5 research outputs found

    Surfing the optimization space of a multiple-GPU parallel implementation of a X-ray tomography reconstruction algorithm

    Get PDF
    The increasing popularity of massively parallel architectures based on accelerators have opened up the possibility of significantly improving the performance of X-ray computed tomography (CT) applications towards achieving real-time imaging. However, achieving this goal is a challenging process, as most CT applications have not been designed for exploiting the amount of parallelism existing in these architectures. In this paper we present the massively parallel implementation and optimization of Mangoose(++), a CT application for reconstructing 3D volumes from 20 images collected by scanners based on cone-beam geometry. The main contribution of this paper are the following. First, we develop a modular application design that allows to exploit the functional parallelism inside the application and to facilitate the parallelization of individual application phases. Second, we identify a set of optimizations that can be applied individually and in combination for optimally deploying the application on a massively parallel multi-GPU system. Third, we present a study of surfing the optimization space of the modularized application and demonstrate that a significant benefit can be obtained from employing the adequate combination of application optimizations. (C) 2014 Elsevier Inc. All rights reserved.This work was partially funded by the Spanish Ministry of Science and Technology under the grant TIN2010-16497, the AMIT project (CEN-20101014) from the CDTI-CENIT program, RECAVA-RETIC Network (RD07/0014/2009), projects TEC2010-21619-C04-01, TEC2011-28972-C02-01, and PI11/00616 from the Spanish Ministerio de Ciencia e Innovacion, ARTEMIS program (S2009/DPI-1802), from the Comunidad de Madrid

    Advanced Image Reconstruction for Limited View Cone-Beam CT

    Get PDF
    In a standard CT acquisition, a high number of projections is obtained around the sample, generally covering an angular span of 360º. However, complexities may arise in some clinical scenarios such as surgery and emergency rooms or Intensive Care Units (ICUs) when the accessibility to the patient is limited due to the monitoring equipment attached. X-ray systems used in these cases are usually C-arms that only enable the acquisition of planar images within a limited angular range. Obtaining 3D images in these scenarios could be extremely interesting for diagnosis or image guided surgery. This would be based on the acquisition of a small number of projections within a limited angular span. Reconstruction of these limited-view data with conventional algorithms such as FDK result in streak artifacts and shape distortion deteriorating the image quality. In order to reduce these artifacts, advanced reconstruction methods can be used to compensate the lack of data by the incorporation of prior information. This bachelor thesis is framed on one of the lines of research carried out by the Biomedical Imaging and Instrumentation group from the Bioengineering and Aerospace Department of Universidad Carlos III de Madrid working jointly with the Hospital General Universitario Gregorio Marañón through its Instituto de Investigación Sanitaria. This line of research is carried out in collaboration with the company SEDECAL, which enables the direct transfer to the industry. Previous work showed that a new iterative reconstruction method proposed by the group, SCoLD, is able to restore the altered contour of the object, suppress greatly the streak artifacts and recover to some extend the image quality by restricting the space of search with a surface constraint. However, the evaluation was only carried out using a simulated mask that described the shape of the object obtained by thresholding a previous CT image of the sample, which is generally not available in real scenarios. The general objective of this thesis is the designing of a complete workflow to implement SCoLD in real scenarios. For that purpose, the 3D scanner Artec Eva was chosen to acquire the surface information of the sample, which was then transformed to be usable as prior information for SCoLD method. The evaluation done in a rodent study showed high similarity between the mask obtained from real data and the ideal mask obtained from a CT. Distortions in shape and streak artifacts in the limited-view FDK reconstruction were greatly reduced when using the real mask with the SCoLD reconstruction and the image quality was highly improved demonstrating the feasibility of the proposal.Grado en Ingeniería Biomédica (Plan 2010

    Proceedings of the ECCOMAS Thematic Conference on Multibody Dynamics 2015

    Get PDF
    This volume contains the full papers accepted for presentation at the ECCOMAS Thematic Conference on Multibody Dynamics 2015 held in the Barcelona School of Industrial Engineering, Universitat Politècnica de Catalunya, on June 29 - July 2, 2015. The ECCOMAS Thematic Conference on Multibody Dynamics is an international meeting held once every two years in a European country. Continuing the very successful series of past conferences that have been organized in Lisbon (2003), Madrid (2005), Milan (2007), Warsaw (2009), Brussels (2011) and Zagreb (2013); this edition will once again serve as a meeting point for the international researchers, scientists and experts from academia, research laboratories and industry working in the area of multibody dynamics. Applications are related to many fields of contemporary engineering, such as vehicle and railway systems, aeronautical and space vehicles, robotic manipulators, mechatronic and autonomous systems, smart structures, biomechanical systems and nanotechnologies. The topics of the conference include, but are not restricted to: ● Formulations and Numerical Methods ● Efficient Methods and Real-Time Applications ● Flexible Multibody Dynamics ● Contact Dynamics and Constraints ● Multiphysics and Coupled Problems ● Control and Optimization ● Software Development and Computer Technology ● Aerospace and Maritime Applications ● Biomechanics ● Railroad Vehicle Dynamics ● Road Vehicle Dynamics ● Robotics ● Benchmark ProblemsPostprint (published version

    Multibody dynamics 2015

    Get PDF
    This volume contains the full papers accepted for presentation at the ECCOMAS Thematic Conference on Multibody Dynamics 2015 held in the Barcelona School of Industrial Engineering, Universitat Politècnica de Catalunya, on June 29 - July 2, 2015. The ECCOMAS Thematic Conference on Multibody Dynamics is an international meeting held once every two years in a European country. Continuing the very successful series of past conferences that have been organized in Lisbon (2003), Madrid (2005), Milan (2007), Warsaw (2009), Brussels (2011) and Zagreb (2013); this edition will once again serve as a meeting point for the international researchers, scientists and experts from academia, research laboratories and industry working in the area of multibody dynamics. Applications are related to many fields of contemporary engineering, such as vehicle and railway systems, aeronautical and space vehicles, robotic manipulators, mechatronic and autonomous systems, smart structures, biomechanical systems and nanotechnologies. The topics of the conference include, but are not restricted to: Formulations and Numerical Methods, Efficient Methods and Real-Time Applications, Flexible Multibody Dynamics, Contact Dynamics and Constraints, Multiphysics and Coupled Problems, Control and Optimization, Software Development and Computer Technology, Aerospace and Maritime Applications, Biomechanics, Railroad Vehicle Dynamics, Road Vehicle Dynamics, Robotics, Benchmark Problems. The conference is organized by the Department of Mechanical Engineering of the Universitat Politècnica de Catalunya (UPC) in Barcelona. The organizers would like to thank the authors for submitting their contributions, the keynote lecturers for accepting the invitation and for the quality of their talks, the awards and scientific committees for their support to the organization of the conference, and finally the topic organizers for reviewing all extended abstracts and selecting the awards nominees.Postprint (published version
    corecore