2,748 research outputs found
Changing QRS Morphology: What is the mechanism?
ECG in sinus rhythm with ventricular preexcitation and changing QRS morphology was seen that was initially interpreted as the multiple accessory pathway from elsewhere. (Figure 1A).
The following mechanisms are potentially involved in the electrogenesis of changing QRS morphology in WPW syndrome: 1) multiple accessory pathways1; 2) simultaneous occurrence of aberrant atrioventricular conduction with accessory pathway conduction 2; 3) ventricular fusion of preexcited sinus impulse with ectopic impulse.
Electrophysiologic study showed short PR (75 ms) interval with wide QRS (152 ms) and negative HV (-12 ms) interval. No change in delta wave polarity was observed during HRA and CS pacing. In full preexcitation, no breakthrough was seen in the CS. During incremental ventricular pacing, atrial breakthrough site is initially recorded on the HRA catheter and then changed to distal pole of CS catheter with progressive decrease in pacing cycle length. During ventricular pacing at cycle length of 500 ms (S1), earliest atrial activity is recorded on HRA catheter.
Changing QRS could not be explained by presence of multiple APs because only right-sided AP had bidirectional conduction and no distal CS breakthrough was seen simultaneous with changing QRS morphology. The possibility of aberrant conduction is excluded by presence of negative HV interval in the beats with differing QRS morphology. No sinus cycle length variation before and after the beats with different morphologies are against the occurrence of functional LBBB. The prematurity of ventricular electrogram in His recording catheter with variable HV (H-electrogram is recorded after V-electrogram in second beat and before V-electrogram in third beat) and fixed V-RB intervals (interval from ventricular electrogram in His to the RB potential) are compatible with ventricular fusion of preexcited sinus impulse with ectopic ventricular impulse originating from parahissian area (explaining LBBB and inferior axis morphology of the beats with changing QRS) but not from the His bundle or RBB itself (because H-electrogram and RB potential is recorded after V-electrogram in the second beat with greater degree of ventricular fusion)(Figure 1B)
Treatment of Electrical Storm with Amiodarone in Brugada Syndrome- an Unexpected Protective Effect
We are reporting on a 53 year old man with proven Brugada syndrome and ICD implantation for resuscitation in context of polymorphic VT. After recurrent arrhythmia he was treated with Amiodarone. This showed to have a protective effect despite various reports suggesting avoiding Amiodarone in Brugada syndrome
A software platform for the comparative analysis of electroanatomic and imaging data including conduction velocity mapping
Radiofrequency Ablation for Post Infarction Ventricular Tachycardia
Radiofrequency ablation has an important role in the management of post infarction ventricular tachycardia. The mapping and ablation of ventricular tachycardia (VT) is complex and technically challenging. In the era of implantable cardioverter defibrillators, the role of radiofrequency ablation is most commonly reserved as an adjunctive treatment for patients with frequent, symptomatic episodes of ventricular tachycardia. In this setting the procedure has a success rate of around 70-80% and a low complication rate. With improved ability to predict recurrent VT and improvements in mapping and ablation techniques and technologies, the role of radiofrequency ablation should expand further
2019 HRS/EHRA/APHRS/LAHRS expert consensus statement on catheter ablation of ventricular arrhythmias
Pacemapping
Pacemapping (PM) is an electrophysiologic technique designed to help locating tachycardia sources by stimulating at different endocardial sites in order to reproduce the clinical tachycardia characteristics. A recorded electrocardiogram (ECG) during the clinical tachycardia has been conventionally used as reference. Yet, endocardial activation pattern during tachycardia may be utilized as well to guide the procedure. In focal tachycardia ablation, PM guide has consistently provided remarkable outcomes1, while outcomes in reentrant tachycardia ablation are less favourabl
Slow Conduction through an Arc of Block: A Basis for Arrhythmia Formation Post-Myocardial Infarction
Introduction
The electrophysiologic basis for characteristic rate-dependent, constant-late-coupled (390 + 54 milliseconds) premature ventricular beats (PVBs) present 4–5 days following coronary artery occlusion were examined in 108 anesthetized dogs.
Methods and results
Fractionated/double potentials were observed in injured zone bipolar and composite electrograms at prolonged sinus cycle lengths (1,296 ± 396 milliseconds). At shorter cycle lengths, conduction of the delayed potential decremented, separating from the initial electrogram by a progressively prolonged isoelectric interval. With sufficient delay of the second potential following an isoelectric interval, a PVB was initiated. Both metastable and stable constant-coupled PVBs were associated with Wenckebach-like patterns of delayed activation following an isoelectric interval. Signal-averaging from the infarct border confirmed the presence of an isoelectric interval preceding the PVBs (N = 15). Pacing from the site of double potential formation accurately reproduced the surface ECG morphology (N = 15) of spontaneous PVBs. Closely-spaced epicardial mapping demonstrated delayed activation across an isoelectric interval representing “an arc of conduction block.” Rate-dependent very slow antegrade conduction through a zone of apparent conduction block (N = 8) produced decremental activation delays until the delay was sufficient to excite epicardium distal to the original “arc of conduction block,” resulting in PVB formation.
Conclusion
The present experiments demonstrate double potential formation and rate-dependent constant-coupled late PVB formation in infarcted dog hearts. Electrode recordings demonstrate a prolonged isoelectric period preceding PVB formation consistent with very slow conduction (<70 mm/s) across a line of apparent conduction block and may represent a new mechanism of PVB formation following myocardial infarction
Local Electrical Dyssynchrony during Atrial Fibrillation: Theoretical Considerations and Initial Catheter Ablation Results
Copyright: © 2016 Kuklik et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original author and source are credited.Background
Electrogram-based identification of the regions maintaining persistent Atrial Fibrillation (AF) is a subject of ongoing debate. Here, we explore the concept of local electrical dyssynchrony to identify AF drivers.
Methods and Results
Local electrical dyssynchrony was calculated using mean phase coherence. High-density epicardial mapping along with mathematical model were used to explore the link between local dyssynchrony and properties of wave conduction. High-density mapping showed a positive correlation between the dyssynchrony and number of fibrillatory waves (R2 = 0.68, p<0.001). In the mathematical model, virtual ablation at high dyssynchrony regions resulted in conduction regularization. The clinical study consisted of eighteen patients undergoing catheter ablation of persistent AF. High-density maps of left atrial (LA) were constructed using a circular mapping catheter. After pulmonary vein isolation, regions with the top 10% of the highest dyssynchrony in LA were targeted during ablation and followed with ablation of complex atrial electrograms. Catheter ablation resulted in termination during ablation at high dyssynchrony regions in 7 (41%) patients. In another 4 (24%) patients, transient organization was observed. In 6 (35%) there was no clear effect. Long-term follow-up showed 65% AF freedom at 1 year and 22% at 2 years.
Conclusions
Local electrical dyssynchrony provides a reasonable estimator of regional AF complexity
defined as the number of fibrillatory waves. Additionally, it points to regions of dynamical instability related with action potential alternans. However, despite those characteristics, its utility in guiding catheter ablation of AF is limited suggesting other factors are responsible for AF persistence
- …
