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Abstract

Exploring a set of unlabeled data to extract the similar clusters, known as data
clustering, is an appealing problem in machine learning. In other words, data
clustering organizes the underlying data into different groups using a notion of
similarity between patterns.

A new approach to solve the data clustering problem based on multiple co-
operative swarms is introduced. The proposed approach is inspired by the social
swarming behavior of biological bird flocks which search for food situated in several
places. The proposed approach is composed of two main phases, namely, initializa-
tion and exploitation. In the initialization phase, the aim is to distribute the search
space among several swarms. That is, a part of the search space is assigned to each
swarm in this phase. In the exploitation phase, each swarm searches for the center
of its associated cluster while cooperating with other swarms. The search proceeds
to converge to a near-optimal solution. As compared to the single swarm clustering
approach, the proposed multiple cooperative swarms provide better solutions in
terms of fitness function measure for the cluster centers, as the dimensionality of
data and number of clusters increase.

The multiple cooperative swarms clustering approach assumes that the number
of clusters is known a priori. The notion of stability analysis is proposed to extract
the number of clusters for the underlying data using multiple cooperative swarms.
The mathematical explanations demonstrating why the proposed approach leads
to more stable and robust results than those of the single swarm clustering are also
provided.

Application of the proposed multiple cooperative swarms clustering is consid-
ered for one of the most challenging problems in speech recognition: phoneme
recognition. The proposed approach is used to decompose the recognition task into
a number of subtasks or modules. Each module involves a set of similar phonemes
known as a phoneme family. Basically, the goal is to obtain the best solution for
phoneme families using the proposed multiple cooperative swarms clustering. The
experiments using the standard TIMIT corpus indicate that using the proposed
clustering approach boosts the accuracy of the modular approach for phoneme
recognition considerably.
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Chapter 1

Introduction

Data clustering is the unsupervised classification of a set of data points into similar
groups [1]. As a result, the data points clustered in the same group are more similar
to each other than those of other groups.

An example of clustering is provided in Fig. 1.1. In this figure, three different
clustering solutions are depicted for the given data points.

Extracting the underlying groups of unlabeled data is an inherently ill-posed
problem as compared to the supervised classification. That is, the labels of the
data are available in the supervised classification, whereas they are unknown in
data clustering.

Data clustering is beneficial for a wide range of applications including, but not
limited to, data mining, document retrieval, image segmentation, bioinformatics
and speech recognition [1], [2], [3], [4], [5], [6].

Various terms are used in data clustering, which are patterns, clusters, cluster
centers, model order, features, similarity measures and cluster validity measures.
Patterns are a set of observations, data points or feature vectors. The aim is to
cluster these patterns into a number of groups. A cluster or group is basically com-
posed of a set of similar patterns. Thus, each cluster contains a subset of patterns.
Each cluster center is associated with a cluster. Having cluster centers known, the
labels of the data can be extracted easily. In other words, the solution of a clus-
tering algorithm can be stated by means of cluster centers or the estimated labels.
Model order indicates the number of clusters for the underlying data. Features
or attributes are used to represent a pattern. The procedure used to obtain the
corresponding features of a pattern is known as a feature extraction. Thus, each
pattern is distinguished from others in terms of its features. Further, the number
of the features indicates the dimension of the data. Similarity measures are used to
assess the proximity of patterns as the goal of clustering is to partition a given set
of data into a set of similar groups. Finally, cluster validity measures are useful to
evaluate the quality of the clustering solutions. A discussion on different similarity
and cluster validity measures will be provided in the following chapter.
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Figure 1.1: Different clustering solutions for the same data

1.1 Motivations

To tackle the clustering problem, several techniques such as K-means, K-harmonic
means and fuzzy c-means have been developed. However, most of these techniques
either are highly dependent on the initial solutions or are more likely to converge
to local optimal solutions. In addition, they do not perform well in manipulating
multiple objectives.

Swarm intelligence has recently attracted a great deal of interest from researchers
of different backgrounds. Swarm intelligence was biologically inspired, by studying
the swarming behaviors of flocks of birds, schools of fish, or swarms of bees [7].
Particle swarm optimization (PSO), as one of the main branches in the swarm in-
telligence, emulates the social behavior of bird flocks. PSO is a population-based
search scheme that tends to find an optimal solution by employing a swarm of
individuals referred to as particles. The PSO procedure is less sensitive to the ef-
fect of the initial conditions due to its population-based nature. Furthermore, it
performs a global search of the solution space. Accordingly, it is more likely to
provide a near-optimal solution. Besides, PSO can manage multiple objectives at
the same time. As a result, it is an excellent tool for solving clustering problems
where optimizing different objectives is of interest.

PSO has been considered to tackle clustering problems [2], [3], [4], [8], [9]. To
the best of my knowledge, all of the available approaches use only a single swarm
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to deal with the clustering task. However, when the dimensionality of the data is
high or the possible number of clusters is large, a single swarm is not sufficient to
explore all of the search space. Instead, multiple swarms cooperating together can
be considered to obtain cluster centers effectively.

In speech recognition problems, the dimensionality of the data is relatively high
and the data contains many clusters. Therefore, the application of multiple swarms
clustering has the potential of enhancing the performance on speech recognition
problems significantly.

1.2 Goals and Contributions

In this thesis, the aim is to provide an insight into the following issues:

• situating the particle swarm clustering within the taxonomy of the clustering
approaches,

• a discussion of clustering using single swarm,

• the formulation of clustering using multiple cooperative swarms,

• model order selection for clustering using multiple cooperative swarms, and

• the application of multiple cooperative swarms clustering for phoneme recog-
nition problem.

The contributions of the thesis can be concisely classified into three main cate-
gories. First, a novel clustering approach by means of multiple cooperative swarms
is proposed. Then, a stability-based approach is suggested to extract the model
order of underlying data using the multiple cooperative swarms approach. Finally,
the application of the proposed clustering approach is studied to tackle phoneme
recognition. The first two categories are basically considered to demonstrate the
theoretical aspect of the thesis. The third category is intended to provide a suc-
cessful example for the application of the proposed approach.

1.3 Organization

After a brief introduction and discussion of the motivations, goals and contributions,
the organization of the thesis will be as follows: In the following chapter, we provide
an overview on data clustering. First, hierarchical and partitional approaches for
data clustering are outlined. An introduction to single swarm clustering is then
provided. Similarity and cluster validity measures are next described.

3



In chapter three, a detailed explanation of the multiple cooperative swarms clus-
tering approach is presented. Moreover, the performance of the proposed clustering
approach as compared to the other clustering approaches is examined.

In chapter four, the stability-based scheme to estimate the model order of the
underlying data using multiple cooperative swarms clustering is presented. This
technique enables the multiple cooperative swarms clustering to extract the number
of the clusters as well. Furthermore, the proposed approach is evaluated using
different data sets and its performance is compared with that of other clustering
techniques.

In chapter five, the application of the proposed multiple cooperative swarms
approach for phoneme recognition is presented. The proposed approach is applied
to divide the phoneme recognition task into different subtasks in a modular-based
classifier.

In chapter six, conclusions are drawn and future research directions are pro-
posed.
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Chapter 2

Overview on Data Clustering

The process of extracting similar groups of the underlying patterns is referred to as
data clustering, which is a difficult problem combinatorially [1]. To tackle clustering
problem, two major approaches are available. In this chapter, these approaches are
outlined. Similarity measures and cluster validity measures are also studied.

2.1 Introduction

Clustering is the process of separating data Y of dimension d into a number of
groups C(k), k = 1, 2, · · · , K, based on some similarity measures [10]. As a result,

each cluster C(k) contains a set of similar data points given by C(k) = {y(k)
j }

nk
j=1,

where y
(k)
j denotes data point j in cluster k and nk indicates the total number of

data points in cluster k. The union of all clusters forms Y :

Y = ∪K
k=1C

(k), (2.1)

where K is the number of clusters. In hard clustering, the clusters are pair-wise
disjoint; i.e.,

C(k) ∩ C(k′) = ø, k 6= k′ ∈ [1, ..., K]. (2.2)

In other words, each sample or data point from Y is assigned to only one cluster.
Let AK(Y ) denote a clustering algorithm aiming to cluster data set Y to K distinct
clusters. Moreover, assume the solution of a clustering algorithm AK(Y ) for the
given data points Y of size N is presented by T := AK(Y ) which is a vector of
labels T = {ti}Ni=1, where ti ∈ L := {1, ..., K}.

To deal with the clustering task, there are two main approaches, namely hier-
archical and partitional clustering [1].
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Figure 2.1: An example of the dendrogram

2.2 Hierarchical Clustering Approaches

Hierarchical clustering approaches yield a hierarchy of clusters represented in a tree
format referred to as a dendrogram. The dendrogram provides a nested grouping
of data points [1]. An example of the dendrogram for a data set of 30 points is
shown is Fig. 2.1.

To build the dendrogram, agglomerative and divisive approaches are used. A
divisive approach begins with a single cluster containing all data points. It then
divides this cluster into two separate clusters. This procedure continues until each
cluster includes a single data point. In contrast to the divisive approach, an agglom-
erative approach considers each data point as a cluster at the beginning. Then, the
two close clusters merge together and make a new cluster. Merging close clusters
is continued until all points form a single cluster.

Assume clusters C(1), · · · , C(k1) are given and the aim is to determine the closest
two clusters. Two closest clusters are obtained by

(i∗, j∗) = arg min
(i,j)
{d(C(i), C(j))|i, j = 1, · · · , k1, i 6= j}, (2.3)
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where d(C(i), C(j)) indicates the distance between two clusters C(i) and C(j). Dif-
ferent notions are available to measure the distance between two clusters, which
are single linkage, complete linkage and average linkage [1].

• Single linkage: The minimum distance between all pairs of data points, one
from each cluster, is given by

dsingle(C
(1), C(2)) = min{d(ν, ω)|ν ∈ C(1), ω ∈ C(2)}· (2.4)

• Complete linkage: The maximum distance between all pairs of data points,
one from each cluster, is defined as

dcomplete(C
(1), C(2)) = max{d(ν, ω)|ν ∈ C(1), ω ∈ C(2)}· (2.5)

• Average linkage: The mean distance between all pairs of data points, one
from each cluster, is computed by

daverage(C
(1), C(2)) =

1

n1 · n2

∑
ν∈C(1)

∑
ω∈C(2)

d(ν, ω)· (2.6)

Different notions of distance between clusters in 2D space are shown in Fig. 2.2.
As can be seen, there are two clusters (cluster 1 and cluster 2), each of which is
represented by a set of points connected by solid lines, and there is a single point
(cluster 3) whose distances from the clusters 1 and 2 are shown in dashed lines. In
panels (a) and (b), the shortest dashed-line indicates the closest cluster with which
the individual point (cluster 3) is merged. In panel (c), the dashed lines show the
distance from different data points. To determine the closest cluster, the mean
distance from each cluster is obtained. The shortest mean distance corresponds to
the closest cluster.

2.3 Partitional Clustering Approaches

Partitional clustering algorithms divide the data set into a specified number of
clusters. The division of the given data points into a set of clusters is done by op-
timizing a certain criterion [2]. This section concentrates on introducing a number
of partitional clustering approaches such as K-means, K-harmonic means, fuzzy
c-means and evolutionary-based clustering algorithms.

2.3.1 K-means algorithm

K-means algorithm is the most popular partitional clustering technique. This
algorithm starts from K arbitrary random points as cluster centers denoted by
m(1), · · · ,m(K). Then, data point yj is assigned to cluster k′ provided:

d(yj,m
(k′)) ≤ d(yj,m

(k)), for all k, j, (2.7)
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Figure 2.2: Different notions of distance between clusters

where d(·) indicates the Euclidean distance between the two associated points. The
centers are next updated according to the corresponding data points as follows:

m(k) =
1

nk

nk∑
j=1

y
(k)
j , k = 1, · · · , K· (2.8)

This procedure is repeated till the termination criterion such as maximum num-
ber of iterations or number of iterations with no improvement is attained. Having
a set of data Y , the procedure of the k -mean clustering is presented in Algorithm
2.1.

Algorithm 2.1 K -means clustering algorithm

1: Pick K either arbitrary prototypes or from training data and denote them
m(1), · · · ,m(K).

2: For each yj, determine the nearest prototype. Assign it to cluster k′ if

d(yj,m
(k′)) ≤ d(yj,m

(k)), for all k.

3: Update each prototype as follows: m(k)= sample mean of all data points as-
signed to cluster k.

4: If no prototype changed in step 3 from its previous value, stop. Otherwise, go
back to step 2.

As can be seen in K-means procedure, it tries to minimize the following objective
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function:

FKM =
K∑

k=1

nk∑
j=1

d2(y
(k)
j ,m(k)). (2.9)

This objective function is designed in such a way as to yield as compact clusters
as possible [1]. The K-mean clustering has many features that make it a popular
approach. It converges to a solution very quickly and it is easy to understand and
implement. However, there are some issues with this algorithm as well. The K-
means algorithm is highly sensitive to initial solutions and it may converge to local
optimal solutions.

2.3.2 K-harmonic means algorithm

Zhang et al. have introduced a new method known as K-harmonic means (KHM),
which uses the harmonic averages of distances from every data point to the centers.
They showed empirically that their method is less sensitive to initial solutions.
As compared to K-means, KHM improves the quality of the clustering results in
certain cases [11].

The harmonic average of N points {yj}Nj=1 is defined as

HA({yj}Nj=1) =
N∑N
j=1

1
yj

· (2.10)

The required objective function of the K-harmonic means algorithm is also given
by

FKHM =
N∑

j=1

K∑K
k=1

1
||yj−m(k)||2

, (2.11)

where || · || stands for the Euclidean norm. By taking the partial derivatives of the
FKHM with respect to centers, m(k), k = 1, · · · K, and setting them to zero, the
recursive updating rule of centers is obtained as

m(k) =

∑N
j=1

1

d3
j,k(

∑K
k=1

1

d2
j,k

)2
yj∑N

j=1
1

d3
j,k(

∑K
k=1

1

d2
j,k

)2

, (2.12)

where dj,k = ||yj − m(k)||· By starting from an initial solution for centers, this
recursive procedure is continued to converge to final clustering centers [11].

It is not obvious how to interpret the objective function.
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2.3.3 Fuzzy c-means algorithm

Bezdeck has proposed an extension for K-means using fuzzy logic named fuzzy
c-means (FCM) clustering. In FCM, every data point is associated to each cluster
with some degree of membership [12]. That is, it has a membership in all clusters.
In FCM clustering, it is desired to minimize the following objective function:

FFCM =
K∑

k=1

N∑
j=1

µρ
j,k · ||yj −m(k)||2, 1 ≤ ρ ≤ ∞, (2.13)

where ρ is a fuzziness parameter and µj,k shows the degree of membership yj in
cluster k given by

µj,k =
1∑K

k′=1(
||yj−m(k)||
||yj−m(k′)||)

2
ρ−1

· (2.14)

Furthermore, the new centers, m(k), k = 1, · · · , K, in fuzzy c-means clustering are
modified as

m(k) =

∑N
j=1 µρ

j,k · yj∑N
j=1 µρ

j,k

, k = 1, · · · , K· (2.15)

The required procedure for fuzzy c-means clustering is presented in Algorithm 2.2.

Algorithm 2.2 Fuzzy c-means clustering algorithm

1: Pick K prototypes, either arbitrary or from training data and denote them
m(1), · · · ,m(K).

2: Compute µj,k for all j and k:
µj,k(t + 1) = 1∑K

k′=1(
||yj−m(k)(t)||

||yj−m(k′)(t)||
)

2
ρ−1

, for ||yj −m(k′)(t)|| > 0, ∀ j, k.

3: Update each prototype: m(k)(t + 1) =
∑N

j=1 µρ
j,k(t+1)·yj∑N

j=1 µρ
j,k(t+1)

·
4: If no prototype changed in step 3 from its previous value, stop. Otherwise,

t = t + 1 and go back to step 2.

2.3.4 Evolutionary-based clustering algorithms

Finally, evolutionary-based clustering techniques are based on evolutionary ap-
proaches. Swarm-based clustering approaches, inspired by the swarming behav-
ior of living beings such as ants, bees and flocks in nature [13], are examples of
evolutionary-based clustering. There are two main swarm-based approaches, which
are ant-based and PSO-based clustering. A comprehensive study on the latest
approach will be provided in the following section. In ant-based clustering, each
artificial ant picks up and drops down items on the basis of probabilistic behavior
[13].
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In the ant-based clustering, the pioneering work has been done by Deneubourg
et al. [14] in which artificial ants move randomly on a square grid of cells containing
some items. Whenever an unloaded ant is faced with an item located in a cell, it
picks up the item with some probability depending on the density of the similar
items in the surrounding region. Subsequently, when a loaded ant encounters a free
cell, it drops the item with some probability. Eventually, all the similar items are
classified in the same cluster.

An extension to the previous work has been suggested by Lumber and Faieta [15]
using a dissimilarity type of evaluation for the local density. Also, Monmarche [16]
has proposed a new algorithm in which it is possible to have several items in one
cell. Moreover, some researchers have investigated the ant-based clustering in com-
bination with fuzzy c-means and fuzzy rules [17].

2.4 Particle Swarm Clustering

Before outlining the particle swarm clustering algorithm, a description of the par-
ticle swarm optimization (PSO) is provided.

2.4.1 PSO Procedure

PSO as a search technique was mainly introduced to tackle optimization prob-
lems [18], [19], [20]. The PSO procedure commences with an initial swarm of par-
ticles and evolves through a number of iterations to find an optimal solution given
a predefined fitness function f . Each particle is characterized by a position-vector
xi and velocity-vector vi· Each particle contains a vector which keeps track of the
best position that it was situated at for any iteration. This variable is referred to
as the particle’s personal best, denoted by xpb

i . The swarm also keeps track of the
best position that has been found by all particles, i.e. the best position of all the
personal best positions. This variable is called global best, denoted by x∗. A new
velocity and position of each particle for time step t + 1 is obtained by the use of
the following equations

vi(t + 1) = wvi(t) + c1r1(x
pb
i (t)− xi(t)) + c2r2(x

∗(t)− xi(t)), (2.16)

xi(t + 1) = xi(t) + vi(t + 1), (2.17)

where w is inertia weight to control the impact of the previous history of velocities
on the current one, c1 and c2 are positive constants known as cognitive and social
components, respectively, and, r1 and r2 are samples of random variables uniformly
distributed in the interval [0, 1]; i.e., r1, r2 ∼ U(0, 1). As can be seen from the
above-mentioned equations, to produce a new position, each particle follows two
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Figure 2.3: Schematic presentation of updating the velocity of a particle

best values, which are the personal best and global best of the swarm obtained so
far. The schematic representation of updating the velocity of a particle is illustrated
in Fig. 2.3. For this specific example, the personal best of the given particle is
situated at its previous position.

For minimizing the fitness function, the personal best position of particle i at
time step t is updated as follows:

xpb
i (t + 1) =

{
xpb

i (t) if f(xi(t + 1)) ≥ f(xpb
i (t)),

xi(t + 1) otherwise.
(2.18)

The best particle of the swarm is also updated using the following equation

x∗(t + 1) = arg min
xpb

i (t)

f(xpb
i (t)), i ∈ [1, ..., n]. (2.19)

The initial velocities can be set to zero

vi(0) = 0, i ∈ [1, ..., n]. (2.20)

Initializing velocities to zero may restrict the search space [21]. Alternatively, one
can initiate velocities by generating random values [18], as used in this thesis. To
avoid large initial momentum, the initial velocities are set to small values. Large
initial velocities lead to large position updates which may cause particles to go away
from the defined search space [18].

The personal best for each particle is initialized as

xpb
i (0) = xi(0), i ∈ [1, ..., n]. (2.21)
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Algorithm 2.3 Pseudocode for PSO procedure

initialize a swarm of size n
repeat

for each particle i ∈ [1, ..., n] do
update position and velocity
if f(xi(t + 1)) < f(xpb

i (t)) then
xpb

i (t + 1)← xi(t + 1)
end if

end for
x∗(t + 1)← arg min

xpb
i (t)

{f(xpb
i (t))| i ∈ [1, ..., n]}

until termination criterion is met

There are several methods to terminate a PSO procedure such as reaching the
maximum number of iterations, having a number of iterations with no improvement,
and reaching minimum objective function criterion [22]. A pseudocode for PSO
procedure is provided in Algorithm 2.3.

Particle swarm optimization has been applied successfully to different classes
of optimization problems including constrained optimization, multi-objective opti-
mization, discrete optimization and nonlinear function optimization [18]. Moreover,
PSO has been employed to deal with many areas of applied optimization such as
neural networks, power systems, image segmentation, bioinformatics, scheduling
and data mining [18].

2.4.2 Data Clustering by Means of a Single Swarm

Due to its abilities, PSO has been used in other applications, such as classification
and clustering [2], [3], [4], [8], [9], [5], [23], [24].

Xiang et al. have employed a hybrid of PSO and self-organizing map (SOM) to
construct a novel scheme for gene clustering [5], [23]. In this method, the weights
of the SOM are first trained using competitive learning. The weights are then
optimized using PSO. This scheme is called block SOM/PSO [5]. They have also
proposed another hybrid scheme called alternating SOM/PSO. In this scheme, sev-
eral SOMs are trained over a number of iterations. Then, each SOM is treated as
a particle of the associated swarm. These populations of SOMs evolve using PSO
over a number of iterations [5].

Cui et al. have proposed a new method for document clustering [9]. In their
work, PSO is used to find optimal centers of clusters in the search space based on the
average distance of documents from their corresponding centers, which is defined as
the fitness function to evaluate the solution provided by each particle. Omran et al.
have applied PSO for image clustering [2], [3]. Their proposed method is similar to
that of Cui et al., but the main difference is how they define fitness function. They
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Figure 2.4: Representation of particle’s position in single swarm clustering

desire to cluster images such that intra-cluster distance and quantization error are
minimized while the distance between clusters is maximized.

Moreover, Cui et al. have introduced another technique for data clustering
which combines PSO and K-means clustering methods [4]. This technique, known
as hybrid PSO, uses PSO to provide the initial seeds for the K-means clustering
method.

To apply particle swarm optimization as a clustering technique, one should
model the clustering task as an optimization problem. The goal of such a task is to
obtain centers of clusters so that an objective function is optimized. In other words,
the definition of cluster center depends on the definition of the objective function
being optimized by PSO algorithm. If the objective function is represented by
means of the compactness measure, the centers are the same as cluster means.
However, if the objective function is formulated by some other cluster validity
measure such as separation measure, the cluster centers are not necessarily the
same as cluster means.

Assume Y is a set of data points intended to be clustered into K separate
clusters. Therefore,

Y = ∪K
k C(k). (2.22)

Also, assume nk is the number of data samples in cluster k. Moreover, each particle
is represented as xi = (m(1), ...,m(K))i, where m(k) denotes the center of cluster
k. For the sake of simplicity, the representation of particle i is hereafter denoted
by xi = Mi, where M = (m(1), ...,m(K)). In other words, each particle contains a
representative for the center of all clusters. The representation of particle’s position,
xi, for K = 3 clusters is illustrated in Fig. 2.4.

To model the clustering problem as an optimization problem, it is required to
define constraints as well as an objective function. The only constraint is that the
points should be selected from the domain of the data set or search space. The
objective function can be modeled by means of the cluster validity measures, such
as compactness and separation.

After defining the fitness function in terms of a cluster validity measure, a single
swarm can be used to obtain the solution of the clustering problem. The search
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starts from an initial population in the solution space and proceeds to find a near-
optimal solution.

The required pseudocode for single swarm clustering is presented in Algorithm
2.4.

Algorithm 2.4 Pseudocode for single swarm clustering

initialize a swarm of size n
repeat

for each particle i ∈ [1, ..., n] do
update position and velocity
if F (Mi(t + 1)) < F (Mpb

i (t)) then
Mpb

i (t + 1)←Mi(t + 1)
end if

end for
M∗(t + 1)← argmin{F (Mpb

i (t))|i ∈ [1, ..., n]}
until termination criterion is met

When the dimensionality of the data is high and the number of clusters is large,
the ability of the single swarm clustering is not sufficient to probe all of the search
space. Instead, multiple cooperative particle swarms can be considered to determine
clusters’ centers as explained in chapter 3.

2.5 Similarity Measures

As mentioned earlier, similarity measures play an important role in identifying
different groups of the underlying data [1]. The notion of similarity between data
points is usually represented using their corresponding distance. The smaller the
distance is, the more similar the points will be. Several functions are available to
measure the distance between two data points y1 and y2.

• Minkowski distance: This measure is defined as

dMinkowski(y1,y2) = (
d∑

i=1

|y1,i − y2,i|p)
1
p · (2.23)

By setting p = 1 and p = 2, Manhattan distance and Euclidean distance are
obtained, respectively, as special cases of Minkowski distance. In Fig. 2.5,
a graphical illustration of Manhattan and Euclidean distances are shown for
data points y1 and y2 in 2D space. The dashed line shows the Euclidean
distance while the solid line represents the Manhattan distance.

• Mahalanobis distance: This measure considers correlations among the fea-
tures as given by

dMahalanobios(y1,y2) = (y1 − y2)Σ
−1(y1 − y2)

T , (2.24)
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Figure 2.5: Euclidean and Manhattan distances

where Σ is the associated covariance matrix and T indicates the vector trans-
pose.

• Cosine similarity: This measure indicates the cosine angle of two vectors
defined as

dCosine(y1,y2) =
y1 · y2

|y1||y2|
=

∑d
i=1 y1,i · y1,i

(
∑d

i=1 y2
1,i)

1/2 · (
∑d

i=1 y2
2,i)

1/2
· (2.25)

The more similar the points are, the greater the cosine value is.

Euclidean distance is considered as the distance function hereafter.

2.6 Cluster Validity Measures

These measures are usually used to evaluate the quality of clustering techniques [25].
In the following, we briefly explain some quality measures of clustering techniques.

2.6.1 Compactness measure

Compactness measure specifies that how much the samples of a cluster are similar to
each other and are different from those in other clusters [2]. An appropriate example
for this measure is within-cluster distance [10]. The compactness of clusters in terms
of within-cluster distance is calculated by

Fc(m
(1), · · · ,m(K)) =

1

K

K∑
k=1

1

nk

nk∑
j=1

d(m(k),y
(k)
j ), (2.26)

where d(·) stands for the distance between cluster center, m(k), and sample j of

cluster k, y
(k)
j . The goal is to minimize this measure as much as possible.
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2.6.2 Separation measure

This criterion shows how far the clusters are from each other [10]. The clusters’
separation measure can be defined by

Fs(m
(1), · · · ,m(K)) =

1

K(K − 1)

K∑
j=1

K∑
k=j+1

d(m(j),m(k)). (2.27)

This measure, also known as between-cluster distance, computes the cumulative
distance of cluster centers from each other. Clustering techniques aim to maximize
this criterion or equivalently minimize −Fs(m

(1), · · · ,m(K)).

2.6.3 Combined measure

This measure is a linear combination of the compactness and separation measures.
Having the within-cluster and between-cluster distances defined, we can now con-
struct the combined measure. Here, we deal with a multi-objective function con-
taining two different functions namely Fc(·) and Fs(·). The former function should
be minimized, whereas the later needs to be maximized. By knowing that max f(x)
is equivalent to min (−f(x)), the weighted sum of the objective functions can be
expressed as:

FCombined(m
(1), · · · ,m(K)) = w1Fc(m

(1), · · · ,m(K))− w2Fs(m
(1), · · · ,m(K)),

(2.28)
where w1 and w2 are weighting parameters such that w1 + w2 = 1 [6], [18].

2.6.4 Turi’s validity index

This index is defined as

FTuri(m
(1), · · · ,m(K)) = (c×N (2, 1) + 1)× intra

inter
, (2.29)

where c is a user-specified parameter and N (·) is a Gaussian distribution with mean
two and standard deviation one. In this thesis, parameter c is set to one. The intra
denotes the within-cluster distance provided in equation (2.26). Furthermore, the
inter term is the minimum distance between the cluster centers given by

inter = min{‖m(k) −m(l)‖},
k ∈ [1, ..., K − 1],
l ∈ [k + 1, ..., K].

(2.30)

The aim of the different clustering approaches is to minimize Turi’s index [26].
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2.6.5 Dunn’s index

Let’s define α(C(k), C(l)) and β(C(k′)) as

α(C(k), C(l)) = min
x∈C(k),z∈C(l)

d(x, z),

β(C(k′)) = max
x,z∈C(k′)

d(x, z).
(2.31)

Dunn’s index [27] can now be computed as

FDunn(m(1), · · · ,m(K)) = min
1≤k≤K

{ min
k+1≤l≤K

{ α(C(k), C(l))

max
1≤k′≤K

β(C(k′))
}}· (2.32)

Clustering techniques are required to maximize Dunn’s index.

2.6.6 S−Dbw index

Let Scatt denotes the average scattering of the clusters as a measure of compactness
expressed by

Scatt = K−1

K∑
k=1

‖σ(C(k))‖
‖σ(Y )‖

, (2.33)

where σ(·) stands for the variance of the associated data and ‖x‖ is defined as
‖x‖ =

√
xTx. Then, the separation measure is defined as

Den−bw = 1
K(K−1)

K∑
k=1

K∑
l=1

D(zk,l)

max{D(m(k)),D(m(l))}
,

l 6= k

(2.34)

where zk,l is the middle point of the line segment defined by cluster centers m(k)

and m(l). Also, D(m(k)) denotes a density function around point m(k) which is

estimated by D(m(k)) =

nk∑
j=1

f(m(k),y
(k)
j ), and

f(m(k),y
(k)
j ) =

{
1 if d(m(k),y

(k)
j ) > σ̃

0 Otherwise,
(2.35)

where σ̃ = K−1

√∑K
k=1 ‖σ(C(k))‖. Finally, S−Dbw index [25], [28] is defined as

FS−Dbw(m(1), · · · ,m(K)) = Scatt + Den−bw. (2.36)

Maximizing this index is of interest when trying to cluster a set of data into several
groups.

The combined measure is used as the required fitness function of the PSO proce-
dure in the rest of the thesis. However, the other measures will be used to evaluate
the proposed approach as well.
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2.7 Summary

Extracting subgroups of a set of unlabeled data has become an important topic
in machine learning and data mining. There exist various data clustering algo-
rithms divided into hierarchical and partitional approaches, as studied earlier in
this chapter. The first approach outputs a hierarchy of clusters whereas the later
one generates a partition of the data.

Particle swarm clustering algorithms belong to the class of partitional approaches.
Most of the traditional partitional approaches, such as K-means clustering, depend
strongly on the initial conditions. This issue leads to convergence towards local op-
timal solutions. However, PSO-based clustering approaches probe the search space
globally using population-based behavior. Consequently, they are more likely to es-
cape from local optimal solutions. In the following chapter, our proposed approach
for dealing with the data clustering problem is outlined.
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Chapter 3

Multiple Cooperative Swarms
Clustering

In this chapter, a novel clustering approach based on multiple particle swarms is
presented. The multiple swarms clustering approach imitates the behavior of bi-
ological swarms which search for food situated in several places. This approach
considers multiple cooperating swarms to find centers of clusters. This task is
done in two phases: initialization and exploitation. In the initialization phase, the
proposed approach assigns a portion of the search space to each swarm. In the
exploitation phase, the search to reach a near-optimal solution proceeds using co-
operating swarms. As compared to the single swarm clustering technique, multiple
cooperative swarms provide better solutions in terms of fitness function measure
for the centers of the clusters as the dimensionality of data and number of clusters
increase. The performance of the proposed technique is also compared with that of
existing clustering techniques for eight different data sets.

3.1 Introduction

Particle Swarm Optimization (PSO) is a search method that mimics the swarming
behavior of flocks of birds [18], [19], and was first introduced by Kennedy and
Eberhart [20], [29]. The same as Genetic Algorithms (GAs) [30], it employs a
population of individuals known as particles to solve an optimization problem. As
compared to GAs, a swarm is similar to a population, whereas a particle corresponds
to an individual. PSO is used to optimize an objective function f , called fitness
function. The PSO algorithm starts from an initial population and explores the
search space through a number of iterations to reach a near-optimal solution.

PSO has been also used for solving data clustering problems [2], [3], [4], [8], [5],
[23], [31], [32]. PSO-based clustering approaches probe the search space using a
number of particles globally. However, most other clustering techniques perform a
local search in which the solution obtained is situated in a narrow neighborhood of
the previous solution [2].
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The existing clustering methods based on particle swarm optimization consider
only one swarm to explore the search space. However, there are several situations
in which a single swarm is not able to search all of the space sufficiently, and so
fails to return satisfactory results. In the cases where the dimensionality of data is
high or there is a considerable number of clusters, multiple cooperative swarms can
perform better than a single swarm, due to the exponential increase in the volume
of the search space as the dimension of the problem increases.

The multiple cooperative swarms approach is a suitable tool to cluster data
with high dimensions and large number of clusters. The core idea in the multiple
cooperative swarms clustering approach is to use divide and conquer strategy. In
other words, the whole search space is decomposed into several subdivisions each
of which is coupled with a swarm, and then using cooperative approach among
swarms the final solution is obtained.

3.2 Motivations

Here, the motivations behind applying particle swarm optimization for the cluster-
ing task are explained. We describe two main categories of motivations: biological
and computational.

3.2.1 Biological motivations

Historically, the biological behavior of swarms was the main motivation behind par-
ticle swarm optimization [19], [33]. PSO founders mimicked the swarming behavior
of flocks of birds. In the PSO algorithm, food (solution) is located in a single point
and a swarm tends to reach that point. However, there are occasions in which there
are several possible points to find food; for instance in the case of bees, usually there
is more than one possible bunch of flowers. In other words, there is a cooperation
between different species of bees to get nectar and different species of flowers to
attract more bees [34].

Although PSO algorithm originated from the flocking behavior of birds, the
swarming behavior of bees can be also considered in modeling the clustering task.

3.2.2 Computational motivations

Computational issues have also stimulated employing particle swarm optimization
for clustering task. These motivations include:

• The PSO algorithm performs a global search of the solution space, whereas
most other clustering techniques perform a local search [2]. In the local search,
the solution obtained is located within the vicinity of the previous solution.
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For example, the K-means clustering algorithm applies the randomly gener-
ated points as the initial centers of clusters and updates the position of the
centers at every iteration. This may cause the algorithm to converge to sub-
optimal solutions. At the same time, PSO is less sensitive to the effect of the
initial conditions due to its population-based nature. Therefore, it is more
probable to find near-optimal solutions.

• Particle swarm optimization has been used to solve multi-objective optimiza-
tion problems [18], [35], [36], [37], [38], [39], [40], [41]. From an optimization
point-of-view, clustering can be considered as a multi-objective problem. On
the one hand, we desire to have as compact clusters as possible; on the other
hand, we prefer to have as separate clusters as possible. Conventional clus-
tering techniques such as K-means usually consider only the former criterion,
whereas the PSO-based clustering technique can deal with multiple objec-
tives [2], [3].

• Both multiple and cooperative swarms have also been introduced to resolve
optimization problems [42], [43], [44]. Van den Bergh and Engelbrecht have
used cooperative multiple swarms to solve optimization problems [42]. Their
proposed method performs better than canonical PSO (or a single swarm-
based technique versus multiple swarms) in high dimensions, due to the ex-
ponential increase in the volume of the search space as the dimension of the
problem increases. This idea is valid for clustering problems as well. When
the dimensionality of the data is high, the ability of a single swarm is not suffi-
cient to search all of the solution space. Instead, multiple swarms cooperating
together can be employed to obtain cluster centers effectively.

There are two main approaches based on multiple particle swarms which are
cooperative PSO and competitive PSO. In the former approach, some notion
of cooperation is considered between different swarms. Cooperation is defined
in terms of exchanging information about best solutions obtained so far by
different swarms. In this approach, the success of one swarm enhances the
overall performance of all swarms. In competitive PSO, however, there is
the predator-prey relationship. A win for one swarm implies a failure for the
other swarm. As a result, there is a direct competition in this approach [18].

This thesis concentrates on the cooperative PSO. We distribute the search
task among several swarms each of which traverses its associated region while
cooperating with other swarms.

Having introduced the main motivations for the emerging approach of PSO-
based clustering, we outline next the main characteristics of the proposed multiple
cooperative swarms clustering approach. The latter approach,
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3.3 Multiple Swarms Clustering

A new technique for the data clustering task using multiple swarms is provided.
We start with the following assumptions:

• The number of swarms is equal to the number of clusters. That is, each swarm
corresponds to a cluster.

• Each swarm is responsible for finding its related cluster’s center.

• Particles of each swarm are candidates for the corresponding cluster’s center.

The whole procedure to reach a near-optimal solution in the proposed approach
is performed through two main phases: initialization and exploitation. Schematic
representations of multiple swarms during the initialization and exploitation phases
are depicted in Fig. 3.1 and Fig. 3.2, respectively. In this figure, a set of data
points are given and the aim is to cluster these points into four distinct clusters.
The swarm size is also set to five. In the initialization phase, there is a super-
swarm which guides the other swarms. Also, there is no information exchange
between swarms in this phase. Situation of swarms at the beginning and end of the
initialization phase is given in parts (Fig. 3.1.a.1, Fig. 3.1.b.1) and (Fig. 3.1.a.2,
Fig. 3.1.b.2), respectively. At the beginning of the exploitation phase, the coop-
eration between multiple swarms initiates and each swarm investigates its asso-
ciated region (Fig. 3.2.a.3 and Fig. 3.2.b.3). When the particles of each swarm
converge as observed in (Fig. 3.2.a.4), the final solution for cluster centers is re-
leased (Fig. 3.2.b.4).

A comprehensive explanation of the initialization and exploitation phases is
given next.

1. Initialization phase

The search starts from random points in the solution space. At the beginning
of this phase, there are overlaps between swarms, whereas at the end each
swarm will deal with a part of the search space. The situation of swarms at
the beginning and end of the initialization phase is shown in Fig. 3.1.a.1 and
Fig. 3.1.a.2, respectively.

A part of the search space explored by a swarm is called a swarm region.
Each swarm region is characterized by two parameters:

• Center of swarm region, z(k), k ∈ [1, · · · , K]·
• Width of swarm region, R(k), k ∈ [1, · · · , K]·

The first parameter shows the center of the swarm region and the second one
gives its corresponding radius. The main goal of the initialization phase is to
determine these parameters for all swarms.
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a.1. Before initialization: b.1. Before initialization:
swarms in all search space super-swarm and other swarms

Swarm 1

Super swarm

Swarm 2

Swarm 3
Swarm 4

a.2. After initialization: b.2. After initialization:
swarms’ region is determined super-swarm and other swarms

Swarm 3

Super swarm

Swarm 2

Swarm 1

Swarm 4

Figure 3.1: Schematic representation of multiple swarms during the initialization
phase
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a.3. Beginning of exploitation: b.3. Beginning of exploitation:
explore the search space cooperation between swarms

Swarm 3

Swarm 2

Swarm 1

Swarm 4

a.4. End of exploitation: b.4. End of exploitation:
convergence final solution

Swarm 3

Swarm 2

Swarm 1

Swarm 4

Figure 3.2: Schematic representation of multiple swarms during the exploitation
phase
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To perform the initialization phase, we consider another swarm, called a super-
swarm. The super-swarm obeys the single swarm clustering technique to
direct swarms to dense locations. The relation of the super-swarm to the
other swarms before and after initialization phase is illustrated in Fig. 3.1.b.1
and Fig. 3.1.b.2, respectively.

In the initialization phase, each swarm receives information only from the
super-swarm. Let Φi = (ϕ(1), ..., ϕ(K))i denotes particle i of super-swarm,
where ϕ(k) is the candidate for center of swarm region k. Moreover, let us
assume Φ∗ = (ϕ(1), ..., ϕ(K))∗(t) denotes the global best of the super-swarm at
time step t, and let denote its kth element by (ϕ(k))∗.

First, the super-swarm searches for the center of the swarm regions Φi =
(ϕ(1), ..., ϕ(K))i. After updating the positions and velocities, the global best
of the super-swarm is determined. The updated global best information is
then supplied to all swarms. In other words, the global best of swarm k is
defined as

(x(k))∗ = (ϕ(k))∗. (3.1)

Thus, each swarm k tries to move toward (ϕ(k))∗. Also, one of the cluster
validity measures described in chapter 2 is considered as the fitness function.

After all swarms have updated the position and velocity of their particles, a
new iteration commences. Again, the super-swarm updates the centers of the
swarm regions. These new centers are fed to the swarms. The initialization
phase ends when the centers and widths of the swarm regions do not change
over successive iterations, or the maximum number of iterations is achieved.

At the end of the initialization phase, the center of the swarm region is de-
termined by

z(k) = (ϕ(k))∗ , k ∈ [1, ..., K]. (3.2)

Furthermore, the width of the swarm region needs to be computed for all
swarms at the end of this phase. To determine the width, we propose using
an eigen decomposition theorem. Let’s assume λ

(k)
max denotes the square root

of the biggest eigen value of data points belonging to swarm k, which is
computed by using the center of the swarm regions as initial cluster centers.
The width of the swarm region k is then computed by:

R(k) = αλ(k)
max , k ∈ [1, ..., K], (3.3)

where α is a positive constant. The α is selected such that an appropriate
coverage of the search space, or feasible solution region, is obtained. The
scheme c of Fig. 3.3 provides such coverage as there is no overlap between
different swarm regions and maximum coverage of the search space is attained.

For example, changes of the fitness function in terms of Turi’s validity index
with α for the wine data set explained in section 5 of this chapter is shown
in Fig. 3.4. According to this figure, the best value for α is observed at 0.25.
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Algorithm 3.1 Pseudocode for the initialization phase of multiple swarms clus-
tering

initialize super-swarm of size n
initialize K swarms of size n
repeat

for each particle i ∈ [1, · · · , n] of super-swarm do
update position and velocity
if F (Φi(t + 1)) < F (Φpb

i (t)) then
Φpb

i (t)← Φi(t + 1)
end if

end for
Φ∗(t)← argmin{F (Φpb

i (t))| i ∈ [1, · · · , n]}
for each swarm k ∈ [1, · · · , K] do

(x(k))∗(t)← (ϕ(k))∗(t)
for each particle i ∈ [1, · · · , n] of swarm k do

update position and velocity
end for

end for
until termination criterion is met
for each swarm k ∈ [1, · · · , K] do

z(k) ← (ϕ(k))∗(T )

R(k) ← αλ
(k)
max

end for
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a. Covering very small portion
of feasible solution region

b. Covering small portion of
feasible solution region

c. Covering feasible
solution region properly

d. Overlapped coverage of
feasible solution region

(  :  very small)αααα (  :  small)αααα

(  :  proper)αααα (  :  large)αααα

Figure 3.3: Different schemes for width of swarm regions

The required pseudocode for the initialization phase is presented in Algorithm
3.1.

2. Exploitation phase

After initializing the swarms, each swarm explores for the best solution as
cluster center within its corresponding region. In this phase, there exists no
super-swarm, but rather there is information exchange among swarms. Hence,
there is cooperation among swarms to find the final solution. Each swarm
knows the global best of the other swarms.

This phase contains a number of iterations converging on a near-optimal so-
lution. Each iteration is composed of two main steps: search, and make
decision. In the search step, the search within each swarm region proceeds.
In the make decision step, it is revealed whether the new solution is acceptable
or not. Description of these steps are provided here.

(a) Search

During this process, the search within each swarm region is done such that the
within-cluster distance is minimized, while at the same time the accumulated
distance from other clusters is maximized. The compactness of cluster k given
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Figure 3.4: Finding proper α for wine data (introduced in section 3.5)

particle i as its center is defined as

fc(x
(k)
i ) =

1

nk

nk∑
j=1

d(x
(k)
i ,y

(k)
j ), (3.4)

where x
(k)
i is particle i of swarm k. Also, d(·) stands for the distance between

the cluster center, x
(k)
i , and the cluster’s data point, y

(k)
j .

Distance from other clusters shows how far that particular cluster is from
other clusters. This distance for particle i of swarm k can be formulated as
follows:

fs(x
(k)
i ) =

1

K − 1

K∑
j=1,j 6=k

dist(x
(k)
i ,m(j))· (3.5)

Thus, the objective function for particle i of swarm k, xk
i , is given by

f(x
(k)
i ) = w1fc(x

(k)
i )− w2fs(x

(k)
i ), (3.6)

where w1 and w2 are weighting parameters such that w1+w2 = 1. After defin-
ing the objective function, the mathematical model of the clustering -in terms
of the optimization problem using multiple swarms- can be constructed. In
search step within each swarm k, particles attempt to minimize the following
optimization problem:

min f(x
(k)
i ) = w1fc(x

(k)
i )− w2fs(x

(k)
i ),

s.t. : ‖x(k)
i − z(k)‖ ≤ R(k),

i ∈ [1, · · · , n],

(3.7)
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where ‖.‖ stands for Euclidean norm. In this equation, the constraint forces
particles of the swarm to search within the corresponding swarm region. A
new position for a particle is accepted only if it is inside the swarm region.

The search using multiple swarms is performed serially. It begins in the first
swarm region, where a new candidate for the cluster center (m′(1)) is obtained
using equation (3.7). Considering this new candidate, the next swarm searches
for a new candidate for its corresponding cluster center (m′(2)). Similarly,
this procedure is repeated for each of the following swarms to obtain new
candidates for the centers of all clusters, M′ = (m′(1), · · · ,m′(K)).

(b) Make decision

When the search for all swarms is completed, it is necessary to decide on
the new candidates for the cluster centers. In other words, a final decision
is made on accepting or rejecting the solution proposed by multiple swarms.
If the fitness value obtained by equation (2.28) for new candidates M′ =
(m′(1), · · · ,m′(K)) for cluster centers is smaller than the fitness value of the
former centers M = (m(1), · · · ,m(K)), the new solution is valid and accepted;
otherwise, it is rejected.

The required pseudocode for the exploitation phase is given in Algorithm 3.2.

Algorithm 3.2 Pseudocode for the exploitation phase of multiple swarms cluster-
ing

initialize K swarms of size n such that the positions and velocities of each swarm
are selected inside the associated swarm’s region.
repeat

for each swarm k ∈ [1, · · · , K] do
for each particle i ∈ [1, · · · , n] of swarm k do

update position and velocity
if f(x

(k)
i (t + 1)) < f(x

(k),bp
i (t)) then

x
(k),bp
i (t)← x

(k)
i (t + 1)

end if
end for
m′(k)(t)← arg min{f(x

(k),bp
i (t))|i ∈ [1, · · · , n]}

end for
if F (M′(t)) < F (M(t)) then

M(t)←M′(t)
end if

until termination criterion is met

Having outlined the procedure in full, we now provide the overall algorithm of
the proposed method in Algorithm 3.3.

In the following, the contribution of the initialization phase and cooperation
among swarms in the proposed approach are demonstrated.
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Algorithm 3.3 Multiple swarms clustering

Phase 1: Initialization by the super-swarm

• Determine swarms’ center, z(k), k ∈ [1, · · · , K]·

• Determine swarms’ width, R(k), k ∈ [1, · · · , K]·

Phase 2: exploitation

• Step 1: Search within each swarm

– 1.1. Compute new positions of all particles of swarms.

– 1.2. Obtain the fitness value of all particles using equation (3.6).

– 1.3. Select the position which minimizes the optimization problem
using equation (3.7) and denote it as the new candidate for corre-
sponding cluster center (m′(k)).

• Step 2: Make decision

– 2.1. Calculate the fitness value of the new candidates for centers of
clusters (m′(1), · · · ,m′(K)) using equation (2.28).

– 2.2. If the fitness value is smaller than that of previous iteration,
accept the new solution; otherwise, reject it.

– 2.3. If termination criterion is achieved, stop; otherwise, go back to
step 1.
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3.3.1 Proposed approach without initialization

In order to examine the impact of the initialization phase, the proposed approach is
considered without an initialization phase. Assume that the data points provided
in Fig. 3.1 are going to be clustered into four clusters, and that there exist four
different swarms. By applying the proposed approach without an initialization
phase, the situation of particles of all swarms at the beginning, middle and end of
the exploitation phase is displayed in Fig. 3.5.

By eliminating the initialization phase, the distribution of the search space
among swarms is meaningless, and consequently each swarm deals with the whole
of search space. The performance of the proposed approach with and without
initialization is presented in Fig. 3.6 in terms of the compactness, separation and
combined measures. The solid and dashed lines in Fig. 3.6.a and Fig. 3.6.b are
obtained by testing the proposed approach with and without initialization phase
respectively for 30 independent runs. Moreover, µ in Fig. 3.6.a and Fig. 3.6.b
denotes the average value of the 30 runs for each measures. By comparing the
obtained average values, it is clear that the presence of the initialization phase
enables the proposed approach to provide better results in terms of compactness
and separation measures. Fig. 3.6.c shows the average values of the combined
measure for 30 independent runs over 80 iterations with and without initialization
phase. It verifies that the proposed approach with initialization phase returns better
solutions in terms of the combined measure.

Our experiments using the T -test [45] indicates that the difference between the
proposed approach and the approach without an initialization phase in terms of
the compactness and combined measures is statistically significant at a significance
level 5%.

3.3.2 Proposed approach without cooperation

Now, let us evaluate the effect of cooperation on the proposed approach. Assume
there is no cooperation among the swarms during the exploitation phase. By re-
peating the procedure of the proposed approach without cooperation using the
data points provided in Fig. 3.1, the position of particles of the swarms during the
initialization and exploitation phases is illustrated in Fig. 3.7.

By disregarding cooperation among swarms, there is no information exchange
between swarms and each swarm updates its corresponding cluster’s center without
knowing other swarms outputs at each iteration. That is, particles of each swarm k
do not know the center of other swarms. Consequently, they obtain new positions
by ignoring fs component in equation (3.7).

The influence of excluding cooperation from the proposed approach is investi-
gated in Fig. 3.8 according to the compactness, separation and combined measures.
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a. Beginning

b. Middle

c. End

Figure 3.5: The situation of particles of all swarms at different stages of the pro-
posed approach without initialization phase
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a. Compactness

b. Separation

c. Combined measure

Figure 3.6: Evaluating the influence of removing initialization phase according to
the compactness, separation and combined measures
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a. Before initialization: b. After initialization:
swarms in all search space swarms’ region is determined

c. Beginning of exploitation: End of exploitation:
explore the search space no convergence

Figure 3.7: The situation of particles of all swarms at different stages of the pro-
posed approach without cooperation in the exploitation phase
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a. Compactness

b. Separation

c. Combined measure

Figure 3.8: Evaluating the influence of removing cooperation according to the com-
pactness, separation and combined measures
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Single swarm
x1 → m(1) m(2) · · · m(K)

x2 → m(1) m(2) · · · m(K)

...
...

...
...

...
xn → m(1) m(2) · · · m(K)

Multiple swarms
swarm 1 swarm 2 swarm K

x1 → m(1) x1 → m(2) · · · x1 → m(K)

x2 → m(1) x2 → m(2) · · · x2 → m(K)

...
...

...
...

...
...

xn → m(1) xn → m(2) · · · xn → m(K)

Figure 3.9: Comparing the computational complexity of single swarm and multiple
swarms approaches with regard to particle definition

Also, experiments using the T -test revealed that the difference between the
proposed approach and the approach without cooperation in terms of the separation
and combined measures is statistically significant at a significance level 5%.

3.3.3 Computational complexity

At first glance, it may be thought that the computational complexity of the pro-
posed approach exceeds that of the single swarm clustering, as it employs multiple
swarms rather than a single swarm. However, a more precise inspection acknowl-
edges that these two approaches are computationally more or less the same in terms
of the number of particles’ components. Let’s recall the definition of particles in
both approaches. Assume n denotes the size of the swarm for both cases. A particle
xi in single swarm approach is defined by xi = (m(1), · · · , m(K))i, i ∈ [1, · · · , n]. In
other words, each particle has K different components. Therefore, the total number
of components in a single swarm is n ·K.

In the multiple swarms approach, a particle is defined by x
(k)
i = m

(k)
i , i ∈

[1, · · · , n], k ∈ [1, · · · , K]. That is, each particle possesses only one component.
Since each swarm includes n particles and there exist K different swarms, the total
number of components will be n·K, the same as the single swarm approach (Fig 3.9).

Furthermore, there is no super-swarm in the exploitation phase as it is only
used temporarily for initializing swarms. In terms of convergence rate, having
cooperation between swarms accelerates the speed of arriving at the final solution.

There is also another difference between these approaches from a computational
point-of-view. In the single swarm approach, the swarm explores the whole search
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space to provide a candidate for each component or cluster center. In contrast, the
proposed approach distributes the search task among several swarms such that each
swarm is responsible to probe a part of the search space to yield its solution for the
cluster center. For high dimensional data and in those cases where there is a large
number of clusters, the probability of getting an optimal solution using a single
swarm decreases. That is because the volume of the search space exponentially
increases as the dimension of the data increases.

The computational complexity of different approaches in terms of run time has
been also studied for the data set shown in Fig. 3.1. The proposed and single
swarm-based approaches provide the clustering result at about 1.4 seconds. This
time for hybrid PSO, K-means, k-harmonic means and fuzzy c-means is about 1.2,
0.35, 94, and 4.9 seconds, respectively, for a single run.

3.4 Assessment of Multiple Cooperative Swarms

Clustering

In this section, the performance of the proposed approach is evaluated and com-
pared with other approaches such as K-means, K-harmonic means, fuzzy c-means,
hybrid PSO and single swarm clustering approaches.

To examine the performance of the proposed approach, the following data sets
have been used:

• Gaussian data: a total of 800 samples drawn from four two-dimensional Gaus-
sian classes [8] with the following distributions:

N(µ = [
mi

0
],

∑
= [

0.50 0.05
0.05 0.50

]), (3.8)

where µ denotes the mean vector and
∑

is the covariance matrix, m1 =
−3, m2 = 0, m3 = 3 and m4 = 6.

• seven data sets from UCI machine learning repository [46]: In Table 3.1, these
data sets and the associated information of each data set such as the number
of classes, number of samples and dimensionality are provided.

To illustrate the concept of initialization and exploitation, the proposed ap-
proach has been applied to Gaussian data over 130 iterations. The results provided
in Fig. 3.10 indicate the mean and standard deviation of the fitness values for 30
independent runs. The mean (mu) of the fitness value is shown by solid line and
the associated standard deviation (σ) is also represented by dash and dot lines.

As shown in Fig. 3.10, the initialization phase is terminated after 30 iterations.
Due to the presence of cooperation between multiple swarms, a significant improve-
ment is observed at the beginning of the exploitation phase.
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Table 3.1: Data sets chosen from UCI repository

Data set classes samples dimensionality
Iris 3 150 4

Wine 3 178 13
Teaching assistant evaluation 3 151 5

Breast cancer 2 569 30
Zoo 7 101 17

Glass identification 7 214 9
Diabetes 2 768 8

Figure 3.10: Convergence of the proposed approach in terms of combined measure
as a fitness function
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Figure 3.11: Sensitivity analysis for combined measure as a function of w1

The parameters in the model are considered as w = 1.2 (decreasing gradu-
ally [22]), c1 = 1.49, c2 = 1.49 [22], and n = 10 (for all swarms). Moreover, the
sensitivity of the proposed and single swarm approaches for w1 appeared in the
combined measure are provided in Fig. 3.11 using Gaussian data. As shown in this
figure, the proposed approach is able to provide better solutions in terms of the
combined measure for different values of w1. As a result, the value of this param-
eter can be selected with regard to user preferences. It is set to be close to unity
for the problems where the compactness has higher weight, whereas it is fixed to
near zero values for the problems that separation is more important. In our exper-
iment we have considered w1 = 0.85 to keep a balance between compactness and
separation measures. This rate can also be considered as a default value for w1 in
situations where a limited information about the underlying data is available.

Moreover, the number of clusters is considered to be equal to the number of
classes for all data sets. In addition, the values of parameter α, defined in equa-
tion 3.3, are presented in Table 3.2 for all data sets and different measures.

In this table, Comp., Sep., Comb. and Turi terms indicate compactness, sepa-
ration, combined measure and Turi’s validity index, respectively.

3.4.1 Comparing the proposed approach with others

The proposed approach is compared with K-means (KH), K-harmonic means (KHM),
fuzzy c-means(FCM), hybrid PSO and single swarm clustering using different data
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Table 3.2: The values of parameter α for all data sets and different measures

Data set Comp. Sep. Comb. Turi
Gaussian 1 1.8 1.4 1.4

Iris 1.5 3 2 3
Wine 0.1 0.5 0.3 0.25

Teaching assistant evaluation 3 2 0.5 1.9
Breast cancer 0.1 0.4 0.35 0.2

Zoo 2 0.5 2 0.3
Glass identification 0.6 5.5 2 1.9

Diabetes 1.5 5.5 1.1 2.5

Table 3.3: Average and standard deviation comparison of diffirent measures for
Gaussian data

Method Compactness[σ] Separation[σ] Combined[σ] Turi’s index[σ]
KM 0.8409[0.1176] −4.9533[0.0601] −0.01[0.08] 0.2527[0.558]

KHM 0.816[0.001] −3.0133[0.001] 0.39[0.168] 0.99e05[1.3e05]
FCM 0.8133[0.001] −2.9842[0.001] 0.33[0.08] 0.2629[0.2879]

Hybrid PSO 0.8135[0.01] −9.62[0.15] −0.026[0.13] 0.3557[0.2723]
Single swarm 0.8044[0.0134] −9.9362[0.1988] −0.03[0.1] −63.44[5.008]

Multiple swarms 0.8029[0.0138] −9.8527[0.1235] −0.04[0.02] −72.75[12.82]

sets. The results are provided in Tables 3.3-3.10. The comparisons are based on four
validity measures defined in chapter 2, namely compactness, separation, combined
and Turi’s ones. The results have been obtained by averaging over 30 indepen-
dent runs and the associated standard deviation ([σ]) for each value has also been
provided.

As presented in Tables 3.3-3.10, the following observations can be declared:

• The multiple swarms clustering approach provides smaller values for both
combined measure and Turi’s validity index as compared to the other ap-
proaches for most of the data sets. Hence, the proposed approach is suitable
in cases dealing with multiple objectives.

• In terms of the separation measure, both multiple swarms and single swarm
clustering outperform other clustering approaches. In other words, these ap-
proaches can be used where the separate clusters are desired.

• In terms of the compactness measure, the proposed technique provides better
results for all data sets as compared to the single swarm technique, though it
is inferior to other clustering approaches for some of the data sets.

In Fig. 3.12 and Fig. 3.13, the fitness values in terms of combined measure for the
proposed approach are compared with those of K-means , K-harmonic means, fuzzy
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Table 3.4: Average and standard deviation comparison of diffirent measures for iris
data

Method Compactness[σ] Separation[σ] Combined[σ] Turi’s index[σ]
KM 0.6441[0.0739] −3.2481[0.1917] 0.0881[0.0907] 0.3187[0.4853]

KHM 0.9312[0.6563] −3.0199[1.2292] 0.3668[0.7358] 0.8e05[1.1e05]
FCM 0.6071[0.068] −3.1682[0.0964] 0.0678[0.196] 0.43[0.39]

Hybrid PSO 0.6212[0.051] −3.3853[0.3066] 0.0637[0.0447] 0.278[0.38]
Single swarm 0.6618[0.0528] −5.9405[0.1104] 0.0436[0.0575] −0.88[0.4]

Multiple swarms 0.6123[0.013] −6.0017[0.135] 0.023[0.015] −0.89[1.01]

Table 3.5: Average and standard deviation comparison of diffirent measures for
wine data

Method Compactness[σ] Separation[σ] Combined[σ] Turi’s index[σ]
KM 88.089[2.908] −492.9[13.6854] 6.64[2.0059] 0.3623[0.3371]

KHM 142.3[47.06] −514.6[176.31] 23.20[1.9] 1.0e05[1.0e05]
FCM 88.63[0.06] −508.21[0.22] 3.37[0.02] 0.3561[0.3394]

Hybrid PSO 87.16[0.01] −500.94[16.7] 9.16[0.07] 0.259[0.337]
Single swarm 86.52[0.38] −962.37[13.3] −9.4277[3.38] −0.38[0.4]

Multiple swarms 86.39[0.229] −965.16[3.66] −11.416[0.86] −0.78[0.8]

Table 3.6: Average and standard deviation comparison of diffirent measures for
teaching assitant evaluation data

Method Compactness[σ] Separation[σ] Combined[σ] Turi’s index[σ]
KM 9.85[0.228] −20.9265[1.5992] 5.4544[0.4157] 0.68[0.75]

KHM 9.899[0.01] −22.9464[0.01] 5.2066[0.01] 1.12e06[1e06]
FCM 10.125[0.2] −15.3287[0.1731] 6.4891[0.04] 1.018[0.939]

Hybrid PSO 9.73[0.11] −21.57[1.3489] 5.22[0.349] 0.63[0.61]
Single swarm 9.73[0.145] −54.9[0.66] 4.23[0.1348] −0.56[0.65]

Multiple swarms 9.61[0.05] −54.6624[0.71] 4.2041[0.08] −0.76[0.72]

Table 3.7: Average and standard deviation comparison of diffirent measures for
breast cancer data

Method Compactness[σ] Separation[σ] Combined[σ] Turi’s index[σ]
KM 252.3[22.6] −1.31e03[20.16] 252.27[11.03] 0.23[0.23]

KHM 475.4[207.1412] −0.69e03[0.8685] 234.04[17.92] 1.25[0.01]
FCM 249.3[0.0713] −1.297e03[0.002] 28.447[0.22] 0.19[0.18]

Hybrid PSO 252.3[0.01] −1.315e03[0.01] −210.1[0.01] 0.17[0.25]
Single swarm 254.7[7.0324] −4.836e03[30.38] −247.71[6.55] −0.62[0.79]

Multiple swarms 252.0[0.01] −4.76e03[67.8615] −248.8[6.49] −0.66[0.65]
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Table 3.8: Average and standard deviation comparison of diffirent measures for zoo
data

Method Compactness[σ] Separation[σ] Combined[σ] Turi’s index[σ]
KM 1.1586[0.0592] −4.5284[0.2805] −0.10[0.13] 0.6208[1.0186]

KHM 1.1699[0.0841] −4.8446[0.3042] −0.139[0.1027] 0.4296[0.4803]
FCM 1.2684[0.0702] −3.6786[0.3145] 0.1116[0.1025] 9.59[24.4366]

Hybrid PSO 1.1705[0.0893] −5.7395[0.4116] −0.126[0.1158] 0.9184[0.7134]
Single swarm 1.7277[0.0659] −8.87[0.21] −0.11[0.103] −5.6769[3.7316]

Multiple swarms 1.1582[0.027] −8.7389[0.1964] −0.17[0.16] −6.1268[4.41]

Table 3.9: Average and standard deviation comparison of diffirent measures for
glass identification data

Method Compactness[σ] Separation[σ] Combined [σ] Turi’s index[σ]
KM 0.9276[0.0373] −4.23[0.52] 0.191[0.09] 1.32[1.08]

KHM 0.97[0.008] −5.24[0.03] 0.08[0.0117] 0.89e05[1.15e05]
FCM 1.02[0.013] −2.72[0.106] 0.4892[0.017] 6.68[0.0149]

Hybrid PSO 1.17[0.12] −7.85[0.68] −0.016[0.1454] 0.452[0.38]
Single swarm 1.47[0.11] −11.119[0.30] 0.12[0.12] −4.455[1.66]

Multiple swarms 1.21[0.14] −11.26[1.26] 0.0227[0.0324] −5.205[2.35]

Table 3.10: Average and standard deviation comparison of diffirent measures for
diabetes data

Method Compactness[σ] Separation[σ] Combined[σ] Turi’s index[σ]
KM 64.89[0.01] −220.62[0.01] 24.1016[0.01] 0.28[0.26]

KHM 88.13[10.18] −255.47[173.1] 87.053[3.16] 1.6e07[2.6e07]
FCM 60.87[0.0004] −181.95[0.006] 26.18[0.0005] 0.337[0.33]

Hybrid PSO 64.89[0.01] −220.62[0.01] 24.1[0.01] 0.27[0.32]
Single swarm 64.94[5.08] −865.83[5.748] −44.15[2.208] −0.22[0.26]

Multiple swarms 61.41[0.88] −883.05[115.8] −45.36[1.27] −0.3[0.31]
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1. Gaussian data 2. Iris data

3. Wine data 4. Teaching assistant evaluation data

Figure 3.12: Comparing the convergence of the proposed multiple swarms clustering
with other approaches in terms of combined measure for Gaussian, iris, wine and
teaching assistant evaluation data sets

c-means, hybrid PSO and single swarm clustering through 80 iterations different
data sets.

As illustrated in Fig. 3.12 and Fig. 3.13, the multiple swarms clustering approach
can provide better solutions for the majority of data sets due to its strong and effec-
tive search ability, which confirms the analytical derivations provided in appendix
B. A sudden drop in the fitness value of some data sets shows the beginning of the
exploitation phase, where the cooperation between swarms starts. Also, K-means,
K-harmonic means and fuzzy c-means clustering techniques converge quickly and
they require less computational time to get to the final solution. Moreover, the
multiple swarm approach outperforms single swarm and hybrid PSO approaches
as it delegates a portion of the search space to each swarm. As compared to the
single swarm technique, the proposed approach accelerates the convergence of the
clustering task.
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5. Breast cancer data 6. Zoo data

7. Glass identification data 8. Diabetes data

Figure 3.13: Comparing the convergence of the proposed multiple swarms clustering
with other approaches in terms of combined measure for breast cancer, zoo, glass
identification and diabetes data sets
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Moreover, hybrid PSO may provide better solutions when the compactness mea-
sure is of interest since K-means algorithm is developed based on this measure. For
the other measures such as separation and Turi’s index, PSO can still yield proper
initial solution to K-means. However, K-means algorithm may not be able to
improve the provided results since it only considers compactness measure. The
proposed cooperative swarms approach does not have this issue and it is able to
deal with different types of measures in the objective function. We have also inves-
tigated the statistical significance of the difference between the proposed approach
and the other methods using T -test at a significance level 5%. The detailed results
are provided in appendix C.

3.4.2 Multiple swarms vs. single swarm as dimensionality
of data increases

In this section, we examine the influence of the increasing dimensionality of data on
the performance of multiple swarms and single swarm clustering approaches. The
simulations are done using wine, breast cancer, zoo and glass identification data
sets using the combined measure, and the results have been illustrated in Fig. 3.14.
To obtain the results at a certain dimension d, the first d dimensions of the feature
space are considered for the associated data set.

As can be seen from Fig. 3.14, the multiple swarms clustering approach outper-
forms the single swarm technique as the dimensionality of data increases, confirming
the analytical derivations demonstrated in appendix B.

3.4.3 Multiple swarms vs. single swarm as number of clus-
ters increases

In this section, the effect of the number of clusters on the performance of the
proposed approach and the single swarm clustering is investigated. The simulations
are performed using different data sets and the corresponding results are illustrated
in Fig. 3.15 and Fig. 3.16.

As presented in Fig. 3.15 and Fig. 3.16, the multiple swarms clustering approach
leads to a better outcome in terms of fitness value (here combined measure), as the
number of clusters increases as derived analytically in appendix B.

3.4.4 High dimensions and large number of clusters

To study the performance of the proposed approach in higher dimensions and the
existence of large number of clusters, three high dimensional Gaussian data sets
are considered. First set denoted by High dimension D25 includes a total of 600
samples drawn from four 25-dimensional Gaussian classes, the second set denoted

46



Wine data Breast cancer data

Zoo data Glass identification data

Figure 3.14: Comparing the performance of the single swarm and multiple swarms
clustering approaches as dimensionality of data increases
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Gaussian data Iris data

Wine data Teaching assistant evaluation data

Figure 3.15: Comparing the performance of the single swarm and multiple swarms
clustering approaches as the number of clusters increases: Gaussian, iris, wine and
teaching assistant evaluation data sets
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Breast cancer data Zoo data

Glass identification data Diabetes data

Figure 3.16: Comparing the performance of the single swarm and multiple swarms
clustering approaches as the number of clusters increases: breast cancer, zoo, glass
identification and diabetes data sets
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Table 3.11: Average and standard deviation comparison of diffirent measures for
high dimension D25 data

Method Compactness[σ] Separation[σ] Combined[σ] Turi’s index[σ]
KH 3.4478[0.09] −6.669[0.23] 2.002[0.09] 0.83[1.59]

KHM 3.39[0.0001] −6.45[0.0001] 1.98[0.0001] 3.42[3.83]
FCM 3.44[0.03] −5.94[0.036] 2.1[0.03] 1.24[1.39]

Hybrid PSO 3.4[0.07] −6.65[0.058] 1.96[0.05] 1.116[1.41]
Single swarm 10.6[0.59] −88.17[2.47] 0.68[0.68] −1.29[1.06]

Multiple swarms 0.7[0.86] −84.83[2.74] −1.44[0.95] −1.3335[1.0813]

Table 3.12: Average and standard deviation comparison of diffirent measures for
high dimension D25N25 data

Method Compactness[σ] Separation[σ] Combined[σ] Turi’s index[σ]
KH 65.4976[0.912] −69.36[9.8] 46.23[2.05] 1.4[1.07]

KHM 75.6131[0.0001] 0.76[0.0001] 64.92[0.0001] 0.75e07[0.85e07]
FCM 75.3964[0.0001] 0.76[0.28] 64.73[0.0001] 0.2004e9[0.0058e9]

Hybrid PSO 66.285[0.8479] −69.2[12.05] 47.23[1.65] 1.36[1.28]
Single swarm 181.7[15.5] −948[25] 77.16[14.49] −1.368[0.87]

Multiple swarms 11.682[1.2341] −918[68.5] −1.5[1.13] −1.59[1.56]

by High dimension N25D25 contains a total of 1250 samples sampled from twenty
five 25-dimensional Gaussian classes and the third set denoted by High dimen-
sion N100D100 encompasses a total of 1250 samples generated from one hundred
100-dimensional Gaussian classes. The results for these data sets are provided in
Tables 3.11-3.13.

3.5 Summary

In this chapter, a novel clustering approach based on multiple cooperative swarms
was proposed. Using a super-swarm, the multiple cooperative swarms approach
assigns a portion of the search space to each swarm. This strategy boosts its
exploration ability, as each swarm deals with a part of the search space. Each

Table 3.13: Average and standard deviation comparison of diffirent measures for
high dimension D100N100 data

Method Compactness[σ] Separation[σ] Combined[σ] Turi’s index[σ]
Single swarm 8.18e03[29.9] −1.28e06[1.9e03] −1.4e05[349] 2.06e04[147.2]

Multiple swarms 0.04e03[29] −1.28e06[2.9e03] −1.4e05[513] −0.004e04[39]
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swarm explores its own region while cooperating with other swarms; it knows the
global best of other swarms and attempts to find a point whose cumulative distance
from other clusters’ centers is maximized. Each swarm also tends to minimize
the within-cluster distance. The proposed multiple cooperative swarms clustering
approach is applied to cluster eight sets of data. It outperforms the other methods
because of distributing the search space among multiple swarms and using multiple
cooperating swarms. The proposed clustering technique also facilitates clustering
data with high dimensions and a large number of clusters.

Similar to most of the partitional clustering approaches, the multiple cooperative
swarms approach needs to be provided a priori the number of clusters. This has
always been a challenging task in the area of partitional clustering. In the following
chapter, it is shown how stability analysis can be used to estimate the number of
clusters for the underlying data using multiple cooperative swarms approach.
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Chapter 4

Stability-based Model Order
Selection for Multiple
Cooperative Swarms Clustering

Extracting different clusters of a given data is an appealing topic in swarm intelli-
gence applications. In this chapter, a stability analysis is proposed to determine the
model order of the underlying data using multiple cooperative swarms clustering.
The mathematical explanations demonstrating why multiple cooperative swarms
clustering leads to more stable and robust results than those of single swarm clus-
tering are then provided. The proposed approach is evaluated using different data
sets and its performance is compared with that of other clustering techniques.

4.1 Introduction

In data clustering, recognizing subgroups of the given data is of interest. A vast
number of clustering techniques have been developed to deal with data based on
different assumptions about the distribution, shape and size of the data. Most of
the clustering techniques require a priori knowledge about the number of clusters
[11], [12], whereas some other approaches are capable of extracting such information
[47].

Swarm intelligence approaches such as particle swarm optimization, biologically
inspired by the flocking behavior of birds [20], have been applied for clustering
applications [2], [6], [8], [9], [23]. The goal of PSO-based clustering techniques is
usually to find cluster centers. Most of the recent swarm clustering techniques use
a single swarm approach to reach a final clustering solution [2], [3], [9]. Multiple
swarms clustering has been recently proposed in [6]. The multiple swarms clustering
approach is useful to deal with high dimensional data as it uses a divide and conquer
strategy. In other words, it distributes the search space among multiple swarms,
each of which explores its associated division while cooperating with others. The
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(a) Stable (b) Unstable (c) Unstable

Figure 4.1: Examples of stable and unstable clustering when two clusters are de-
sired.

novelty of this chapter is to apply the stability analysis for determining the number
of clusters in underlying data using multiple cooperative swarms [48]. Also, we
explain in this chapter why the proposed multiple cooperative approach is able
to provide a more robust solution, in terms of mathematical demonstration, as
compared with a single swarm approach.

In the following, a discussion on stability analysis for data clustering is provided.

4.2 Stability Analysis

Determining the number of clusters in data clustering is known as a model order
selection problem. There exist two main stages in model order selection. First, a
clustering algorithm should be chosen. Then, the model order needs to be extracted,
given a set of data [47], [49].

Most of the clustering approaches assume that the model order is known in
advance. Here, we employ stability analysis to obtain the number of clusters using a
multiple cooperative swarms clustering approach. A description of stability analysis
is provided before describing the core algorithm.

Stability concept is used to evaluate the robustness of a clustering algorithm.
In other words, the stability measure indicates how much the results of the cluster-
ing algorithm are reproducible on other data drawn from the same source. Some
examples of stable and unstable clustering are shown in Fig. 4.1 when the aim is
to cluster the presented data into two groups.

As can be seen in Fig. 4.1, data points shown in Fig. 4.1.(a) provide a stable
clustering solution in a sense that the same clustering results are obtained by re-
peating a clustering algorithm several times. However, the data points illustrated
in Fig. 4.1.(b) and Fig. 4.1.(c) do not yield stable clustering solutions when two
clusters are of interest. That is, different results are generated by running the
clustering algorithm a number of times. Each line in Fig. 4.1 presents a possible
clustering solution for the corresponding data. The reason for getting unstable
clustering solutions in these cases is the inappropriate number of clusters. In other
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words, stable results are obtained for these data sets by choosing a suitable num-
ber of clusters. The proper number of clusters for these data are three and four,
respectively.

As a result, one of the issues that affects the stability of the solutions produced
by a clustering algorithm is the model order. For example, by assuming a large
number of clusters the algorithm generates random groups of data influenced by the
changes observed in different samples. On the other hand, by choosing a very small
number of clusters, the algorithm may compound separated structures together and
return unstable clusters [47]. As a result, one can utilize the stability measure for
estimating the model order of the unlabeled data [48].

4.3 Stability-based Model Order Selection

The multiple cooperative swarms clustering data requires a priori knowledge of the
model order. In order to enable this approach to estimate the number of clusters,
the stability approach is taken into consideration. We use the stability method
introduced by Lange et al. [47] for the following reasons:

• it requires no information about the data being processed,

• it can be applied to any clustering algorithm,

• it returns the correct model order using the notion of maximal stability.

The required procedure for model order selection using stability analysis is pro-
vided in Algorithm 4.1.

Regarding the stability-based model order selection algorithm, a number of
issues should be explained as given next.

4.3.1 Classifier φ

A set of labeled data is required for training a classifier φ. The data set Y1 and its
clustering solution from algorithm Ak, i.e., T1 := Ak(Y1), can be used to establish
a classifier. There are a vast range of classifiers that can be used for classification.
In this thesis, k-nearest neighbor (KNN) classifier was chosen as it requires no
assumption on the distribution of data. Moreover, k is set to 25 for the k-nearest
neighbor classifier.

4.3.2 Distance of solutions provided by clustering and clas-
sifier for the same data

Having a set of training data, the classifier can be tested using a test data Y2. Its
solution is represented by T ′

2 = φ(Y2). But, there exists another solution for the
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Algorithm 4.1 Model order selection using stability analysis

for k ∈ [2, · · · , K] do
for r ∈ [1, · · · , rmax] do

-Randomly split the given data Y into two halves Y1, Y2.
-Cluster Y1, Y2 independently using an appropriate clustering approach;
i.e., T1 := Ak(Y1), T2 := Ak(Y2).
-Use (Y1, T1) to train classifier φ(Y1) and compute T ′

2 = φ(Y2).
-Calculate the distance of the two solutions T2 and T ′

2 for Y2; i.e., dr =
d(T2, T

′
2).

-Again cluster Y1, Y2 by assigning random labels to points.
-Extend random clustering as above, and obtain the distance of the solutions;
i.e., dnr.

end for
-Compute the stability stab(k) = meanr(d).
-Compute the stability of random clusterings stabrand(k) = meanr(dn).

- s(k) = stab(k)
stabrand(k)

end for
-Select the model order k∗ such that k∗ = arg min

k
{s(k)}.

same data obtained from the multiple cooperative swarms clustering technique, i.e.,
T2 := Ak(Y2). The distance of these two solutions is calculated by

d(T2, T
′
2) = arg min

ω∈ρk

N∑
i=1

ϑ{ω(t2i) 6= t′2i}, (4.1)

where

ϑ{t2i 6= t′2i} =

{
1 if t2i 6= t′2i,

0 otherwise·
(4.2)

Also, ρk contains all permutations of k labels and ω is the optimal permutation in
ρk which produces the maximum agreement between two solutions [47].

4.3.3 Random clustering

The stability rate depends on the number of classes or clusters. For instance, the
accuracy rate of 50% for binary classification is more or less the same as that of
a random guess. However, this rate for k = 10 is much better than a random
predictor. In other words, if a clustering approach outcomes the same accuracy for
model orders k1 and k2, where k1 < k2, the clustering solution for k2 is more reliable
than the other solution. Hence, the primary stability measure obtained for a certain
value k, stab(k) in Algorithm 4.1, should be normalized using a stability rate of a
random clustering, stabrand(k) in Algorithm 4.1 [47]. The random clustering simply
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(a) Excluding random clustering

(b) Including random clustering

Figure 4.2: The effect of the random clustering on the selection of the model order.

means to assign a label between one and K to each data point randomly. The final
stability measure for the model order k is obtained as follows:

s(k) = { stab(k)

stabrand(k)
}· (4.3)

The effect of the random clustering is studied on the performance of the Zoo
data set provided in section 4.5 to determine the model order of the data using
K-means algorithm. The stability measure for different number of clusters with
and without using random clustering is shown in Fig. 4.2.

As depicted in Fig. 4.2, the model order of the zoo data using K-means cluster-
ing is recognized as two without considering random clustering, while it becomes
six, which is close to the true model order, by normalizing the primary stability
measure to the stability of the random clustering.
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4.3.4 Appropriate clustering approach

For a given data set, the algorithm does not provide the same result for multiple
runs. Moreover, the model order is highly dependent on the type of appropriate
clustering approach that is used in this algorithm (see Algorithm 4.1), and there
is no specific emphasis in the work of Lange et al. [47] on the type of clustering
algorithm that should be used. K-means and K-harmonic means algorithms are
either sensitive to the initial conditions or to the type of data. In other words,
they cannot capture true underlying patterns of the data, and consequently the
estimated model order is not robust. However, PSO-based clustering methods such
as single swarm or multiple cooperative swarms clustering do not rely on initial
conditions, and they are the search schemes which can explore the search space
more effectively and can escape from local optimums. Further, as described in
section 4.4, the multiple cooperative swarms clustering is more probable to get the
optimal solution than the single swarm clustering and it can provide more stable
and robust clustering solutions.

4.4 Stability Analysis: Multiple Swarms vs. Sin-

gle Swarm

To analyze the stability of the single swarm and multiple swarms clustering, the
probability of getting true cluster centers is studied in both approaches using the
introduced stability-based scheme. In other words, to prove that the multiple co-
operative swarms approach leads to more robust and stable results as compared to
the single swarm, it is necessary to demonstrate that the probability of converging
to true cluster centers using multiple cooperative swarms is greater than that of
the single swarm clustering.

4.4.1 Probability of converging to an optimal clustering so-
lution

First, let’s study the probability of obtaining an optimal solution of the following
optimization problem using particle swarm optimization

Z = min F(x)
s.t. : x ∈ S,

(4.4)

where S denotes the search space. Assume that S is a d -dimensional hyper-sphere
of radius r and the optimal solution is located in a smaller d -dimensional hyper-
sphere of radius r′. Accordingly, the probability of getting to the optimal solution
by the PSO algorithm is given by

Pr = V (r′,d)
V (r,d)

, (4.5)
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where V (r′, d) and V (r, d) are volume of the d -dimensional hyper-spheres of radius
r′ and r, respectively. The volume of the d -dimensional hyper-sphere of radius r is
defined as

V (r, d) =
π

d
2

Γ(d
2

+ 1)
rd, (4.6)

where Γ(·) stands for Gamma function. Considering equations (4.5) and (4.6), the
probability of finding a solution in the optimal region is as follows:

Pr = ( r′

r
)d· (4.7)

In other words, the probability of finding an optimal solution decreases by increasing
the dimensionality of data, provided r and r′ do not change.

Now, consider a single swarm clustering whose true cluster centers are placed
in K different d -dimensional hyper-spheres of radii r′1, r′2,· · · ,r′K . To get an opti-
mal solution, cluster centers should be selected from the associated regions. The
probability of getting the cluster centers from the corresponding regions is given by

P 1
r =

K∏
k=1

Pr(m
k ∈ Ck), (4.8)

where Pr(m
k ∈ Ck) indicates the probability of selecting the center of cluster k

from its related region calculated by

Pr(m
k ∈ Ck) = (

r′k
r

)d· (4.9)

Using this expression, equation (4.8) can be rewritten as

P 1
r =

K∏
k=1

(
r′k
r

)d =
(r′1r

′
2 · · · r′K)d

rd.K
· (4.10)

In the case of multiple swarms clustering, each swarm investigates a portion of
the search space characterized by a d-dimensional hyper-sphere of radius rk. Since
rk < r for all k, the following inequality is attained:

r1 · · · rK < rK · (4.11)

Because the dimensionality of the data is greater than one, inequality (4.11) is
modified as

(r1 · · · rK)d < rd.K · (4.12)

Assume the optimal solution for each swarm k in multiple swarms approach is
situated in a d-dimensional hyper-sphere of radius r′k. Accordingly, the probability
of getting an optimal solution using multiple swarms at each iteration is calculated
as
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PM
r =

K∏
k=1

Pr(m
k ∈ Ck), (4.13)

and it can be simplified as

PM
r =

K∏
k=1

(
r′k
rk

)d =
(r′1r

′
2 · · · r′K)d

(r1.r2 · · · rK)d
· (4.14)

According to equations (4.10) and (4.14), the following output is obtained

PM
r

P 1
r

=
rd.K

(r1.r2 · · · rK)d
· (4.15)

Considering equations (4.12) and (4.15), one can simply observe that

PM
r

P 1
r

> 1, or PM
r > P 1

r . (4.16)

Hence, the probability of obtaining the optimal solution using the multiple cooper-
ative swarms clustering is greater than that of the single swarm clustering.

4.4.2 Stability of the proposed approach

Suppose that the underlying data Y is divided into two halves Y1 and Y2. Also, let
A1

K and AM
K denote the single swarm and multiple swarms clustering, respectively,

where K indicates the model order.

The goal is to get to the true cluster centers, denoted by (m1, · · · , mK), for the
given data Y . Let’s have a look at the core idea of the algorithm 8 as depicted in
Fig. 4.3.

According to Fig. 4.3, to prove that the multiple swarms clustering yields more
stable and robust solutions than the single swarm clustering, it is required to show
that

Dm(Tm
2 , T

′m
2 ) < D1(T 1

2 , T
′1
2 ), (4.17)

where Tm
2 and T 1

2 indicate the released labels by multiple swarms and single swarm
clusterings for data Y2, respectively; and Dm(·) and D1(·) are the distance measures
obtained by multiple swarms and single swarm clustering, respectively.

Now, consider the labels Tm
2 and T

′m
2 produced by multiple swarms clustering

and the trained classifier φ(·), respectively. The quality of the classifier’s responses
depends on the performance of the associated clustering approach, in this case
multiple swarms clustering, on the data set Y1. As a result, one can express the
Dm(Tm

2 , T
′m
2 ) in terms of the distance of the cluster centers obtained by the multiple

swarms clustering using Y1 and Y2. The ultimate goal is to converge to the optimal
cluster centers denoted by (m1, · · · ,mK) by applying multiple cooperative swarms

59



Figure 4.3: The core idea of the model order selection algorithm

clustering on both Y1 and Y2. In other words, Dm(Tm
2 , T

′m
2 ) is minimized when

the multiple swarms clustering reaches the optimal solution using Y1 and Y2. The
probability of converging to the optimal cluster centers by using the multiple swarms
clustering on data sets Y1 and Y2, denoted by Pm

Y1,Y2
, is given by

Pm
Y1,Y2

= Pm
Y1
· Pm

Y2
, (4.18)

where Pm
Y1

and Pm
Y2

denote the probability of converging to the optimal solution by
utilizing multiple swarms clustering on Y1 and Y2, respectively. In both cases, get-
ting the same optimal solution (m1, · · · ,mK) situated in K different d -dimensional
hyper-spheres of radii r′1, r′2,· · · ,r′K is of interest. However, the radius of the asso-

ciated swarm regions of two different data sets may vary. Let r
(1)
k and r

(2)
k denote

the radius of the swarm region k for data sets Y1 and Y2, respectively.

According to equation (4.14), Pm
Y1,Y2

is rewritten as

Pm
Y1,Y2

=
K∏

k=1

(
r′k

r
(1)
k

)d ·
K∏

k=1

(
r′k

r
(2)
k

)d =
K∏

k=1

(r′k)
2d

(r
(1)
k · r

(2)
k )d
· (4.19)

60



Similarly by using single swarm clustering, the probability of converging to the
optimal cluster centers for data sets Y1, Y2 denoted by P 1

Y1,Y2
is given by

P 1
Y1,Y2

= P 1
Y1
· P 1

Y2
· (4.20)

By substituting the corresponding expressions for P 1
Y1

and P 1
Y2

and doing some
simplifications, the following result is attained

P 1
Y1,Y2

=
K∏

k=1

(r′k)
2d

(r)2d
· (4.21)

Considering equations (4.19) and (4.21), the following expression is concluded

PM
Y1,Y2

P 1
Y1,Y2

=
K∏

k=1

(r)2d

(r
(1)
k · r

(2)
k )d

=
(r)2Kd∏K

k=1 (r
(1)
k · r

(2)
k )d
· (4.22)

Since (r
(1)
1 · · · r

(1)
K )d < rd.K and (r

(2)
1 · · · r

(2)
K )d < rd.K , it is clear that

(r)2Kd >
K∏

k=1

(r
(1)
k · r

(2)
k )d· (4.23)

In other words,

PM
Y1,Y2

> P 1
Y1,Y2
· (4.24)

Hence, the multiple swarms clustering can produce more stable and robust results
using the proposed approach, compared to single swarm clustering.

4.5 Assessment of the Model Order Selection Ap-

proach for Multiple Cooperative Swarms Clus-

tering

The performance of the proposed approach is evaluated and compared with other
approaches such as single swarm clustering, K-means and K-harmonic means clus-
tering using eight different data sets, seven of which are selected from the UCI
machine learning repository [46], and the last being a speech data set taken from
the standard TIMIT corpus [50]. The name of data sets chosen from UCI machine
learning repository, their associated number of classes, samples and dimensions are
provided in Table 4.1.

Also, the speech data include four phonemes: /aa/, /ae/, /ay/ and /el/, from the
TIMIT corpus. A total of 800 samples from these classes was selected, and twelve
mel-frequency cepstral coefficients [51] have been considered as speech features.
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Table 4.1: Data sets selected from UCI machine learning repository

Data set classes samples dimensionality
Iris 3 150 4

Wine 3 178 13
Teaching assistant evaluation (TAE) 3 151 5

Breast cancer 2 569 30
Zoo 7 101 17

Glass identification 7 214 9
Diabetes 2 768 8

Table 4.2: Average and standard deviation comparison of diffirent measures for
speech data

Method Turi’s index[σ] Dunn’s index[σ] S−Dbw[σ]
K-means 0.8328[0.8167] 0.0789[0.0142] 3.3093[0.327]

K-harmonic means 3.54e05[2.62e05] 0.0769[0.0001] 3.3242[0.0001]
Single swarm −1.4539[0.8788] 0.1098[0.014] 1.5531[0.0372]

Cooperative swarms −1.6345[1.0694] 0.1008[0.0153] 1.583[0.0388]

The performance of the multiple cooperative swarms clustering approach is com-
pared with K-means and single swarm clustering techniques in terms of Turi’s va-
lidity index over 80 iterations (Fig. 4.4 and Fig. 4.5). The results are obtained by
repeating the algorithms 30 independent times. For these experiments, the param-
eters are set as w = 1.2, c1 = 1.49, c2 = 1.49, n = 30 (for all swarms). In addition,
the model order is considered to be equal to the number of classes.

As illustrated in Fig. 4.4, multiple cooperative swarms clustering provides better
results as compared with K-means, as well as single swarm clustering approaches,
in terms of Turi’s index for a majority of the data sets.

In Tables 4.2-4.9, the multiple cooperative swarms clustering is compared with
other clustering approaches using different cluster validity measures over 30 inde-
pendent runs. The results presented for different data sets are in terms of average
and standard deviation ([σ]) values.

As observed in Tables 4.2-4.9, multiple swarms clustering is able to provide
better results in terms of the different cluster validity measures for most of the
data sets. This is because it is capable of manipulating multiple-objective problems,
in contrast to K-means (KM) and K-harmonic means (KHM) clustering, and it
distributes the search space between multiple swarms and solves the problem more
effectively.

Now, the stability-based approach for model order selection in multiple coop-
erative swarms clustering is studied. The PSO parameters are kept the same as
before, and rmax = 30 and k is considered to be 25 for KNN classifier. The sta-
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1. Speech data 2. Iris data

3. Wine data 4. Teaching Assistant evaluation data

Figure 4.4: Comparing the performance of the multiple cooperative swarms clus-
tering with K-means and single swarm clustering in terms of Turi’s index: speech,
iris, wine and TAE data sets

Table 4.3: Average and standard deviation comparison of diffirent measures for iris
data

Method Turi’s index[σ] Dunn’s index[σ] S−Dbw[σ]
K-means 0.4942[0.3227] 0.1008[0.0138] 3.0714[0.2383]

K-harmonic means 0.82e05[0.95e05] 0.0921[0.0214] 3.0993[0.0001]
Single swarm −0.8802[0.4415] 0.3979[0.0001] 1.4902[0.0148]

Cooperative swarms −0.89[1.0164] 0.3979[0.0001] 1.48[0.008]
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5. Glass identification data 6. Zoo data

7. Breast cancer data 8. Diabetes data

Figure 4.5: Comparing the performance of the multiple cooperative swarms clus-
tering with K-means and single swarm clustering in terms of Turi’s index: glass
identification, zoo, breast cancer and diabetes data sets

Table 4.4: Average and standard deviation comparison of diffirent measures for
wine data

Method Turi’s index[σ] Dunn’s index[σ] S−Dbw[σ]
K-means 0.2101[0.3565] 0.016[0.006] 3.1239[0.4139]

K-harmonic means 2.83e07[2.82e07] 190.2[320.75] 2.1401[0.0149]
Single swarm −0.3669[0.4735] 0.1122[0.0213] 1.3843[0.0026]

Cooperative swarms −0.7832[0.8564] 0.0848[0.009] 1.3829[0.0044]
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Table 4.5: Average and standard deviation comparison of diffirent measures for
teaching assistant evaluation data

Method Turi’s index[σ] Dunn’s index[σ] S−Dbw[σ]
K-means 0.6329[0.7866] 0.0802[0.0306] 3.2321[0.5205]

K-harmonic means 1.36e06[1.23e06] 0.123[0.0001] 2.7483[0.0001]
Single swarm −0.5675[0.6525] 0.1887[0.0001] 1.4679[0.0052]

Cooperative swarms −0.7661[0.7196] 0.1887[0.0001] 1.4672[0.004]

Table 4.6: Average and standard deviation comparison of diffirent measures for
breast cancer data

Method Turi’s index[σ] Dunn’s index[σ] S−Dbw[σ]
K-means 0.1711[0.1996] 0.0173[0.0001] 2.1768[0.0001]

K-harmonic means 0.88[0.95] 7.0664[38.519] 1.8574[0.0203]
Single swarm −0.62[0.7997] 217.59[79.079] 1.7454[0.079]

Cooperative swarms −0.6632[0.654] 245.4857[53.384] 1.7169[0.0925]

Table 4.7: Average and standard deviation comparison of diffirent measures for zoo
data

Method Turi’s index[σ] Dunn’s index[σ] S−Dbw[σ]
K-means 0.8513[1.0624] 0.2228[0.0581] 2.5181[0.2848]

K-harmonic means 1.239[1.5692] 0.3168[0.0938] 2.3048[0.1174]
Single swarm −5.5567[3.6787] 0.5427[0.0165] 2.0528[0.0142]

Cooperative swarms −6.385[4.6226] 0.5207[0.0407] 2.0767[0.025]

Table 4.8: Average and standard deviation comparison of diffirent measures for
glass identification data

Method Turi’s index Dunn’s index S−Dbw
K-means 0.7572[0.9624] 0.0286[0.001] 2.599[0.2571]

K-harmonic means 0.89e05[1.01e05] 0.0455[0.0012] 2.0941[0.0981]
Single swarm −4.214[3.0376] 0.1877[0.0363] 2.6797[0.3372]

Cooperative swarms −6.0543[4.5113] 0.225[0.1034] 2.484[0.1911]
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Table 4.9: Average and standard deviation comparison of diffirent measures for
diabetes data

Method Turi’s index[σ] Dunn’s index[σ] S−Dbw[σ]
K-means 0.243[0.3398] 0.0137[0.0001] 2.297[0.0001]

K-harmonic means 1.88e07[1.9e07] 153.68[398.42] 2.0191[0.353]
Single swarm −0.2203[0.2621] 1298.1[0.0001] 1.5202[0.027]

Cooperative swarms −0.3053[0.3036] 1298.1[0.0001] 1.5119[0.0043]

bility measures of different model orders for the multiple cooperative swarms and
other clustering approaches using different data sets are presented in Fig. 4.6 - Fig.
4.13. In these figures, k and s(k) indicate model order and stability measure for
the given model order k, respectively. Furthermore, the corresponding curves for
single swarm and multiple swarms clustering approaches are obtained using Turi’s
validity index.

According to Fig. 4.6 - Fig. 4.13, the proposed approach using multiple coop-
erative swarms clustering is able to identify the correct model order for most of the
data sets. Moreover, the best model order for different data sets can be obtained
as provided in Table 4.10. The minimum value for stability measure given any
clustering approach is considered as the best model order (k∗); i.e.,

k∗ = arg min
k
{s(k)}· (4.25)
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K-means K-harmonic means

Single swarm Multiple swarms

Figure 4.6: Stability measure as a function of model order: speech data
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K-means K-harmonic means

Single swarm Multiple swarms

Figure 4.7: Stability measure as a function of model order: iris data
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K-means K-harmonic means

Single swarm Multiple swarms

Figure 4.8: Stability measure as a function of model order: wine data
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K-means K-harmonic means

Single swarm Multiple swarms

Figure 4.9: Stability measure as a function of model order: teaching assistant
evaluation data
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K-means K-harmonic means

Single swarm Multiple swarms

Figure 4.10: Stability measure as a function of model order: breast cancer data
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K-means K-harmonic means

Single swarm Multiple swarms

Figure 4.11: Stability measure as a function of model order: zoo data
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K-means K-harmonic means

Single swarm Multiple swarms

Figure 4.12: Stability measure as a function of model order: glass identification
data
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K-means K-harmonic means

Single swarm Multiple swarms

Figure 4.13: Stability measure as a function of model order: diabetes data
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Table 4.10: The best model order (k∗) for data sets

Data set KM KHM Single swarm Multiple swarms
Turi Dunn S−Dbw Turi Dunn S−Dbw

Speech 2 2 7 2 2 4 2 2
Iris 2 3 7 2 2 3 4 2

Wine 2 7 4 4 2 3 5 3
TAE 2 2 3 2 2 4 2 2

Breast cancer 2 3 2 2 2 2 2 2
Zoo 6 2 4 2 2 6 2 2

Glass identification 2 3 4 2 2 7 2 2
Diabetes 2 3 2 2 2 2 2 2

As presented in Table 4.10, K-means and K-harmonic means clustering ap-
proaches do not converge to the true model order using the stability-based approach
for the most of the data sets. The performance of the single swarm clustering is
partially better than that of K-means and K-harmonic means clustering because
it does not depend on initial conditions and can escape trapping in local optimal
solutions. Moreover, the multiple cooperative swarms approach using Turi’s index
provides the true model order for majority of the data sets. As a result, Turi’s valid-
ity index is appropriate for the model order selection using the proposed clustering
approach. Its performance, based on Dunn’s index and S−Dbw index, is also consid-
erable as compared to the other clustering approaches. Consequently, the proposed
multiple cooperative swarms can provide better estimates for model order, as well
as stable clustering results as compared to the other clustering techniques by using
the introduced stability-based approach.

4.6 Summary

In this chapter, the stability analysis-based approach was introduced to estimate
the model order of data using the multiple cooperative swarms clustering. We
proposed to use the multiple cooperative swarms clustering to find the model order
of the data, due to its robustness and stable solutions. Moreover, it has been
shown that the probability of providing an optimal solution by multiple cooperative
swarms clustering is higher than that of a single swarm scenario. To demonstrate
the scalability of the proposed algorithm, it has been evaluated using eight different
data sets. Its performance has also been compared with other clustering approaches.

In the following chapter, the application of the multiple cooperative swarms
clustering approach in phoneme recognition is provided. The proposed swarm
intelligence-based clustering approach is employed to build a modular classifier
used for phoneme recognition.
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Chapter 5

Application of the Proposed
Multiple Cooperative Swarms
Clustering for Phoneme
Recognition

In this chapter, the approach we have developed is being applied to one of the most
critical problems in the field of signal processing and speech recognition: phoneme
recognition. First, the multiple cooperative swarms approach for clustering speech
data is presented. Multiple cooperative swarms of flocking birds are employed to
investigate the cluster centers of the given speech data from the standard TIMIT
corpus. Moreover, this cooperative approach is applied to divide the phoneme
recognition task into different subtasks in a modular classifier. The experiments in-
dicate that using cooperative swarms clustering boosts the accuracy of the modular
approach for phoneme recognition considerably.

5.1 Introduction

Spoken language processing has recently attracted a great deal of interest due
to emerging multimedia, web, and audio mining applications. There exist lots
of speech data, derived from different acoustic environments, various microphone
characteristics and different speaking styles, which are required to be clustered
into a limited number of groups. Thus, using a streamlined clustering technique
is a crucial issue for automatic speech recognition (ASR) systems. The clustering
technique can be applied to establish the architecture of ASR systems; for exam-
ple, in modular approach for speech recognition, a clustering technique is required
to decompose the recognition task into several subtasks [52],[53]. In a Gaussian
mixture models approach for speech recognition, the centers of mixtures are also
estimated using a clustering technique. Moreover, when using radial basis function
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networks for phoneme recognition, the centers of basis functions are determined
using a clustering technique [54].

Common clustering algorithms such as K-means and fuzzy c-means apply ran-
domly generated points as the initial centers and update the position of the centers
at every iteration. They only search a narrow neighborhood of the initial centers
and may converge to local optimal solutions. In addition, when the dimensionality
of data and the number of clusters increase, the search space expands exponen-
tially, and consequently the clustering task becomes even more intractable. In
speech recognition problems, the dimensionality of data and the possible number
of clusters are relatively high, therefore there is a need for a more competent clus-
tering technique. Swarm intelligence can be beneficial in this regard due to its
population-based search mechanism.

Swarm intelligence approaches have been studied recently with a great deal of
interest to tackle engineering problems. Particle swarm optimization (PSO) as a
branch of swarm intelligence imitates the swarming behavior of flocks of birds [29].
PSO algorithm employs a swarm of individuals named particles to solve an op-
timization problem. It starts from an initial population and explores the search
space by a number of iterations to reach a near-optimal solution. PSO has been
applied successfully to several clustering applications such as gene clustering, doc-
ument clustering and image segmentation [2], [3], [4], [9], [5]. As compared to
conventional clustering techniques such as K-means, particle swarm clustering ap-
proaches are less sensitive to the effect of the initial conditions because of their
population-based nature. Thus, it is more probable that particle swarm clustering
yields near-optimal solutions.

There are two main categories of particle swarm clustering approaches: single
swarm and multiple swarms. In single swarm clustering, an individual swarm ex-
plores the search space [3], [4], [8], [5]. This approach is effective particularly for
problems with low dimensional data and a limited number of clusters. To deal
with a high dimensional data and a large number of clusters, as happens in speech
recognition problems, the multiple cooperative swarms can be used to handle the
clustering task [6], [55], [56]. This approach distributes the search space among
multiple swarms and each swarm is responsible for exploring a part of the search
space, while interacting with other swarms to obtain the final clustering solution.

Here we study the application of a multiple cooperative swarms approach for
phoneme data clustering as well as task decomposition at modular approach for
phoneme recognition. The performance of the multiple cooperative swarms clus-
tering approach is compared with other clustering techniques such as K-means,
K-harmonic means, fuzzy c-means and single swarm clustering.
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5.2 Speech Recognition

Automatic speech recognition is a process by which a machine identifies speech. It
takes a human utterance as an input and returns the sequence of words or phrases as
output. One simple method to recognize speech is a bottom-up approach, in which
a speech waveform is first encoded into a sequence of phonemes. These phonemes
are then mapped into a sequence of words [57], [58], [59] as illustrated in Fig. 5.1.

Figure 5.1: Bottom-up approach to decode the uttered waveform speech signal
into its associated phoneme sequence, s p iy ch sp s ih g n el , and word
sequence, speech signal.

The preprocessing unit shown in Fig. 5.1 transforms the given speech waveform
into the sequence of feature vectors at intervals of around 20 milliseconds (ms)
referred to as frames. Typical speech features are mel-frequency cepstral coefficients
(MFCCs) for each 20 ms of speech [51], [57], [58]. The procedure of extracting the
MFCC features is provided in appendix D. Phoneme recognition is a crucial step in
speech recognition since it forms the basis of mapping phonemes into words. Thus,
it plays an important role in constructing a powerful speech recognition system.

The phonemes as the abstract underlying forms of sound are the smallest mean-
ingful distinguishable units in a language’s phonology. Each language encompasses
a restricted number of phonemes [57]. Since the total number of phonemes for each
language is finite, the goal of phoneme recognition is to classify a speech signal
into phonemes with a given set of speech features [57], [58]. Phonemes are divided
into different groups. One common method to classify phonemes is based on the
way that they are produced. The classification of phonemes based on the standard
TIMIT corpus is given in appendix E [50].

To deal with the problem of phoneme recognition, different methods such as
hidden Markov models, Gaussian mixture models, and artificial neural networks
have been proposed [54], [57], [58], [60], [61], [62], [63], [64], [65], [66], [67], [68],
[69], [70], [71], [72], [73], [74], [75], [76], [77]. One of the proposed techniques for
phoneme recognition is based on a modular system [6], [53].
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To decompose the recognition task, a new concept called phoneme family was
defined [6], [53]. A phoneme family, which corresponds to a module, consists of a
set of similar phonemes in terms of speech features. The similarity measure of the
phonemes here is defined in terms of the Euclidean distance. To obtain phoneme
families, there is a need for a clustering technique. Subsequently, the performance
of the selected clustering algorithm has a significant influence on the architecture
and accuracy of the modular classifier. An introduction to modular approaches is
provided next.

5.3 Modular Approaches

In modular approaches, a task or problem is decomposed into a number of subtasks
and each module handles a subtask of the global task [78], [79], [80]. There are
different motivations for using modular approaches which are as follows [81]:

• To improve performance: Depending on the current circumstances, mod-
ular system can switch to the most appropriate module.

• To reduce model complexity: By employing modular approaches, the
overall system is made easier to understand, modify and extend.

• To make the problem simple: Sometimes the best way to solve a problem
is to break it down into subtasks.

• To recombine sensory information: In some cases, input information
comes from various independent sources or sensors. In such conditions, each
module is specialized in a specific part of the input-output space.

Auda and Kamel [78] have investigated the motivations behind the modular neu-
ral networks from another point-of-view. They have reported the following four
motivations:

• Biological motivations: Artificial neural network was firstly introduced
based on the biological neurons. Artificial neural network tries to emulate the
functionality of the human brain to construct useful computational approach.
To built modular neural networks, several ideas have been extracted from
biological systems such as modularity and cooperation among modules.

• Psychological motivations: Some aspects of human learning-system such
as learning in stages and mixing supervised and unsupervised learning moti-
vated modularization of the modular approaches’ learning.

• Hardware motivations: Need to develop new architectures which have
less memory and speed requirements has also motivated creating modular
structures.
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• Computational motivations: Computational complexity of an artificial
neural network in terms of required training time is generally high. Modular
approaches have been employed to deal with this problem.

One of the issues in modular approaches is how to divide task into several
components. The task decomposition can be accomplished explicitly, automatically
or by means of class decomposition [80]. Explicit decomposition is on the basis of
a strong understanding of the problem and division into subtasks is known prior to
training. Class decomposition is to divide k -class classification problem into 2-class
classification problems. Automatic classification is carried out by the use of data
partitioning techniques. Mixture of experts [82] and hierarchical mixture of experts
[83] are two main approaches for task decomposition which partition the data into
regions [81]. In these approaches there exists a mixture of local experts, each of
which is specialized in a specific part of the input-output space during the training
phase. Generally, the local experts are classifiers such as neural networks trained
on a subset of the training data set [84], [85], [86], [87]. Cooperation between local
experts is handled using a gating network. The architecture of these approaches
are given in Figures 5.2 and 5.3.

After reviewing task decomposition techniques, we provide the methods of com-
bining modular components. There are four different combination methods as given
bellow:

1. Cooperative combination: In this approach, all components make some
contribution to the decision.

2. Competitive combination: This approach selects the most appropriate
module on the basis of particular circumstances corresponding to either the
input or output of the modules.

There are two main schemes for accomplishing the selection. In the first
scheme, a gating network is used to output a set of scalar coefficients that
serve to weight the contributions of the various inputs. These coefficients
vary as a function of the input [82], [83]. The other is based on a switching
scheme [81]. The switching is generally carried out based on the input.

3. Sequential combination: In sequential combination, the processing is suc-
cessive and the computation of one module depends on the output of a pre-
ceding module.

4. Supervisory relationship: In this scheme, a module is used to supervise
the performance of another module.

Here, the second scheme of competitive combination method is considered to
construct the phoneme recognizer. To carry out the switching task, a classifier se-
lector is used. The classifier selector, chooses a most relevant local expert (module).
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Figure 5.2: Mixture of experts

Each local expert is basically a classifier that can recognize the patterns belonging
to its area of expertise.

Gaussian mixture model (GMM) is used as classifier selector and local experts.
An introduction to GMM is given before providing the core approach.

5.4 Gaussian Mixture Model

Gaussian mixture model is basically considered as a density model composed of a
number of components known as mixtures. The mixtures are combined to generate
a multi-modal distribution by using a weighted average of multiple Gaussians.

Let’s assume that each observation sequence O is defined as

O = (o1, · · · , on), (5.1)

where ot is the frame vector observed at time t. Thus, the phoneme recognition
problem can be regarded as that of computing the most probable phoneme phk
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Figure 5.3: Hierarchical mixture of experts

given the observation sequence O as

arg max
k
{ P (phk|O)} (5.2)

According to Bayes’ rule, P (phk|O) can be rewritten as

P (phk|O) =
P (O|phk)P (phk)

P (O)
(5.3)

where P (phk) is referred to as the prior probability of phoneme phk. It can be easily
obtained by determining its frequency in training data. P (O), which denotes the
probability of the observation sequence, is the same for all phonemes. Therefore,
P (phk|O) depends only on P (O|phk). Since there is a model for each phoneme,
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P (O|phk) is estimated separately for all phonemes using corresponding models,
i.e., P (O|GMMk); k = 1, · · · , kph, where kph denotes the number of phonemes. In
other words, we have:

P (O|phk) = P (O|GMMk), k = 1, · · · , kph· (5.4)

Moreover, P (O|GMMk) is given by

P (O|GMMk) =
G∑

g=1

πg · N (O|µg, Σg), (5.5)

where πg indicates the weight of the gth Gaussian componentN (O|µg, Σg), or simply
Ng, and

G∑
g=1

πg = 1, 0 ≤ πg ≤ 1· (5.6)

It is usual to consider the weighting parameter as prior probabilities. Thus, equation
(5.5) can be rewritten as

P (O|GMMk) =
G∑

g=1

P (g) · Ng· (5.7)

In addition, Gaussian component Ng is obtained by

Ng =
1

(2π)d/2|Σg|1/2
e−1/2(O−µg)T Σ−1

g (O−µg), (5.8)

where µg and Σg denote the mean and covariance of gth Gaussian component, and
d is the dimensionality of data.

The associated parameters of GMM, i.e., πg, µg, and Σg, are estimated using
the expectation-maximization (EM) algorithm [88], [89], [90], that aims at maximiz-
ing the likelihood of the given training set generated by the estimated probability
distribution function. The likelihood function L for phoneme k is defined as

Lk =

Ntrain∏
i=1

P (Oi|GMMk), (5.9)

or equivalently its log likelihood is given by

ln(Lk) =

Ntrain∑
i=1

ln(P (Oi|GMMk)), (5.10)

where {Oi}Ntrain
i=1 is a set of training data.

Now, the expectation and maximization steps can be specified.
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• Expectation step: Considering initial values for the parameters of the mixture
model, partial membership of each data point in each mixture is obtained
by calculating expectation values for the membership variables of each data
point. In other words, for each data point Oi and distribution N (O|g), the
membership value Ωi,g is given by

Ωi,g(t) = P (Ng|Oi) =
πgP (Oi|Ng, k)

P (Oi)
=

πgP (Oi|Ng, k)∑G
j=1 πjP (Oi|Nj, k)

· (5.11)

• Maximization step: By differentiating the log likelihood introduced in (5.10),
the updating rules for GMM parameters are obtained:

πg(t + 1) =
1

Ntrain

Ntrain∑
i=1

Ωi,g(t), (5.12)

µg(t + 1) =
1

Ntrain · πi(t)

Ntrain∑
i=1

Ωi,g(t)Oi, (5.13)

Σg(t + 1) =
1

Ntrain · πi(t)

Ntrain∑
i=1

Ωi,g(t)(Oi − µg(t))(Oi − µg(t))
T · (5.14)

These steps are repeated iteratively until the termination criterion is reached.

During the recognition phase, the probability of an unknown phoneme O is
evaluated given all GMMs, and the one with the maximum posterior probability is
recognized as the winning phoneme label. That is,

k∗ = arg max
k
{P (O|GMMk)P (phk)|k = 1, · · · , kph}· (5.15)

The application of the multiple cooperative swarms clustering for phoneme
recognition problem is next described.

5.5 Multiple Swarms Clustering for Task Decom-

position

As mentioned earlier, a modular system is one of the approaches to deal with a
phoneme recognition task.

In this approach, decomposing the given task into several subtasks plays an im-
portant role. The goal of decomposition is to cluster a set of phonemes into several
groups called phoneme families which inherit similar attributes in terms of speech

84



phoneme family 1 phoneme family 2

phoneme family 3 phoneme family 4

phoneme 1
phoneme 2

phoneme 3

phoneme 4

phoneme 5

phoneme 10

phoneme 11

phoneme 12phoneme 7

phoneme 9

phoneme 6

phoneme 8

Figure 5.4: Decomposing a set of phonemes into several phoneme families

features. The concept of decomposing a set of phonemes into various phoneme fam-
ilies is illustrated in Fig. 5.4. We propose to use the multiple cooperative swarms
clustering for dividing phonemes into different families. After applying the pro-
posed clustering approach and determining the optimal architecture of the system,
the recognition is done as follows.

An unknown phoneme is first supplied into a classifier selector that chooses
the corresponding phoneme family (module) to which the given phoneme belongs.
Next, the exact label of the phoneme is determined within the selected module using
the associated local expert. Local expert is a classifier that is trained to recognize
a certain family’s phonemes. Here, Gaussian mixture models are considered as
classifier selector and local experts.

A typical structure of the modular-based classifier to recognize phonemes is
illustrated in Fig. 5.5.

In using the multiple cooperative swarms clustering for task decomposition, the
aim is to obtain separated and compact clusters. This will enhance the recogni-
tion capability of the classifier selector as well as the overall system. The optimal
decomposition of the phonemes is a structure by which the maximum accuracy for
the overall system is achieved. The algorithm of the proposed approach for task
decomposition is provided in Algorithm 5.1.

After decomposing the task and obtaining the associated architecture for the
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Figure 5.5: Architecture of the modular-based classifier for phoneme recognition
task

Algorithm 5.1 Task decomposition in modular classifier using multiple swarms
clustering

1: Provide a set of training data for each phoneme
2: for b = 2 to B do
3: Obtain C̃b = {C̃(k)

b |k = 1, 2, ..., b; } by using Algorithm 3.3 (multiple coop-
erative swarms clustering) on the given data.

4: Train classifier selector and local experts.
5: Obtain the overall error rate of the system, Eb,
6: end for
7: k∗ ← arg minb{Eb}, where k∗ is the optimal number of phoneme families which

leads to minimum overall classification error.
8: Return C̃k∗ = {C̃(k)

k∗ |k = 1, 2, ..., k∗; } as the optimal architecture of the modular
system.

phoneme recognition, the recognition procedure needs to be described in detail.
An unknown input pattern x is supplied into the system. The classifier selector
chooses a phoneme family k̃ to which x belongs according to Bayes’ rule:

k̃ = arg max
k
{P (x|Mk)P (Mk)}, k = 1, 2, ..., K, (5.16)

where, P (x|Mk) denotes the posterior probability of x given module M and P (Mk)
shows prior probability of module (phoneme family) k. Moreover, different proba-
bilities P (x|Mk) are determined using the associated GMMs, i.e., P (x|GMMk), k ∈
[1, · · · , K] [91], [92].

Suppose the classifier selector transfers pattern x to module Mk̃. Consequently,
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the associated local expert recognizes it as a member j∗ of phoneme family k̃ based
on Bayes’ rule:

j∗ = arg max
j

P (x|Mk̃,j)P (Mk̃,j), j = 1, 2, ...,mk̃, (5.17)

where, P (x|Mk̃,j) denotes the posterior probability of phoneme jth of family k̃,
P (Mk̃,j) shows its associated prior probability and mk̃ indicates the number of the

phonemes corresponding to the phoneme family k̃. Again, different probabilities
P (x|Mk̃,j) are determined using the associated GMMs, i.e., P (x|GMMk̃,j). The
classification algorithm includes five steps, as presented in Algorithm 5.2.

Algorithm 5.2 Classification algorithm

1: Provide a testing data x to the system.
2: Compute the output of the classifier selector using equation (5.16).
3: Provide testing data x to phoneme family (module) k̃.
4: Obtain output of equation (5.17) for the testing data.
5: Return the phoneme with the maximum score as the winner phoneme.

5.6 Experimental results

In this section, the used speech database is first explained briefly. The TIMIT
corpus is used to provide speech data for acquiring the acoustic-phonetic knowledge,
and for developing and evaluating the ASR systems. This corpus has a total of 6300
sentences spoken by 630 male and female speakers, 10 sentences per speaker, from
8 major dialect regions of the United States of America. Moreover, three associated
transcription files including text, word and phoneme are available for each sentence
in addition to a speech waveform.

To evaluate the performance of the proposed approach, two data sets from
TIMIT database are considered. The first data set includes 800 samples from four
phonemes /aa/, /ae/, /ay/, and /el/. The second data set contains all samples
of twenty phonemes /ay/, /n/, /ae/, /s/, /m/, /iy/, /r/, /axr/, /dh/, /l/, /uw/,
/sh/, /z/, /f/, /v/, /ng/, /w/, /g/, /hh/, and /aa/ from dialects regions one, three
and five. Also, 12 mel-frequency cepstral coefficients are used as speech features.

This section is organized in two parts. First, the multiple cooperative swarms
clustering approach is compared with other clustering techniques using the first
data set. As the PSO procedure has a stochastic nature, the final solution may
vary for different runs. Thus, the presented results indicate the average value of 30
independent runs.

The ability of multiple cooperative swarms clustering is also studied to deal
with a task decomposition problem in modular approach for phoneme recognition
using the second data set. Again, 30 independent runs are used to generate each
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of the presented results. To complete each run, 80% of the given data is drawn
randomly to learn the architecture of the modular system and to train all the
associated classifiers. The remaining 20% of the data is used to test the accuracy
of the classifier selector and the overall system.

5.6.1 The performance of the multiple cooperative swarms
clustering

For the first data set, the parameters are set as w = 1.2, c1 = 1.49, c2 = 1.49,
n = 10, w1 = 0.85, and α = 1.9. Fig. 5.6 shows how the multiple cooperative
swarms approach converges to an optimal solution where minimizing the objective
function is desired. The average of objective value (µ) and the associated standard
deviation (σ) are calculated by running the algorithm 30 times. According to

Figure 5.6: Convergence of the multiple swarms clustering approach

Fig. 5.6, a significant improvement is observed in the proposed approach in terms
of combined measure right after the termination of initialization phase, where the
cooperation between swarms begins.

In Fig. 5.7, the convergence of the proposed clustering approach is compared
with single swarm clustering as well as K-means, K-harmonic means and fuzzy
c-means clustering approaches. As shown in Fig 5.7, the convergence of both K-
means and K-harmonic means clustering approaches occurs earlier than single and
multiple swarms clustering approaches. However, PSO-based clustering approaches
provide better results in terms of combined measure.
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Figure 5.7: Comparing the convergence of multiple swarms clustering with other
approaches in terms of combined measure

We have also compared the performance of the multiple swarms clustering with
other clustering approaches in Table 5.1. This comparison is based on compact-
ness, separation, combined measure and Turi’s measures over 30 independent runs.
According to Table 5.1, the proposed approach outperforms the other approaches
since it uses multiple cooperating swarms and distributes the search space among
multiple swarms.

We have also investigated the sensitivity of the multiple and single swarm clus-
tering approaches to the dimensionality of feature space and the number of clus-
ters. Fig. 5.8 presents the behavior of both single and multiple swarm clustering
approaches in terms of a combined measure with regard to the dimension of feature
space. As is clear from Fig. 5.8, the multiple swarms clustering approach is less

Table 5.1: Comparing proposed approach with others in terms of different validity
measures

Method Compactness Separation Combined measure Turi index
K-means 2.41e03± 22.6 −5.54± 0.2 2.75± 0.07 0.83± 0.81

KHM 2.94e03± 0.1 −5.64± 0.01 2.15± 0.01 3.54e05± 2.62e05
FCM 3.56e03± 0.11 −0.46± 0.2 3.53± 0.07 0.14e4± 0.7e4

Single PSO 3.6e03± 277.7 −18.17± 0.6 1.9± 0.11 −1.45± 0.87
Proposed 2.41e03± 41.3 −18.1± 0.51 1.75± 0.06 −1.63± 1.06
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Figure 5.8: The behavior of multiple swarms and single swarm clustering approaches
in terms of combined measure with regard to the dimension of feature space

sensitive to the dimensionality of feature space in comparison with a single swarm
clustering approach. Similarly, the behavior of these approaches in terms of the
number of clusters is shown in Fig. 5.9. Again, the results provided in Fig. 5.9
indicate that multiple swarms clustering is able to find better solutions than sin-
gle swarm clustering, in terms of combined measure, as the number of clusters
increases.

5.6.2 The multiple cooperative swarms for task decompo-
sition

We have evaluated the accuracy of the classifier selector and the overall system
using second data set. The changes of the accuracy in the classifier selector and
the overall system are illustrated in Fig. 5.10 and Fig. 5.11 with regard to the
number of clusters (or phoneme families) for combined measure and Turi’s index,
respectively.

Moreover, the optimal number of the clusters and the associated accuracy of
classifier selector and overall system are provided in Table 5.2 for both combined
measure and Turi’s validity index.

As presented in Table 5.2, as compared to single swarm clustering and K-means
algorithm, the multiple cooperative swarms clustering approach provides better task
decomposition which leads to higher accuracy for both classifier selector and the
overall system using combined measure and Turi’s index.
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Figure 5.9: The behavior of multiple and single swarm clustering approaches in
terms of combined measure with regard to the number of clusters

5.7 Summary

One of the critical factors for successful design of modular-based classifier for
phoneme recognition is the clustering approach being used. In this chapter, it was
proposed to use a multiple cooperative swarms clustering approach to decompose
the phoneme recognition task into several subtasks. Each subtask coupled with a
module is composed of a set of similar phonemes referred to as the phoneme family.
Applying multiple cooperative swarms clustering on the TIMIT corpus indicated
that the proposed approach outperforms other clustering approaches.

Table 5.2: The optimal number of the clusters and the associated accuracy of
classifier selector and overall system for both combined measure and Turi’s validity
index

Measure K-means Single swarm Multiple swarms
Combined k∗ 10 5 4
measure Classifier selector 81.06% 77.30% 88.30%

Overall system 54.85% 54.45% 63.47%
Turi’s k∗ 10 3 2

validity Classifier selector 81.06% 87.80% 97.25%
index Overall system 54.85% 55.25% 62.46%
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(a) Classifier selector- Combined measure

(b) Overall system- Combined measure

Figure 5.10: The changes of the accuracy in the classifier selector and the overall
system with regard to the number of clusters using combined measure
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(c) Classifier selector- Turi index

(d) Overall system- Turi index

Figure 5.11: The changes of the accuracy in the classifier selector and the overall
system with regard to the number of clusters using Turi’s index

93



Chapter 6

Conclusions and Future Research
Directions

In this thesis, a new clustering approach by means of multiple cooperative swarms
was introduced. The proposed approach belongs to the class of PSO-based clus-
tering techniques. PSO-based clustering techniques, in contrast to most of the
partitional clustering approaches, possess the following advantages [6]:

• do not depend on the initial solutions,

• accomplish the global exploration of the search space,

• handle multiple objective functions concurrently.

Therefore, many researchers of different backgrounds have employed particle
swarm optimization to resolve different types of data clustering [2], [3], [4], [8], [9],
[55]. Most of the PSO-based clustering approaches were developed using a single
swarm. Single swarm clustering is suitable for low dimensional data and a small
number of clusters. For high-dimensional data and where the number of clusters
is relatively high, it is difficult to find an optimal solution using the single swarm
approach. In these situations, the multiple cooperative swarms can lead to better
solutions in terms of the defined fitness function [6].

In this chapter, a summary of findings are first presented. Future research
directions are next outlined. Finally, a list of publications resulting from thesis
work are provided.

6.1 Summary and Conclusions

The contributions of this thesis include providing theoretical formulation of a mul-
tiple cooperative swarms approach for data clustering, detailed algorithm, stability
analysis of the model order selection and application to phoneme recognition.
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Multiple cooperative swarms clustering

A new technique is introduced to solve the data clustering problem based on mul-
tiple cooperative swarms. The proposed technique contains two major phases: ini-
tialization and exploitation. In the initialization phase, search space is distributed
among several swarms using another swarm called a super-swarm. In other words,
a part of the search space is assigned to each swarm. In the exploitation phase, each
swarm searches for its corresponding cluster’s center, while cooperating with other
swarms. The proposed approach was applied to clustering different data sets. The
proposed multiple cooperative swarm clustering outperforms the other methods be-
cause of distributing the search space among multiple swarms and using multiple
cooperating swarms.

Stability-based model order selection

Similar to most of the partitional clustering approaches, multiple cooperative
swarms clustering needs to know the number of clusters a priori. To enable the pro-
posed approach to estimate the number of clusters, the stability-based approach was
considered. Because the probability of providing an optimal solution by multiple
cooperative swarms clustering is bigger than that of a single swarm scenario, it
can provide more stable solutions than single swarm clustering. Therefore, it can
provide better estimations for the model order of the underlying data. To evaluate
the scalability of the proposed approach, its performance has been assessed using
eight different data sets.

Application to phoneme recognition

The proposed multiple cooperative swarms clustering was successfully applied to
modular classifier-based phoneme recognition. In a modular approach for phoneme
recognition, decomposing the whole task into several modules plays an important
role. Multiple cooperative swarms clustering yields a strong tool for decomposing
the phoneme recognition task into several subtasks in modular classifier. The per-
formance of the proposed approach was studied using the standard TIMIT corpus
and it was shown that the proposed approach can produce better results.

6.2 Future Research Directions

Particle swarm optimization as a branch of swarm intelligence is in its early years
and a vast number of researchers are working on different aspects of it. Accordingly,
the particle swarm clustering field of research is young as well. Therefore, there is
a vast number of opportunities to either improve the existing clustering algorithms
or to develop new algorithms to deal with different aspects of data clustering.
There are two major categories of opportunities from two points of view. From
a data clustering perspective, there are different topics that need refinement and
improvement. From a PSO point-of-view, there are also some issues that need to
be addressed. In the following, potential research problems are explained.
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• Distributed data clustering

Distributed data clustering is a strong tool to deal with large-scale data sets
which either are of high dimension or have huge amount of patterns. In this
regard, two main strategies can be taken into consideration. One strategy is
to distribute the feature space between several swarms and let the swarms
collaborate and cooperate together to find the final solution. In other words,
each swarm deals with a subset of feature space and the final solution is the
aggregation of different swarms’ solutions. The other strategy is to divide
the data set into a various subsets each of which is associated with a swarm.
First, each swarm finds a solution for its related subset. The final solution is
then obtained by combining different solutions. To facilitate the combination
of the different solutions, multiple clustering approaches can be considered.

• Fuzzy swarm regions

The proposed approach assumes that the boundaries of the swarm regions
remain constant during the exploitation phase which may restrict the explo-
ration ability of the proposed approach. Considering fuzzy boundaries can
resolve this problem.

• Different notions of similarity measures This thesis uses the Euclidean
distance as a similarity measure between the patterns. However, several sim-
ilarity measures are available. A comprehensive study on the effect of the
different similarity measures is required to propose the best measure for dif-
ferent situations.
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• The selection of an appropriate cluster validity measure

One of the issues that affects the performance of the PSO-based clustering
approaches is the fitness function being optimized. Usually, cluster validity
measures are used as a fitness function. Therefore, the selection of the appro-
priate cluster validity measure as a fitness function is an important problem,
which needs to be sought carefully.

6.3 List of Publications

This thesis has led to several publications, posters and invited talks. In the follow-
ing, a list of publications is provided.

Book chapters and journal papers

• Abbas Ahmadi, Fakhri Karray, Mohamed S. Kamel, Task Decomposition Us-
ing Multiple Cooperative Particle Swarms for Phoneme Recognition, submit-
ted as a book chapter to Applied Swarm Intelligence, edited by Andries En-
gelbrecht and Martin Middendorf.

• Abbas Ahmadi, Fakhri Karray, Mohamed S. Kamel, A Clustering Approach by
Means of Multiple Cooperating Swarms, IEEE Transactions on Evolutionary
Computation, under revision.

• Abbas Ahmadi, Fakhri Karray, Mohamed S. Kamel, Model Order Selection
for Data Clustering Using Multiple Cooperative Swarms, submitted to Ma-
chine Learning Journal: Special Issue on Swarm Intelligence for Knowledge
Discovery in Data.

Conference papers

• Abbas Ahmadi, Fakhri Karray, Mohamed S. Kamel, Particle Swarm Clus-
tering Ensemble, ACM Genetic and Evolutionary Computation Conference
(GECCO-2008), 2008, Atlanta, Georgia, USA, [93].

• Abbas Ahmadi, Fakhri Karray, Mohamed S. Kamel, Model Order Selection for
Multiple Cooperative Swarms Clustering Using Stability Analysis, 2008 IEEE
Congress on Evolutionary Computation (IEEE CEC 2008) within 2008 IEEE
World Congress on Computational Intelligence (WCCI 2008), pp. 3387-3394,
Hong Kong, [48].

• Abbas Ahmadi, Fakhri Karray, Mohamed S. Kamel, Particle Swarm-Based
Approaches for Clustering Phoneme Data, In the Proceeding of UW and
IEEE Kitchener-Waterloo Section Joint Workshop, pp. 40-42, 2007, Wa-
terloo, Canada, [56].
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• Abbas Ahmadi, Fakhri Karray, Mohamed S. Kamel, Cooperative Swarms for
Clustering Phoneme Data, In the proceeding of IEEE Workshop on Statistical
Signal Processing, pp. 606-610, 2007, Madison, Wisconsin, USA, [55].

• Abbas Ahmadi, Fakhri Karray, Mohamed S. Kamel, Multiple Cooperating
Swarms for Data Clustering, In the Proceeding of IEEE Swarm Intelligence
Symposium, pp. 206-212, 2007, Honolulu, Hawaii, USA, [6].

• Abbas Ahmadi, Fakhri Karray, Mohamed S. Kamel, Hybrid Learning Scheme
for Modular-Based Phoneme Recognizer, IEEE International Symposium on
Signal Processing and its Applications, 2007, Dubai, UAE, [53].

• Abbas Ahmadi, Fakhri Karray, Mohamed S. Kamel, Modular-Based Classifier
for Phoneme Recognition, In the Proceeding of IEEE International Sympo-
sium on Signal Processing and Information Technology, 2006, pp. 583-588,
Vancouver, British Colombia, Canada, [52].
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Appendix A

Explaining why the probability of
achieving an optimal solution
decreases with increasing
dimensionality

Consider the following optimization problem

Z = min f(x)
s.t. : x ∈ S,

(A.1)

where S is search space, or feasible solution region. Assume S is a d -dimensional
hyper-sphere of radius R. Suppose also the optimal solution is located in a smaller
d -dimensional hyper-sphere of radius r (Fig. A.1 ). We know that the volume of a
d -dimensional hyper-sphere of radius R is obtained by

V (R, d) =
π

d
2

Γ(d
2

+ 1)
Rd, (A.2)

where Γ(.) stands for gamma function given by

Γ(d) =

∫ ∞

0

xd−1e−xdx. (A.3)

The probability of finding a solution in the optimal region using any search tech-
nique is as follows:

Pr(converge to an optimal solution) =
V (r, d)

V (R, d)
· (A.4)

Using equation (A.3), the above-mentioned equation is simplified as

Pr(converge to optimal solution) = (
r

R
)d· (A.5)

In other words, the probability of finding an optimal solution decreases by increasing
the dimensionality of data provided r and R remain constant.
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Figure A.1: Feasible and optimal solution regions
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Appendix B

Proof of effectiveness of multiple
swarms over single swarm in both
higher dimensions and larger
number of clusters

B.1 Single swarm

Assume we tend to cluster data into K different clusters, including C1, ..., CK .
Let’s suppose the feasible solution region is a d -dimensional hyper-sphere of radius
R and the optimal solutions for centers of the clusters are located in K different
d -dimensional hyper-spheres of radii r1, ..., rK , respectively. Moreover, m1, ...,mK

are the corresponding centers of the clusters. To achieve an optimal solution, these
centers should be chosen from optimal solution regions. In the case of a single-
swarm, we denote Pr(converge to optimal solution) by P 1

r computed as follows

P 1
r =

K∏
k=1

Pr(m
k ∈ Ck), (B.1)

where Pr(m
k ∈ Ck) stands for the probability of selecting the center of cluster k

from its corresponding optimal region defined by

Pr(m
k ∈ Ck) = (

r

R
)d· (B.2)

Using this expression, equation (B.1) can be rewritten as follows:

P 1
r =

K∏
k=1

(
rk

R
)d· (B.3)

By simplifying, the probability of converging to an optimal solution by a single
swarm can be calculated by
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P 1
r =

(r1r2 · · · rK)d

Rd.K
· (B.4)

B.2 Multiple swarms

In the case of multiple-swarms, each swarm explores a part of the feasible solution
region characterized by a d−dimensional hyper-sphere of radius Rk. As Rk < R for
all k, the following inequality is valid:

R1 · · ·RK < RK . (B.5)

Since d ≥ 1, inequality (B.5) can be modified as

(R1 · · ·RK)d < Rd.K . (B.6)

Each swarm searches its corresponding cluster’s center. Similar to the single swarm
case, assume the optimal solution for each swarm k is situated in a d−dimensional
hyper-sphere of radius rk. Accordingly, the probability of getting an optimal so-
lution using multiple swarms at each iteration (denoted by PM

r ) is calculated as
follows:

PM
r =

K∏
k=1

Pr(m
k ∈ Ck)· (B.7)

It can be simplified as

PM
r =

K∏
k=1

(
rk

Rk

)d =
(r1r2 · · · rK)d

(R1.R2 · · ·RK)d
· (B.8)

According to equations (B.4) and (B.8), we have

PM
r

P 1
r

=
Rd.K

(R1.R2 · · ·RK)d
· (B.9)

Considering equation (B.6), it is proved that

PM
r

P 1
r

> 1· (B.10)

In other words, PM
r > P 1

r ·

B.3 Higher dimensions and larger number of clus-

ters

By defining β = PM
r

P 1
r
, equation (B.9) can be rewritten as

β =
Rd.K

(R1.R2 · · ·RK)d
· (B.11)
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Figure B.1: Relation between β and both dimensionality (d) and number of clusters
(K)

β indicates the ratio of the probability of finding an optimal solution using multiple
swarms to the probability of finding an optimal solution by a single swarm. In the
previous section, we proved that β is greater than one. We now examine the
influences of increasing both dimensionality of data (d) and the number of clusters
(K) on β. For the sake of simplicity, let’s suppose

R1 = R2 = · · · = RK =
1

K
R· (B.12)

Considering expression (B.12), we can rewrite equation (B.11) as

β = Kd.K · (B.13)

In Fig. B.1, we have illustrated the relation between β and both dimensionality of
data and number of clusters.

As illustrated in Fig. B.1, by increasing the dimensionality of data and the
number of clusters, β increases. In other words, the ratio of probability of finding
an optimal solution using multiple swarms versus a single swarm grows up by
increasing the dimensionality of data and the number of clusters.
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Appendix C

Evaluating the statistical
significance of the obtained results

The statistical significance of the obtained results using T -test [45] is provided in
Table C.1 in terms of p-value which is the probability of observing the given sample
results under the assumption that the null hypothesis is true. The equality of the
mean of two samples at a significance level γ is considered as the null hypothesis.
The null hypothesis is rejected if the obtained p-value is less than the typical sig-
nificance level of γ = 5%. In Table C.1, D1, D2, ..., D8, correspond to speech,
zoo, breast cancer, wine, glass, iris, teaching assistant evaluation, and diabetes,
respectively.
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Table C.1: Statistical significance of the obtained results using T -test in terms of
p-value

Cluster validity measure/ Data sets
Clustering method D1 D2 D3 D4 D5 D6 D7 D8

K-means 0.5 0.487 0.48 0.001 0 0.01 0 0
KHM 0 0.2 0 0 0 0 0 0

Compactness FCM 0 0 0 0 0 0.3 0 0.001
Hybrid PSO 0.0001 0.2 0 0 0.1 0.18 1e-06 0
Single swarm 0 0.1 0.02 0.07 0 3e-06 3e-05 0

K-means 0 0 0 0 0 0 0 0
KHM 0 0 0 0 0 0 0 0

Separation FCM 0 0 0 0 0 0 0 0
Hybrid PSO 0 0 0 0 0 0 0 0
Single swarm 0.3 0.01 0 0.1 0.3 0.03 0.09 0.2

K-means 0 0.03 0 0 0 0.0001 0 0
Combined KHM 0 0.19 0 0 0 0.006 0 0
measure FCM 0 0 0 0 0 0.108 0 0

Hybrid PSO 8e-06 0.1 0 0 0.4 7e-06 0 0
Single swarm 0.001 0.04 0.26 0.001 0 0.03 0.1 0.006

K-means 0 0 0 0.003 0 0 0 0
Turi’s KHM 0 0 0 0 0 0 0 0
index FCM 0 4e-05 0 0.002 0 0 0 0

Hybrid PSO 0 0 0 0.003 0 0 0 0
Single swarm 0.19 0.4 0.3 8e-06 0.03 0.4 0.49 0.048
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Appendix D

MFCC and delta delta MFCC
features

The steps to construct MFCC features are as follows [51]:

1. Pre-Emphasis:
The following FIR pre-emphasis filter is applied to the input waveform:

y[n] = x[n]− αx[n− 1] (D.1)

α is provided by the user or set to the default value. If α = 0 , then this step
is skipped. In addition, the appropriate sample of the input is stored as a
history value for use during the next round of processing.

2. Windowing: The frame is multiplied by the following Hamming window:

w[n] = 0.54− 0.46 cos(
2πn

N − 1
) (D.2)

N is the length of the frame.

3. Power Spectrum
The power spectrum of the frame is computed by performing a DFT of length
specified by the user, and then computing its magnitude squared.

S[k] = (real(X[k]))2 + (imag(X[k]))2 (D.3)

4. Mel Spectrum
The mel spectrum of the power spectrum is computed by multiplying the
power spectrum by each of the of the triangular mel weighting filters and
integrating the result.

S̃[l] =

N/2∑
k=0

S[k]Ml[k] l = 0, 1, ..., L− 1; (D.4)

N is the length of the DFT, and L is total number of triangular mel weighting
filters.
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5. Mel Cepstrum

A DCT is applied to the natural logarithm of the mel spectrum to obtain the
mel cepstrum:

c[n] =
L−1∑
i=0

ln(S̃[i]) cos(
πn

2L
(2i + 1)) n = 0, 1, ..., C − 1; (D.5)

C is the number of cepstral coefficients.

Delta MFCC
Also, delta MFCC coefficients can be calculated using the following equation [94]:

∆c[n] = c[n + 1]− c[n] (D.6)

Delta delta MFCC
Moreover, to obtain delta-delta coefficients, following equation will be applied [94]:

∆∆c[n] = ∆c[n + 1]−∆c[n] (D.7)
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Appendix E

Categorization of the phonemes
based on TIMIT database

According to TIMIT database categorization, English phonemes are classified into
following types. For each phoneme, an example is given as well

1. Closure

• bcl, dcl, gcl, pcl, tcl, kcl

2. Stops

• b: bee

• d: day

• g: geese

• p: pea

• t: tea

• k: key

• dx: muddy, dirty

• q: at, bat

3. Fricatives

• s: sea

• sh: she

• z: zone

• zh: azure

• f: fin

• th: thin
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• v: van

• dh: then

4. Nasals

• m: moon

• n: noon

• ng: sing

• em: bottom

• en: button

• eng: Washington

• nx: winner

5. Affricates

• jh: joke

• ch: choke

6. Semivowels

• l: lay

• r: ray

• w: way

• y: yacht

7. Vowels

• iy: beet

• ih: bit

• eh: bet

• ey: bait

• ae: bat

• aa: bottom

• aw: bout

• ay: bite

• ah: but

• ao: bougth

• oy: boy

• ow: boat

• uh: book
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• uw: boot

• ux: toot

• el: bottle

• er: bird

• ax: about

• ix: debit

• axr: butter

• ax-h: suspect

8. Aspirations

• hh: hay

• hv: ahead
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