2 research outputs found

    Parameter selection and performance comparison of particle swarm optimization in sensor networks localization

    Get PDF
    Localization is a key technology in wireless sensor networks. Faced with the challenges of the sensors\u27 memory, computational constraints, and limited energy, particle swarm optimization has been widely applied in the localization of wireless sensor networks, demonstrating better performance than other optimization methods. In particle swarm optimization-based localization algorithms, the variants and parameters should be chosen elaborately to achieve the best performance. However, there is a lack of guidance on how to choose these variants and parameters. Further, there is no comprehensive performance comparison among particle swarm optimization algorithms. The main contribution of this paper is three-fold. First, it surveys the popular particle swarm optimization variants and particle swarm optimization-based localization algorithms for wireless sensor networks. Secondly, it presents parameter selection of nine particle swarm optimization variants and six types of swarm topologies by extensive simulations. Thirdly, it comprehensively compares the performance of these algorithms. The results show that the particle swarm optimization with constriction coefficient using ring topology outperforms other variants and swarm topologies, and it performs better than the second-order cone programming algorithm

    Swarm intelligent approaches to auto-localization of nodes in static UWB networks

    No full text
    In this paper, we address the problem of localizing sensor nodes in a static network, given that the positions of a few of them (denoted as "beacons") are a priori known. We refer to this problem as "auto-localization." Three localization techniques are considered: the two-stage maximum-likelihood (TSML) method; the plane intersection (PI) method; and the particle swarm optimization (PSO) algorithm. While the first two techniques come from the communication-theoretic "world," the last one comes from the soft computing "world." The performance of the considered localization techniques is investigated, in a comparative way, taking into account (i) the number of beacons and (ii) the distances between beacons and nodes. Since our simulation results show that a PSO-based approach allows obtaining more accurate position estimates, in the second part of the paper we focus on this technique proposing a novel hybrid version of the PSO algorithm with improved performance. In particular, we investigate, for various population sizes, the number of iterations which are needed to achieve a given error tolerance. According to our simulation results, the hybrid PSO algorithm guarantees faster convergence at a reduced computational complexity, making it attractive for dynamic localization. In more general terms, our results show that the application of soft computing techniques to communication-theoretic problems leads to interesting research perspectives
    corecore