30,636 research outputs found

    Collective Complexity out of Individual Simplicity. Invited book review on''Swarm Intelligence: From Natural to Artificial Systems'', by E. Bonabeau, M. Dorigo, and G. Theraulaz

    Get PDF
    Review of: Swarm Intelligence: From Natural to Artificial Systems by Eric Bonabeau, Marco Dorigo, and Guy Theraulaz, Oxford University Press, 1999, 307 pp

    Amplifying the Social Intelligence of Teams Through Human Swarming

    Get PDF
    Artificial Swarm Intelligence (ASI) is a method for amplifying the collective intelligence of human groups by connecting networked participants into real-time systems modeled after natural swarms and moderated by AI algorithms. ASI has been shown to amplify performance in a wide range of tasks, from forecasting financial markets to prioritizing conflicting objectives. This study explores the ability of ASI systems to amplify the social intelligence of small teams. A set of 61 teams, each of 3 to 6 members, was administered a standard social sensitivity test ā€” Reading the Mind in the Eyesā€ or RME. Subjects took the test both as individuals and as ASI systems (i.e. ā€œswarmsā€). The average individual scored 24 of 35 correct (32% error) on the RME test, while the average ASI swarm scored 30 of 35 correct (15% error). Statistical analysis found that the groups working as ASI swarms had significantly higher social sensitivity than individuals working alone or groups working together by plurality vote (p\u3c0.001). This suggests that when groups reach decisions as real-time ASI swarms, they make better use of their social intelligence than when working alone or by traditional group vote

    A Comprehensive Review of Recent Variants and Modifications of Firefly Algorithm

    Get PDF
    Swarm intelligence (SI) is an emerging field of biologically-inspired artificial intelligence based on the behavioral models of social insects such as ants, bees, wasps, termites etc. Swarm intelligence is the discipline that deals with natural and artificial systems composed of many individuals that coordinate using decentralized control and self-organization. Most SI algorithms have been developed to address stationary optimization problems and hence, they can converge on the (near-) optimum solution efficiently. However, many real-world problems have a dynamic environment that changes over time. In the last two decades, there has been a growing interest of addressing Dynamic Optimization Problems using SI algorithms due to their adaptation capabilities. This paper presents a broad review on two SI algorithms: 1) Firefly Algorithm (FA) 2) Flower Pollination Algorithm (FPA). FA is inspired from bioluminescence characteristic of fireflies. FPA is inspired from the the pollination behavior of flowering plants. This article aims to give a detailed analysis of different variants of FA and FPA developed by parameter adaptations, modification, hybridization as on date. This paper also addresses the applications of these algorithms in various fields. In addition, literatures found that most of the cases that used FA and FPA technique have outperformed compare to other metaheuristic algorithms

    A Review on the Application of Natural Computing in Environmental Informatics

    Get PDF
    Natural computing offers new opportunities to understand, model and analyze the complexity of the physical and human-created environment. This paper examines the application of natural computing in environmental informatics, by investigating related work in this research field. Various nature-inspired techniques are presented, which have been employed to solve different relevant problems. Advantages and disadvantages of these techniques are discussed, together with analysis of how natural computing is generally used in environmental research.Comment: Proc. of EnviroInfo 201

    Swarm robot social potential fields with internal agent dynamics

    Get PDF
    Swarm robotics is a new and promising approach to the design and control of multiagent robotic systems. In this paper we use a model for a second order non-linear system of self-propelled agents interacting via pair-wise attractive and repulsive potentials. We propose a new potential field method using dynamic agent internal states to successfully solve a reactive path-planning problem. The path planning problem cannot be solved using static potential fields due to local minima formation, but can be solved by allowing the agent internal states to manipulate the potential field. Simulation results demonstrate the ability of a single agent to perform reactive problem solving effectively, as well as the ability of a swarm of agents to perform problem solving using the collective behaviour of the entire swarm

    Creativity and Autonomy in Swarm Intelligence Systems

    Get PDF
    This work introduces two swarm intelligence algorithms -- one mimicking the behaviour of one species of ants (\emph{Leptothorax acervorum}) foraging (a `Stochastic Diffusion Search', SDS) and the other algorithm mimicking the behaviour of birds flocking (a `Particle Swarm Optimiser', PSO) -- and outlines a novel integration strategy exploiting the local search properties of the PSO with global SDS behaviour. The resulting hybrid algorithm is used to sketch novel drawings of an input image, exploliting an artistic tension between the local behaviour of the `birds flocking' - as they seek to follow the input sketch - and the global behaviour of the `ants foraging' - as they seek to encourage the flock to explore novel regions of the canvas. The paper concludes by exploring the putative `creativity' of this hybrid swarm system in the philosophical light of the `rhizome' and Deleuze's well known `Orchid and Wasp' metaphor
    • ā€¦
    corecore