6 research outputs found

    Improving shoestring surveys for off-grid humanitarian power projects : kilowatts for humanity and KoboCollect

    Get PDF
    Field surveys are commonplace and essential for off-grid power projects in developing countries where availability of data may be scarce. Critical decisions such as site selection, technology choice, business models employed, and approach to community engagement are all greatly assisted by data that can be gathered through field surveys. Paper-based field surveys, the de facto standard approach, are prone to error, slow to deploy and adjust, and have other practical challenges despite the obvious advantage of having fewer technological dependencies. Over recent years, improvement in freely available surveying software, smartphones and tablets, as well as good cellular coverage throughout the world offers humanitarian organizations an opportunity to implement digital field surveys with relative ease. This article presents the experience implementing KoboCollect by Kilowatts for Humanity (KWH), a non-profit that implements sustainable energy kiosks in developing countries. KoboCollect is an open-source data collection software platform designed to support humanitarian and research organizations. In this paper, limitations of paper-based field surveys from previous KWH projects, as well as from the extant literature, are considered with respect to their ultimate impact on the implementation of the development project. A new approach is presented in which survey questions are refined based on past experience and are directly related to pre-defined project indicators. Key benefits and challenges are identified from the adoption of the new approach and methodological questions around sampling and decision-making following data collection are discussed. The new method is discussed in the context of a KWH survey project being conducted in the summer of 2018 in three locations in the Philippines. A major goal of this work is to open a discussion about the successes and failures of the shoestring, paper-based survey methodology and point to current best practices

    SOGERV Market Assessment

    Get PDF
    The Sustainable Off-grid Electrification of Rural Villages (SOGERV) Project seeks to create sustainable energy supply businesses in remote communities in Chikwawa District by deploying appropriate/affordable renewable energy technologies and applications. Little data is readily available in this context to guide the choice of technology and type and level of application. This study describes the market assessment approach taken to determine the viability of specific renewable energy technologies prior to implementation. The objective of the market assessment will provide a means for business planning and technology choice for those businesses

    Sustainability Assessment of Wireless Community Grid for Off-Grid Communities: A Case Study for Haiti

    Get PDF
    Affordable, reliable, and sustainable energy service is fundamental to human, social and economic development. Approximately 1.2 billion people lack access to basic energy services. There exists a huge energy access gap between urban centers and rural areas. Approximately 84% of the people deprived of energy access live in rural areas. Existing rural electrification options including grid extension, mini-grids, and stand-alone solar home systems, have limited penetration in rural regions. Entrepreneurs, with support from governments and international institutions, have experimented with different business mechanisms to facilitate energy delivery. A significant amount of investment is being made for rural electrification but many projects are not self-sustaining. This research develops a new approach, ‘Wireless Community Grid’, to provide basic energy services to rural households and evaluates if the approach meets the desired features of affordability, profitability, and scalability. The approach comprises of a central charging station operated by local vendors, where portable power systems are charged and rented to homeowners. Each portable power system provides power to each home in the form of indoor lighting and device charging. Each power system is swapped from the station at a regular interval. To understand the energy needs and expenses of a rural population, surveys were conducted in Borgne, Haiti. The major sources for lighting are kerosene lamps, rechargeable bulbs and candles. For charging lights and phones, people have to walk to a vendor with solar systems or generators. Based on three surveyed communities, each household typically spends 2.50aweekonenergyservicesandlocalvendorsmake2.50 a week on energy services and local vendors make 0.70 a week from each household served. To explore the sustainability of the Wireless Community Grid approach, three preliminary evaluation models were developed. First, a techno-economic tool was used to evaluate the relationship between reliability and cost. Based on the developed tool, a system consisting of 350 W solar array and 58 portable power units with 283 Wh capacity would meet the basic energy needs of a community of 49 households at the lowest present value. Second, a life cycle assessment was performed to study the environmental impacts. It was observed that the proposed system would provide a yearly reduction of 382 kg of CO2 equivalents and 197 kg of crude oil equivalents for each household served compared to the current energy state. Finally, a social business structure was proposed to maximize the number of people impacted while keeping the system affordable and self-sustainable. While keeping the household energy cost level at 2.50/weekforenergyservices,thecapitalinvestmentof2.50/week for energy services, the capital investment of 6100 for a community system, could be recovered in less than 2 years. Over 10 years, the returns on a single investment would be able to expand to 64 similar communities and provide energy services to around 19,000 people. The wireless community grid approach appears to be affordable for end-users and provides profits for local vendors while being financially and environmentally sustainable and highly scalable

    A Viable Residential DC Microgrid for Low Income Communities – Architecture, Protection and Education

    Get PDF
    The availability of fossil fuels in the future and the environmental effects such as the carbon footprint of the existing methodologies to produce electricity is an increasing area of concern. In rural areas of under-developed parts of the world, the problem is lack of access to electrification. DC microgrids have become a proven solution to electrification in these areas with demonstrated exceptional quality of power, high reliability, efficiency, and simplified integration between renewable energy sources (principally solar PV) and energy storage. In the United States, a different problem occurs that can be addressed with the same DC microgrid approach that is finding success internationally. In disinvested, underserved communities with high unemployment and low wages, households contribute a significant portion of their income towards the fixed cost of their electrical utility connection, which by law must be supplied to every household. In order to realize such a microgrid in these communities, there are three major areas which need to be accounted for. Firstly, there needs to be a custom architecture for the community under consideration and it needs to be economical to match the needs of the underserved community. Secondly, DC microgrid for home energy interconnection is potentially less complex and less expensive to deploy, operate and maintain however, faster protection is a key element to ensuring resilience, viability and adoptability. Lastly, these types of efforts will be sustainable only if the people in the community are educated and invested in the same as they are the key stakeholders in these systems. This dissertation presents an approach to make the DC Microgrid economically feasible for low income households by reducing the cost they incur on electric bills. The approach is to overlay a DC system into homes that have a utility feed in order to incorporate renewable energy usage into an urban setting for the express purpose of driving down individual household utility costs. The results show that the incorporation of a certain level of “smart” appliances and fixtures into the renovation of vacated homes and the use of a microgrid to enable sharing of renewable energy, such as solar power combined with energy storage, between homes in the proposed architecture yields the least expensive option for the patrons. The development of solid state circuit breakers that interface between the microgrid and the home DC power panels helps in faster protection of the DC system. In this dissertation, a SiC JFET based device is designed and built to protect against DC faults at a faster rate than the available solutions. The prototype is tested for verification and used to discriminate against short circuit faults and the results show the successful fault discrimination capabilities of the device. A basic system level simulation with the protection device is implemented using Real Time Hardware in the loop platform. Finally, as a part of engaging the community members, the high school kids in the area who might potentially be living in some of the houses in this community are being educated about the microgrid, appliances and other technologies to get a better understanding of STEM and hopefully inspiring them to pursue a career in STEM in the future

    A Viable Residential DC Microgrid for Low Income Communities – Architecture, Protection and Education

    Get PDF
    The availability of fossil fuels in the future and the environmental effects such as the carbon footprint of the existing methodologies to produce electricity is an increasing area of concern. In rural areas of under-developed parts of the world, the problem is lack of access to electrification. DC microgrids have become a proven solution to electrification in these areas with demonstrated exceptional quality of power, high reliability, efficiency, and simplified integration between renewable energy sources (principally solar PV) and energy storage. In the United States, a different problem occurs that can be addressed with the same DC microgrid approach that is finding success internationally. In disinvested, underserved communities with high unemployment and low wages, households contribute a significant portion of their income towards the fixed cost of their electrical utility connection, which by law must be supplied to every household. In order to realize such a microgrid in these communities, there are three major areas which need to be accounted for. Firstly, there needs to be a custom architecture for the community under consideration and it needs to be economical to match the needs of the underserved community. Secondly, DC microgrid for home energy interconnection is potentially less complex and less expensive to deploy, operate and maintain however, faster protection is a key element to ensuring resilience, viability and adoptability. Lastly, these types of efforts will be sustainable only if the people in the community are educated and invested in the same as they are the key stakeholders in these systems. This dissertation presents an approach to make the DC Microgrid economically feasible for low income households by reducing the cost they incur on electric bills. The approach is to overlay a DC system into homes that have a utility feed in order to incorporate renewable energy usage into an urban setting for the express purpose of driving down individual household utility costs. The results show that the incorporation of a certain level of “smart” appliances and fixtures into the renovation of vacated homes and the use of a microgrid to enable sharing of renewable energy, such as solar power combined with energy storage, between homes in the proposed architecture yields the least expensive option for the patrons. The development of solid state circuit breakers that interface between the microgrid and the home DC power panels helps in faster protection of the DC system. In this dissertation, a SiC JFET based device is designed and built to protect against DC faults at a faster rate than the available solutions. The prototype is tested for verification and used to discriminate against short circuit faults and the results show the successful fault discrimination capabilities of the device. A basic system level simulation with the protection device is implemented using Real Time Hardware in the loop platform. Finally, as a part of engaging the community members, the high school kids in the area who might potentially be living in some of the houses in this community are being educated about the microgrid, appliances and other technologies to get a better understanding of STEM and hopefully inspiring them to pursue a career in STEM in the future
    corecore