1,660 research outputs found

    Multi-Modal Trajectory Prediction of Surrounding Vehicles with Maneuver based LSTMs

    Full text link
    To safely and efficiently navigate through complex traffic scenarios, autonomous vehicles need to have the ability to predict the future motion of surrounding vehicles. Multiple interacting agents, the multi-modal nature of driver behavior, and the inherent uncertainty involved in the task make motion prediction of surrounding vehicles a challenging problem. In this paper, we present an LSTM model for interaction aware motion prediction of surrounding vehicles on freeways. Our model assigns confidence values to maneuvers being performed by vehicles and outputs a multi-modal distribution over future motion based on them. We compare our approach with the prior art for vehicle motion prediction on the publicly available NGSIM US-101 and I-80 datasets. Our results show an improvement in terms of RMS values of prediction error. We also present an ablative analysis of the components of our proposed model and analyze the predictions made by the model in complex traffic scenarios.Comment: accepted for publication at IV 201

    TrafficPredict: Trajectory Prediction for Heterogeneous Traffic-Agents

    Full text link
    To safely and efficiently navigate in complex urban traffic, autonomous vehicles must make responsible predictions in relation to surrounding traffic-agents (vehicles, bicycles, pedestrians, etc.). A challenging and critical task is to explore the movement patterns of different traffic-agents and predict their future trajectories accurately to help the autonomous vehicle make reasonable navigation decision. To solve this problem, we propose a long short-term memory-based (LSTM-based) realtime traffic prediction algorithm, TrafficPredict. Our approach uses an instance layer to learn instances' movements and interactions and has a category layer to learn the similarities of instances belonging to the same type to refine the prediction. In order to evaluate its performance, we collected trajectory datasets in a large city consisting of varying conditions and traffic densities. The dataset includes many challenging scenarios where vehicles, bicycles, and pedestrians move among one another. We evaluate the performance of TrafficPredict on our new dataset and highlight its higher accuracy for trajectory prediction by comparing with prior prediction methods.Comment: Accepted by AAAI(Oral) 201

    A Learning-based Stochastic MPC Design for Cooperative Adaptive Cruise Control to Handle Interfering Vehicles

    Full text link
    Vehicle to Vehicle (V2V) communication has a great potential to improve reaction accuracy of different driver assistance systems in critical driving situations. Cooperative Adaptive Cruise Control (CACC), which is an automated application, provides drivers with extra benefits such as traffic throughput maximization and collision avoidance. CACC systems must be designed in a way that are sufficiently robust against all special maneuvers such as cutting-into the CACC platoons by interfering vehicles or hard braking by leading cars. To address this problem, a Neural- Network (NN)-based cut-in detection and trajectory prediction scheme is proposed in the first part of this paper. Next, a probabilistic framework is developed in which the cut-in probability is calculated based on the output of the mentioned cut-in prediction block. Finally, a specific Stochastic Model Predictive Controller (SMPC) is designed which incorporates this cut-in probability to enhance its reaction against the detected dangerous cut-in maneuver. The overall system is implemented and its performance is evaluated using realistic driving scenarios from Safety Pilot Model Deployment (SPMD).Comment: 10 pages, Submitted as a journal paper at T-I
    • …
    corecore