84,262 research outputs found

    A perception and manipulation system for collecting rock samples

    Get PDF
    An important part of a planetary exploration mission is to collect and analyze surface samples. As part of the Carnegie Mellon University Ambler Project, researchers are investigating techniques for collecting samples using a robot arm and a range sensor. The aim of this work is to make the sample collection operation fully autonomous. Described here are the components of the experimental system, including a perception module that extracts objects of interest from range images and produces models of their shapes, and a manipulation module that enables the system to pick up the objects identified by the perception module. The system was tested on a small testbed using natural terrain

    On Using Physical Analogies for Feature and Shape Extraction in Computer Vision

    No full text
    There is a rich literature of approaches to image feature extraction in computer vision. Many sophisticated approaches exist for low- and high-level feature extraction but can be complex to implement with parameter choice guided by experimentation, but impeded by speed of computation. We have developed new ways to extract features based on notional use of physical paradigms, with parameterisation that is more familiar to a scientifically-trained user, aiming to make best use of computational resource. We describe how analogies based on gravitational force can be used for low-level analysis, whilst analogies of water flow and heat can be deployed to achieve high-level smooth shape detection. These new approaches to arbitrary shape extraction are compared with standard state-of-art approaches by curve evolution. There is no comparator operator to our use of gravitational force. We also aim to show that the implementation is consistent with the original motivations for these techniques and so contend that the exploration of physical paradigms offers a promising new avenue for new approaches to feature extraction in computer vision

    On Using Physical Analogies for Feature and Shape Extraction in Computer Vision

    No full text
    There is a rich literature of approaches to image feature extraction in computer vision. Many sophisticated approaches exist for low- and for high-level feature extraction but can be complex to implement with parameter choice guided by experimentation, but with performance analysis and optimization impeded by speed of computation. We have developed new feature extraction techniques on notional use of physical paradigms, with parametrization aimed to be more familiar to a scientifically trained user, aiming to make best use of computational resource. This paper is the first unified description of these new approaches, outlining the basis and results that can be achieved. We describe how gravitational force can be used for low-level analysis, while analogies of water flow and heat can be deployed to achieve high-level smooth shape detection, by determining features and shapes in a selection of images, comparing results with those by stock approaches from the literature. We also aim to show that the implementation is consistent with the original motivations for these techniques and so contend that the exploration of physical paradigms offers a promising new avenue for new approaches to feature extraction in computer vision

    Tele-Autonomous control involving contact

    Get PDF
    Object localization and its application in tele-autonomous systems are studied. Two object localization algorithms are presented together with the methods of extracting several important types of object features. The first algorithm is based on line-segment to line-segment matching. Line range sensors are used to extract line-segment features from an object. The extracted features are matched to corresponding model features to compute the location of the object. The inputs of the second algorithm are not limited only to the line features. Featured points (point to point matching) and featured unit direction vectors (vector to vector matching) can also be used as the inputs of the algorithm, and there is no upper limit on the number of the features inputed. The algorithm will allow the use of redundant features to find a better solution. The algorithm uses dual number quaternions to represent the position and orientation of an object and uses the least squares optimization method to find an optimal solution for the object's location. The advantage of using this representation is that the method solves for the location estimation by minimizing a single cost function associated with the sum of the orientation and position errors and thus has a better performance on the estimation, both in accuracy and speed, than that of other similar algorithms. The difficulties when the operator is controlling a remote robot to perform manipulation tasks are also discussed. The main problems facing the operator are time delays on the signal transmission and the uncertainties of the remote environment. How object localization techniques can be used together with other techniques such as predictor display and time desynchronization to help to overcome these difficulties are then discussed
    corecore