2 research outputs found

    Multiple Cooperative Swarms for Data Clustering

    Get PDF
    Exploring a set of unlabeled data to extract the similar clusters, known as data clustering, is an appealing problem in machine learning. In other words, data clustering organizes the underlying data into different groups using a notion of similarity between patterns. A new approach to solve the data clustering problem based on multiple cooperative swarms is introduced. The proposed approach is inspired by the social swarming behavior of biological bird flocks which search for food situated in several places. The proposed approach is composed of two main phases, namely, initialization and exploitation. In the initialization phase, the aim is to distribute the search space among several swarms. That is, a part of the search space is assigned to each swarm in this phase. In the exploitation phase, each swarm searches for the center of its associated cluster while cooperating with other swarms. The search proceeds to converge to a near-optimal solution. As compared to the single swarm clustering approach, the proposed multiple cooperative swarms provide better solutions in terms of fitness function measure for the cluster centers, as the dimensionality of data and number of clusters increase. The multiple cooperative swarms clustering approach assumes that the number of clusters is known a priori. The notion of stability analysis is proposed to extract the number of clusters for the underlying data using multiple cooperative swarms. The mathematical explanations demonstrating why the proposed approach leads to more stable and robust results than those of the single swarm clustering are also provided. Application of the proposed multiple cooperative swarms clustering is considered for one of the most challenging problems in speech recognition: phoneme recognition. The proposed approach is used to decompose the recognition task into a number of subtasks or modules. Each module involves a set of similar phonemes known as a phoneme family. Basically, the goal is to obtain the best solution for phoneme families using the proposed multiple cooperative swarms clustering. The experiments using the standard TIMIT corpus indicate that using the proposed clustering approach boosts the accuracy of the modular approach for phoneme recognition considerably

    Improvements on the bees algorithm for continuous optimisation problems

    Get PDF
    This work focuses on the improvements of the Bees Algorithm in order to enhance the algorithm’s performance especially in terms of convergence rate. For the first enhancement, a pseudo-gradient Bees Algorithm (PG-BA) compares the fitness as well as the position of previous and current bees so that the best bees in each patch are appropriately guided towards a better search direction after each consecutive cycle. This method eliminates the need to differentiate the objective function which is unlike the typical gradient search method. The improved algorithm is subjected to several numerical benchmark test functions as well as the training of neural network. The results from the experiments are then compared to the standard variant of the Bees Algorithm and other swarm intelligence procedures. The data analysis generally confirmed that the PG-BA is effective at speeding up the convergence time to optimum. Next, an approach to avoid the formation of overlapping patches is proposed. The Patch Overlap Avoidance Bees Algorithm (POA-BA) is designed to avoid redundancy in search area especially if the site is deemed unprofitable. This method is quite similar to Tabu Search (TS) with the POA-BA forbids the exact exploitation of previously visited solutions along with their corresponding neighbourhood. Patches are not allowed to intersect not just in the next generation but also in the current cycle. This reduces the number of patches materialise in the same peak (maximisation) or valley (minimisation) which ensures a thorough search of the problem landscape as bees are distributed around the scaled down area. The same benchmark problems as PG-BA were applied against this modified strategy to a reasonable success. Finally, the Bees Algorithm is revised to have the capability of locating all of the global optimum as well as the substantial local peaks in a single run. These multi-solutions of comparable fitness offers some alternatives for the decision makers to choose from. The patches are formed only if the bees are the fittest from different peaks by using a hill-valley mechanism in this so called Extended Bees Algorithm (EBA). This permits the maintenance of diversified solutions throughout the search process in addition to minimising the chances of getting trap. This version is proven beneficial when tested with numerous multimodal optimisation problems
    corecore