to the achievement of 50-meter- crawl-style swimming, demonstrated by the coefficient of determinant (R) 0.165; 2) there were no significant influences of skin fold thickness to the achievement of 50-meter- crawl-style swimming demonstrated by the coefficient of determinant (R) 0.085; 3) there were significant influences of body mass index to the achievement of 50-meter- crawl-style swimming demonstrated by the coefficient of determinant (R) 0.008. Key words: swimming, the pulling and pushing strength, skin fold thickness,, body mass inde

    Predictors of Swimming Ability among Children and Adolescents in the United States

    Get PDF
    Swimming is an important source of physical activity and a life skill to prevent drowning. However, little research has been conducted to understand predictors of swimming ability. The purpose of this study was to understand factors that predict swimming ability among children and adolescents in the United States (US). This was a cross-sectional survey conducted between February and April of 2017 across five geographically diverse cities. Participants were accessed through the Young Christian Men’s Association (YMCA) and included parents of children aged 4–11 years old and adolescents aged 12–17 years old. Independent t-test, analysis of variance (ANOVA), and univariate and multivariate analyses were conducted. Several factors were significant (p ≤ 0.05) predictors of swimming ability and explained 53% of the variance in swimming ability. Variables that were positively associated with swimming ability included: ability of parent(s) to swim, child/adolescent age, a best friend who enjoys swimming, water-safety knowledge, pool open all year, and encouragement to swim from parent(s). Variables that were negatively associated with swimming ability included: fear of drowning, being African American, and being female. Interventions and programs to improve the swimming ability of children and adolescents could be developed with these predictors in mind

    The effect of swimsuit resistance on freestyle swimming race time.

    No full text
    It is known that swimming equipment (suit, cap and goggles) can affect the total resistance of a swimmer, and therefore impact the resulting swimming speed and race time. After the 2009 swimming world championships (WC) the international swimming federation (FINA) banned a specific type of full body suit, which resulted in an increase in race times for subsequent WC events. This study proposes that the 2009 suits provided a reduction in swimming resistance and aims to quantify this resistance reduction for male and female freestyle events. Due to the practical difficulties of testing a large sample of swimmers a simulation approach is adopted. To quantify the race time improvement that the 2009 suits provided, an equivalent 2009 “no-suit” dataset is created, incorporating the general trend of improving swimming performance over time, and compared to the actual 2009 times. A full race simulation is developed where the start, turn, underwater and surface swimming phases are captured. Independent resistance models are used for surface and underwater swimming; coupled with a leg propulsion model for underwater undulatory swimming and freestyle flutter kick, and a single element arm model to simulate freestyle arm propulsion. A validation is performed to ensure the simulation captures the change in swimming speed with changes to resistance and is found to be within 5% of reality. Race times for an equivalent “no-suit” 2009 situation are simulated and the total resistance reduced to achieve the actual 2009 race times. An average resistance reduction of 4.8% provided by the 2009 suits is identified. A factor of 0.47 ± 10%, to convert resistance changes to freestyle race time changes is determine

    Morphology, Swimming Performance and Propulsive Mode of Six Co-occurring Hydromedusae

    Get PDF
    Jet propulsion, based on examples from the Hydrozoa, has served as a valuable model for swimming by medusae. However, cnidarian medusae span several taxonomic classes (collectively known as the Medusazoa) and represent a diverse array of morphologies and swimming styles. Does one mode of propulsion appropriately describe swimming by all medusae? This study examined a group of co-occurring hydromedusae collected from the waters of Friday Harbor, WA, USA, to investigate relationships between swimming performance and underlying mechanisms of thrust production. The six species examined encompassed a wide range of bell morphologies and swimming habits. Swimming performance (measured as swimming acceleration and velocity) varied widely among the species and was positively correlated with bell streamlining (measured as bell fineness ratio) and velar structure development (measured as velar aperture ratio). Calculated thrust production due to jet propulsion adequately explained acceleration patterns of prolate medusae (Aglantha digitale, Sarsia sp. and Proboscidactyla flavicirrata) possessing well-developed velums. However, acceleration patterns of oblate medusae (Aequorea victoria, Mitrocoma cellularia and Phialidium gregarium) that have less developed velums were poorly described by jet thrust production. An examination of the wakes behind swimming medusae indicated that, in contrast to the clearly defined jet structures produced by prolate species, oblate medusae did not produce defined jets but instead produced prominent vortices at the bell margins. These vortices are consistent with a predominantly drag-based, rowing mode of propulsion by the oblate species. These patterns of propulsive mechanics and swimming performance relate to the role played by swimming in the foraging ecology of each medusa. These patterns appear to extend beyond hydromedusae and thus have important implications for other members of the Medusazoa
    • …
    corecore