368 research outputs found

    Practical Certificateless Aggregate Signatures From Bilinear Maps

    Get PDF
    Aggregate signature is a digital signature with a striking property that anyone can aggregate n individual signatures on n different messages which are signed by n distinct signers, into a single compact signature to reduce computational and storage costs. In this work, two practical certificateless aggregate signature schemes are proposed from bilinear maps. The first scheme CAS-1 reduces the costs of communication and signer-side computation but trades off the storage, while CAS-2 minimizes the storage but sacrifices the communication costs. One can choose either of the schemes by consideration of the application requirement. Compare with ID-based schemes, our schemes do not entail public key certificates as well and achieve the trust level 3, which imply the frauds of the authority are detectable. Both of the schemes are proven secure in the random oracle model by assuming the intractability of the computational Diffie-Hellman problem over the groups with bilinear maps, where the forking lemma technique is avoided

    Aggregatable Certificateless Designated Verifier Signature

    Get PDF
    In recent years, the Internet of Things (IoT) devices have become increasingly deployed in many industries and generated a large amount of data that needs to be processed in a timely and efficient manner. Using aggregate signatures, it provides a secure and efficient way to handle large numbers of digital signatures with the same message. Recently, the privacy issue has been concerned about the topic of data sharing on the cloud. To provide the integrity, authenticity, authority, and privacy on the data sharing in the cloud storage, the notion of an aggregatable certificateless designated verifier signature scheme (ACLDVS) was proposed. ACLDVS also is a perfect tool to enable efficient privacy-preserving authentication systems for IoT and or the vehicular ad hoc networks (VANET). Our concrete scheme was proved to be secured underling of the Computational Diffie-Hellman assumption. Compared to other related schemes, our scheme is efficient, and the signature size is considerably short

    Toward an RSU-unavailable lightweight certificateless key agreement scheme for VANETs

    Get PDF
    Vehicle ad-hoc networks have developed rapidly these years, whose security and privacy issues are always concerned widely. In spite of a remarkable research on their security solutions, but in which there still lacks considerations on how to secure vehicle-to-vehicle communications, particularly when infrastructure is unavailable. In this paper, we propose a lightweight certificateless and one-round key agreement scheme without pairing, and further prove the security of the proposed scheme in the random oracle model. The proposed scheme is expected to not only resist known attacks with less computation cost, but also as an efficient way to relieve the workload of vehicle-to-vehicle authentication, especially in no available infrastructure circumstance. A comprehensive evaluation, including security analysis, efficiency analysis and simulation evaluation, is presented to confirm the security and feasibility of the proposed scheme
    corecore