359 research outputs found

    Logical topology design for IP rerouting: ASONs versus static OTNs

    Get PDF
    IP-based backbone networks are gradually moving to a network model consisting of high-speed routers that are flexibly interconnected by a mesh of light paths set up by an optical transport network that consists of wavelength division multiplexing (WDM) links and optical cross-connects. In such a model, the generalized MPLS protocol suite could provide the IP centric control plane component that will be used to deliver rapid and dynamic circuit provisioning of end-to-end optical light paths between the routers. This is called an automatic switched optical (transport) network (ASON). An ASON enables reconfiguration of the logical IP topology by setting up and tearing down light paths. This allows to up- or downgrade link capacities during a router failure to the capacities needed by the new routing of the affected traffic. Such survivability against (single) IP router failures is cost-effective, as capacity to the IP layer can be provided flexibly when necessary. We present and investigate a logical topology optimization problem that minimizes the total amount or cost of the needed resources (interfaces, wavelengths, WDM line-systems, amplifiers, etc.) in both the IP and the optical layer. A novel optimization aspect in this problem is the possibility, as a result of the ASON, to reuse the physical resources (like interface cards and WDM line-systems) over the different network states (the failure-free and all the router failure scenarios). We devised a simple optimization strategy to investigate the cost of the ASON approach and compare it with other schemes that survive single router failures

    Survivability issues in WDM optical networks

    Get PDF
    WDM optical networks make it possible for the bandwidth of transport networks to reach a level on which any failures would cause tremendous data loss and affect a lot of users. Thus, survivability issues of WDM optical networks have attracted a lot of research work. Within the scope of this dissertation, two categories of problems are studied, one is survivable mapping from IP topology to WDM topology, the other is p-cycle protection schemes in WDM networks.;Survivable mapping problem can be described as routing IP links on the WDM topology such that the IP topology stays connected under any single link failure in the WDM topology. This problem has been proved to be NP-complete [1]. At first, this dissertation provides a heuristic algorithm to compute approximated solutions for input IP/WDM topologies as an approach to ease the hardness of it. Then, it examines the problem with a different view, to augment the IP topology so that a survivable mapping can be easily computed. This new perspective leads to an extended survivable mapping problem that is originally proposed and analyzed in this dissertation. In addition, this dissertation also presents some interesting open problems for the survivable mapping problem as future work.;Various protection schemes in WDM networks have been explored. This dissertation focuses on methods based on the p-cycle technology. p-Cycle protection inherits the merit of fast restoration from the link-based protection technology while yielding higher efficiency on spare capacity usage [2]. In this dissertation, we first propose an efficient heuristic algorithm that generates a small subset of candidate cycles that guarantee 100% restorability and help to achieve an efficient design. Then, we adapt p-cycle design to accommodate the protection of the failure of a shared risk link group (SRLG). At last, we discuss the problem of establishing survivable connections for dynamic traffic demands using flow p-cycle

    Spare capacity modelling and its applications in survivable iP-over-optical networks

    Get PDF
    As the interest in IP-over-optical networks are becoming the preferred core network architecture, survivability has emerged as a major concern for network service providers; a result of the potentially huge traffic volumes that will be supported by optical infrastructure. Therefore, implementing recovery strategies is critical. In addition to the traditional recovery schemes based around protection and restoration mechanisms, pre-allocated restoration represents a potential candidate to effect and maintain network resilience under failure conditions. Preallocated restoration technique is particularly interesting because it provides a trade-off in terms of recovery performance and resources between protection and restoration schemes. In this paper, the pre-allocated restoration performance is investigated under single and dual-link failures considering a distributed GMPLSbased IP/WDM mesh network. Two load-based spare capacity optimisation methods are proposed in this paper; Local Spare Capacity Optimisation (LSCO) and Global Spare Capacity Optimisation (GSCO)

    A New Survivable Mapping Problem in IP-over-WDM Networks

    Get PDF
    We introduce a new version of the widely studied survivable mapping problem in IP-over-WDM networks. The new problem allows augmenting the given logical topology and is described as follows: given a physical topology and a logical topology, compute a survivable logical topology that contains the given logical topology such that the minimal survivable mapping cost for the result logical topology is minimized. The problem is significant for two reasons: 1) If there does not exist a survivable mapping for the given logical topology, we can add logical links to the given logical topology to make it survivable; 2) Even if a survivable mapping for the given logical topology can be found, it is still possible to reduce the minimal survivable mapping cost by adding logical links selectively. We first prove the existence of a solution to the problem, then provide a straightforward Integer Linear Program (ILP) formulation for the problem. Moreover, we present a theoretical result that leads to a simple NP-hardness proof of the problem and an improved ILP formulation. Simulation results demonstrate the significance of both the new survivable mapping problem and the theoretical result

    Maximizing Reliability in WDM Networks through Lightpath Routing

    Get PDF
    We study the reliability maximization problem in WDM networks with random link failures. Reliability in these networks is defined as the probability that the logical network is connected, and it is determined by the underlying lightpath routing and the link failure probability. We show that in general the optimal lightpath routing depends on the link failure probability, and characterize the properties of lightpath routings that maximize the reliability in different failure probability regimes. In particular, we show that in the low failure probability regime, maximizing the “cross-layer” min cut of the (layered) network maximizes reliability, whereas in the high failure probability regime, minimizing the spanning tree of the network maximizes reliability. Motivated by these results, we develop lightpath routing algorithms for reliability maximization.National Science Foundation (U.S.) (Grant CNS-0830961)National Science Foundation (U.S.) (Grant CNS-1017800)United States. Defense Threat Reduction Agency (Grant HDTRA1-07-1-0004)United States. Defense Threat Reduction Agency (Grant HDTRA-09-1-0050

    Survivable paths in multilayer networks

    Get PDF
    We consider the problem of protection in multilayer networks. In single-layer networks, a pair of disjoint paths can be used to provide protection for a source-destination pair. However, this approach cannot be directly applied to layered networks where disjoint paths may not always exist. In this paper, we take a new approach which is based on finding a set of paths that may not be disjoint but together will survive any single physical link failure. We consider the problem of finding the minimum number of survivable paths. In particular, we focus on two versions of this problem: one where the length of a path is restricted, and the other where the number of paths sharing a fiber is restricted. We prove that in general, finding the minimum survivable path set is NP-hard, whereas both of the restricted versions of the problem can be solved in polynomial time. We formulate the problems as Integer Linear Programs (ILPs), and use these formulations to develop heuristics and approximation algorithms.National Science Foundation (U.S.) (NSF grant CNS-0830961)National Science Foundation (U.S.) (NSF grant CNS-1017800)United States. Defense Threat Reduction Agency (grant HDTRA-09-1-005)United States. Defense Threat Reduction Agency (grant HDTRA1-07-1-0004
    corecore