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Abstract 

Introduction – The electrophysiologic basis for characteristic rate-dependent, constant-late-

coupled (390+54 msec) premature ventricular beats (PVBs) present 4-5 days following 

coronary artery occlusion were examined in 108 anesthetized dogs.  

Methods and Results – Fractionated/double potentials were observed in injured zone 

bipolar and composite electrograms at prolonged sinus cycle lengths (1296+396 msec).  At 

shorter cycle lengths, conduction of the delayed potential decremented, separating from the 

initial electrogram by a progressively prolonged isoelectric interval.  With sufficient delay of 

the second potential following an isoelectric interval, a PVB was initiated.  Both metastable 

and stable constant-coupled PVBs were associated with Wenckebach-like patterns of 

delayed activation following an isoelectric interval.  Signal-averaging from the infarct border 

confirmed the presence of an isoelectric interval preceding the PVBs (N=15).  Pacing from 

the site of double potential formation accurately reproduced the surface ECG morphology 

(N=15) of spontaneous PVBs.  Closely-spaced epicardial mapping demonstrated delayed 

activation across an isoelectric interval representing “an arc of conduction block”.  Rate-

dependent very slow antegrade conduction through a zone of apparent conduction block 

(N=8) produced decremental activation delays until the delay was sufficient to excite 

epicardium distal to the original “arc of conduction block”, resulting in PVB formation. 

Conclusion – The present experiments demonstrate double potential formation and rate-

dependent constant-coupled late PVB formation in infarcted dog hearts.  Electrode 

recordings demonstrate a prolonged isoelectric period preceding PVB formation consistent 

with very slow conduction (<70 mm/sec) across a line of apparent conduction block and may 

represent a new mechanism of PVB formation following myocardial infarction. 
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Introduction 

 Arrhythmia observed following coronary artery ligation in the dog falls into a number 

of distinct temporal phases having a variety of electrophysiologic mechanisms1.  Although 

rapid and sustained reentrant ventricular arrhythmias can be induced by programmed 

electrical stimulation, 4-5 days following left anterior descending coronary artery ligation2,3, 

the spontaneous ventricular arrhythmias observed following myocardial infarction have 

largely been attributed to a slow resolution of residual abnormal automaticity or delayed 

afterdepolarization formation in endocardial Purkinje tissues surviving myocardial infarction.  

This form of arrhythmia begins within a few hours following coronary artery ligation4, 5.  In the 

present studies, we describe a rate-dependent arrhythmia consisting of constant-late-

coupled PVBs having a normal axis and left bundle branch block morphology, originating 

from ischemically-injured (IZ) anterior left ventricular epicardium.  The metastable or stable 

arrhythmias (bigeminal, trigeminal, quadrigeminal, etc., single PVBs) are manifest as a 

function of the atrial heart rate.  In the present studies, we employed a variety of different 

electrical recording techniques (bipolar, bipolar-composite, signal-averaging, and unipolar 

epicardial mapping) to investigate the electrophysiologic mechanism giving rise to these 

arrhythmias. 
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Methods 

Surgical preparation - Male dogs were anesthetized with intravenous sodium 

pentobarbital (30 mg/kg).  A cuffed endotracheal tube was inserted and the animals were 

ventilated with room air using a Harvard respirator.  Using aseptic technique, a left 

thoracotomy was performed in the 5th intercostal space and the heart was suspended in a 

pericardial cradle. The left anterior descending coronary artery was dissected from 

surrounding tissue at the tip of left atrial appendage (approximately 1-1.5 cm from its origin) 

and the artery ligated in two stages as described by Harris4.  The chest was closed in layers.  

Ampicillin (10 mg/kg) and nalbuphine (0.2 mg/kg) were administered IM, and the animals 

were allowed to recover from anesthesia.  All animal studies were approved by the 

Institutional Animal Care and Use Committees of the University of Oklahoma Health 

Sciences Center and Oklahoma City Veterans Administration Medical Center.  All 

experiments conformed to the Guiding Principles of the American Physiologic Society. 

Electrophysiologic Studies – On the 4th or 5th day following coronary artery ligation, 

the dogs were again anesthetized with intravenous sodium pentobarbital (30 mg/kg).  A 

cuffed endotracheal tube was inserted and the animals were ventilated with room air using a 

Harvard respirator.  A 12-lead surface ECG was obtained.  An electrode catheter was 

inserted through a carotid artery to record His bundle activation (30-1000 Hz).  Body 

temperature was maintained at 37+1o by a heating blanket.  Arterial blood pressure was 

measured from a femoral artery and continuously monitored.  Drug administration was 

performed through a femoral vein.  All recordings were obtained using (1) an Electronics for 

Medicine VR-16 and Gould electrostatic recorder or (2) a Bard computer-based recording 

system.  The right cervical vagus nerve was exposed and 0.1 mm diameter silver wires were 

inserted for nerve stimulation (0.01 msec duration, 20 Hz, 1-20V) using a Grass model S-88 



 

 

 

This article is protected by copyright. All rights reserved. 

8 

 

stimulator.  Plunge bipolar stainless steel wires (0.13 mm diameter) coated with Teflon® were 

inserted into right ventricular epicardium within the right ventricular outflow tract to allow 

provocative right ventricular pacing to induce sustained reentrant ventricular tachycardia as 

described previously6. 

A left thoracotomy was performed in the 5th intercostal space and the heart was 

suspended in a pericardial cradle.  Atrial pacing was performed from the right or left atrial 

appendage (4.0 msec duration stimuli at twice diastolic threshold voltage).  Electrical 

recordings were serially obtained from ischemically-injured myocardium using (1) epicardial 

bipolar composite electrodes, (2) a handheld epicardial probe (two 1 mm diameter silver 

electrodes located 2 mm apart in epoxy), (3) 1 mm diameter silver electrodes located 

approximately 5 cm apart in an X (epicardial), Y (epicardial), and Z (transmural) (orthogonal) 

orientation grid, (4) a 124 unipolar electrode array with 4 mm interelectrode spacing, and (5) 

an 11 x 11 epicardial electrode grid (0.1 mm silver wire, 1 mm electrode separation in 

epoxy).  Composite electrograms, orthogonal, and local bipolar electrograms were filtered at 

30 and 1000 Hz.  Unipolar electrograms for cardiac mapping were filtered at 0.1 and 1000 

Hz, undergoing AD conversion at 2 KHz with 12 bit accuracy.  Timing of unipolar 

electrograms for isochronal mapping was performed using the maximum negative differential 

and verified manually. Signal-averaging from X, Y, and Z orthogonal leads from the IZ 

borders was compared during sinus rhythm and during rate-dependent rhythm formation 

(atrial pacing).  During arrhythmia formation, the PVB was utilized as the template for signal 

averaging.  A total of 200 intervals preceding the template matched PVB were averaged 

using Predictor® software (Corazonix). 

 Statistical Analysis - Data are expressed as the mean + the standard deviation.  

Differences between groups were determined by an analysis of variance for paired or 
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unpaired data as appropriate followed by Student-Newman-Keuls analysis (Graphpad Instat 

version 2.1).  Statistical significance was assumed at a p value < 0.05. 
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Results 

 Patterns of Arrhythmia Formation - The present studies were performed in 108 

dogs exhibiting constant-coupled, rate-related ventricular ectopic beat formation with during 

sinus rhythm (N=45) or during atrial pacing (N=63) (Figure 1).  Each dog demonstrated 

transmural myocardial infarction (Q wave formation on at least three consecutive anterior 

ECG leads V2 – V6).  The arrhythmia was often present during sinus rhythm prior to 

thoracotomy and was also observed after thoracotomy.  The constant-coupled, single, 

premature ventricular beats uniformly demonstrated a normal ECG axis and a left bundle 

branch block ECG morphology.  The slowest atrial rate producing constant-coupled, late-

coupled PVBs was 109 + 34 bpm.  The pattern and coupling interval for ventricular ectopic 

beat formation were reproducible over a narrow range of atrially-paced cycle lengths.  The 

coupling intervals of the ventricular ectopic beats were typically prolonged (X + SD, 390 + 54 

msec) and exceeded the duration of the QT interval by 60 – 200 msec.  Fusion and 

concealed fusion beats were commonly observed.  The pattern of PVB formation was 

reproducible and rate-dependent, with rate-suppression of PVB formation at shorter paced 

atrial cycle lengths and at longer atrial cycle lengths produced by vagus nerve stimulation 

(Figures 1B and 2).  Note in Figure 1B the absence of PVB formation at atrial cycle lengths < 

360 msec and > 450 msec with bigeminy, trigeminy, and quadrigeminy observed at 

intermediate cycle length (Figure 1A and 1B).  Although the intervals varied considerable for 

different individual experimental preparations, the results were consistent in vivo using 

different localized recording techniques. 

Delayed (> 70 msec) fractionated potentials or double potentials (X + SD = 148 + 40 

msec vs. 70 + 9 msec, normal myocardium) were observed in composite bipolar 

electrograms recorded from ischemically-injured (IZ) epicardium in each animal at prolonged 
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atrial cycle lengths produced by right vagus nerve stimulation (X + SD = 1296 + 396 msec, N 

= 103).  At shorter sinus or atrially-paced ventricular cycle lengths, splitting and decremental 

conduction of the terminal portion of the IZ electrograms was observed (Figure 2). The initial 

and terminal fragments of the IZ electrogram were separated by a prolonged isoelectric 

interval.  If activation of the terminal fragment of the IZ electrogram was sufficiently late 

within diastole (> 60 msec past the QT interval), a PVB was elicited (Figures 2 and 3).  

Stable patterns of ventricular beat formation (2:1, 3:1, 4:1, 5:1) (Figures 1 and 2) were 

observed associated with stable Wenckebach-like patterns of delayed activation.  Stable 

patterns of Wenckebach-like delayed IZ epicardial activation following isoelectric intervals, 

resulting in the stable patterns of ventricular ectopy formation that are shown in Figures 1 

and 2.  

A lead-II surface ECG, His-bundle electrograms, normal (NZ) and ischemically-

injured zone (IZ) composite electrograms, and X, Y, and Z orthogonal leads for a single 

experiment are shown in Figure 2.  At an atrial cycle length of 760 msec produced by right 

vagus nerve stimulation (Figure 2A and upper half of Figure 2B), moderately delayed 

activation was observed in the IZ composite and Z orthogonal electrograms, with stable 1:1 

activation and no ventricular arrhythmia formation. During sinus rhythm (425 msec) (Figure 

2C), a stable 2:1 pattern of delayed/markedly delayed activation was observed in IZ 

composite and Z orthogonal electrograms.  The prolonged delay following the 2nd beat (> 

200 msec) isoelectric interval initiated stable, repetitive 3:1 PVB formation (trigeminy).   A 

slightly more prolonged sinus cycle length of 488 msec produced a repetitive decremental 

Wenckebach-like conduction pattern of a delayed second IZ potential with successive 

isoelectric intervals of 0, 132, and 200 msec. Only the last potential following an isoelectric 

interval of 200 msec produced a PVB (Figure 2D).  
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Localized Bipolar Recordings – A bipolar electrode with two 1 mm diameter silver 

electrodes located 2 mm apart in epoxy was used to record from IZ ventricular epicardium to 

localize the site of rate-dependent PVB formation in 59 infarcted canine hearts.  A total of 

123 sites of double potential formation were recorded (range = 1 - 4 sites/heart).  Using 

atrial-pacing or vagus nerve stimulation, PVB formation was observed at 78 sites of double 

potential formation.  Arrhythmia formation was demonstrated at only a single site in 41 

hearts, at two sites in 14 hearts, and at three sites in 3 hearts.  When multiple sites of double 

potential formation were present, each site had a different and distinct cycle length 

producing Wenckebach-like delays and each site of double potential formation produced a 

ventricular beat with a slightly different ECG morphology.  Each PVB form had a left bundle 

branch block morphology and normal axis.  An example of arrhythmia formation associated 

with a double potential recorded by a closely-spaced bipolar electrode is shown in Figure 3 

(A-C).  During sinus rhythm (panel A) (355 msec sinus cycle length), stable 2:1 block is 

observed in the bipolar electrogram at a site of double potential formation (V1, V2).  The 2:1 

block became stable 1:1 conduction with vagus nerve stimulation-induced prolongation of 

the sinus cycle length (panel B) (A-A interval = 835 msec).  At an intermediate sinus cycle 

length produced by vagus nerve stimulation (panel C) (430 msec), Wenckebach-like 

conduction delays of the second potential (V2) were observed, and when sufficiently 

delayed, produced fusion PVBs.  Atrial cycle lengths > 600 msec (Figure 3B) and < 400 

msec (not shown) failed to elicit localized periodic conduction (Wenckebach-like conduction) 

or PVB formation. 

In 8 experiments, epicardial pacing from the site of double potential formation 

overlying the infarcted myocardium was performed.  Pacing from a double potential 
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recording site closely reproduced the morphology of the spontaneous beat originating from 

the same double potential site as verified by a bipolar recording(6 lead ECG) (Figure 3D). 

Signal-Averaged Recordings from Infarcted Myocardium – In 15 experiments, X, 

Y, and Z orthogonal bipolar electrograms were recorded from the lateral borders and from 

endocardium to epicardium in the center of the anterior infarct during normal sinus rhythm 

(Figure 3E).  The PVB was utilized as the template during stable ventricular arrhythmia 

formation produced by atrial pacing.  In Figure 3E, note the presence of delayed lower-

voltage activity seen in the X, Y, and Z leads during sinus rhythm and the absence of that 

electrical activity in the atrially-paced beat preceding a PVB with an intervening isoelectric 

interval of 225 msec. This period of electrical diastole was consistent with the electrical 

diastole present in both bipolar and composite IZ electrograms recorded in the same 

experiment. 

 Epicardial Mapping of IZ Activation – Epicardial mapping was initially performed 

using a unipolar electrode array using unipolar electrodes with a 4 mm interelectrode 

distance (N=126).  The delayed (2nd) potential of a double potential as well as Wenckebach-

like conduction delays of the 2nd potential during atrial pacing were observed only at a single 

unipolar recording site in each experiment.  In each experiment, variable conduction delay 

and earliest electrical activity for the PVB were observed only at a single recording site only 

4 mm away from multiple sites demonstrating 1:1 activation, implying very slow conduction 

and block within a 4 mm or smaller distance.  Higher density unipolar electrode resolution 

epicardial mapping experiments were then performed. 

 An 11 x 11 mm electrode array (unipolar electrodes embedded 1 mm apart in epoxy) 

was used to record from IZ epicardium and make activation maps during sinus rhythm, 

during sinus bradycardia produced by vagus nerve stimulation, and during ventricular 
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arrhythmia formation (N=13). Delayed activation (X + SD = 128 + 14 msec) was observed at 

a heart rate of 120 + 15 bpm during vagus nerve stimulation (N = 4) or sinus rhythm (N = 9). 

 In one example (Figure 4), a double potential was observed during sinus rhythm 

(upper left hand panel) (134 bpm).  The latest site of epicardial activation was 124 msec.  

Slowing the sinus heart rate with vagus nerve stimulation (upper right hand panel) (80 bpm) 

reduces the maximal epicardial activation delay of the double potential to 102 msec.  At a 

paced atrial heart rate of 156 bpm, ventricular arrhythmia formation (trigeminy) was 

observed.  A double potential was observed on beat one, with local bipolar electrode and 

epicardial activation maps (maximal delay of 130 msec, respectively, not shown) very similar 

to those shown for sinus rhythm.  The second paced beat demonstrated a truncated (single) 

electrogram and activation map (Figure 6, lower left hand panel), with a prolonged isoelectric 

delay (128 to 224 msec) preceding the second potential of the local bipolar electrogram 

(Figure 4, lower right hand panel), and initiating a PVB. The isoelectric interval was 96 msec 

with the earliest activation of the PVB occurring at a site 2 mm away from the site of latest 

activation for the preceding sinus beat, across an apparent line of conduction block for the 

sinus beat and the premature ventricular beat (Figure 4, lower right hand panel). 

 In a second experiment presented in Figure 5, ventricular arrhythmia was observed 

during sinus rhythm (146 bpm) in a pattern of ventricular trigeminy associated with splitting 

of a double potential recorded from a bipolar electrode on the epicardial surface overlying 

the anterior infarct.  During the first beat of sinus origin (Figure 5, upper left hand panel), a 

maximal delay of 128 msec was observed.  During the second beat of sinus origin (the sinus 

beat immediately preceding the PVB), eight unipolar epicardial electrode recording sites 

demonstrated no electrical activity during the pre-PVB sinus beat (Figure 5, upper right hand 

panel).  Subsequent PVB formation originated from a site that was not excited during the 
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preceding sinus beat and was 1.0 mm distant from and 190 msec later than the last site 

activated during the preceding sinus beat.  Despite the prolonged delay, conduction from the 

site of earliest activation was initially very slow (< 50 mm/sec) until leaving the zone of 

previously inexcitable epicardium (Figure 5, lower left hand panel). 

 In each of 10 examples recorded from eight canine hearts, earliest PVB activation 

was recorded immediately distal to and adjacent to an arc of apparent conduction block.  

The site of earliest PVB activation was 1.4 mm (N = 2), 2.0 mm (N = 2), 2.2 mm (N = 1), 2.8 

mm (N = 3), or 4 mm (N = 2) across an arc of apparent conduction block for the preceding 

beat (Table 1).  The site of earliest PVB activation was observed distal to the arc of 

conduction block, following a failure for delayed activation at the distal site by conduction 

around an arc of block, and was suggestive of very slow conduction “through” the “arc of 

conduction block” during a time period lasting (108 + 65 msec)(2.4 + 1.2 mm 

distance)(Figure 6). 

 Relationship to Sustained Ventricular Tachycardia - Pacing-induced sustained 

ventricular tachycardias (173 + 21 msec cycle length) were observed in only 5 of 48 animals 

tested using right ventricular pacing.  IZ composite electrograms in canine hearts 

demonstrating sustained monomorphic ventricular tachycardia demonstrated less activation 

delay on the epicardial surface during sinus rhythm (98 + 18 msec)(N = 5) than animals 

demonstrating rate-dependent PVB formation during sinus rhythm or atrial pacing (133 + 36 

msec) (N = 43) (p < 0.01).  Pacing-induced sustained ventricular tachycardia did not 

originate at sites of double potential formation observed during sinus rhythm that also 

demonstrated rate-dependent truncation and rate-dependent PVB formation with atrial 

pacing, but developed at other IZ epicardial sites demonstrating prolonged delays, localized 

block, and reentry only during the introduction of ventricular pacing at rates exceeding 300 
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bpm.
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Discussion 

   The present experiments describe constant-coupled, late-coupled ventricular PVBs 

observed during subacute myocardial infarction (4-5 days).  The PVBs have a normal axis 

and a left bundle branch block ECG morphology consistent with an origin in anterior LV 

epicardium and early access to the His-Purkinje system.  The single PVBs are associated 

with a splitting and decremental conduction of the terminal fragment of a fractionated or 

double potential IZ electrogram, following a prolonged 20-230 msec isoelectric interval.  

When delayed sufficiently into late-diastole, the terminal portion of the split electrogram 

initiates a late-coupled PVB.  Unipolar electrode mapping demonstrated earliest PVB 

activation across a line of apparent activation block. The apparent line of conduction block 

provides the substrate for slow conduction and delayed activation associated with formation 

of a double potential formation or a fractionated potential (Figure 6).  The delayed activation 

across a line of apparent conduction block requires retrograde electronic activation of 

previously excited epicardium proximal to the arc.  The extremely delayed retrograde 

activation is permitted by the very slow retrograde conduction through the arc of apparent 

antegrade conduction block, to produce the prolonged delay necessary and the prolonged 

isoelectric interval characteristic for late-coupled PVB formation.  Although the proposed 

mechanism is fundamentally reentrant in nature, the conduction velocity within crucial 

antegrade and retrograde segments of the “circuit” is sufficiently slow so that PVB activation 

may be interrupted by the next sinus beat, producing PVBs that are fusion beats. 

The observation of rate-dependent, late-coupled PVBs in the infarcted canine heart 

has been described previously. Using composite electrograms recorded 3-7 days following 

myocardial infarction in the dog, El-Sherif et al7 recorded examples of concealed 

extrasystolic grouping giving rise to ventricular extrasystoles with either fixed or variable 
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coupling intervals.  Many of the properties of arrhythmia formation demonstrated in the 

present experiments (1) resumption of 1:1 IZ delayed activation with slowing of the heart rate 

with vagus nerve stimulation, (2) concealed and manifest PVB formation, (3) rate-dependent 

progression of PVB formation from bigeminy to trigeminy to quadrigeminy with metastable 

PVB formation at intermediate heart rates, (4) stable Wenckebach-like patterns of IZ 

conduction delay associated with stable patterns of PVB formation, and (5) suppression of 

PVB formation at fast and slow ventricular heart rates were presented in limited examples by 

El-Sherif and colleagues using composite electrode recordings from ischemically-injured 

epicardium.  El Sherif and colleagues7 proposed that the mechanism for the observation of 

manifest and concealed extrasystolic grouping was localized reentry with a consistent exit 

site for the reentrant pathway.  Different anatomic reentrant pathways (despite a consistent 

inability to record mid-pathway electrical activity in many examples) (concealed reentry) 

were hypothesized to explain the different duration isoelectric periods observed with 

Wenckebach-like conduction delays8. 

Electrophysiologic Basis for the Isoelectric Period – The basis for the very slow 

conduction proposed but not actually recorded during the isoelectric interval is uncertain.  

The mean conduction velocities and conduction delays observed with unipolar electrode 

mapping (0.025 + 0.010 M/sec, and 109 + 70 msec) have been in the range reported by 

Suenson9 for ephaptic conduction between ferret ventricular papillary muscles studied in 

vitro, decremental conduction through the compact AV node9, and reflection identified in 

isolated papillary muscles studied in vitro using a 2 mm wide poorly excitable gap10.   The 

mean conduction velocities are slower than the mean epicardial conduction velocities 

measured longitudinally (0.42 + 0.11 M/sec) and transverse (0.25 + 0.035 M/sec) to 

epicardial muscle orientation and calculated for IZ epicardium calculated during sustained 
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ventricular tachycardia11-13.  It must however be noted that the very slow conduction 

velocities < 0.12 mm/msec measured in previous in vivo studies11-13, and associated with 

arcs of conduction block were pre-emptively determined to represent conduction block by 

the investigators and were treated as such for the purpose of arrhythmia pathway 

mapping12.13.  It is possible that very slow conduction continued through the arc of block, with 

early activation distal to the block pre-empted by reentrant activity arriving circuitously 

around the arc of block before very slow conduction arrived through the “arc of conduction 

block”. 

 Prominent IZ epicardial activation delays and localized IZ conduction block at atrial 

heart rates < 150 bpm were associated with rate-dependent PVB formation, with arrhythmia 

consisting of a single PVB, never a ventricular couplet or ventricular tachycardia.  Rapid, 

sustained ventricular tachycardia has been observed commonly in the same experimental 

canine model, 3 – 7 days post myocardial infarction1,2,7,11-13, but is associated with sites 

demonstrating less prominent maximal IZ conduction delays during sinus rhythm and atrial 

pacing14,15 .  Activation delays and conduction block sufficient to elicit sustained ventricular 

tachycardia at other epicardial recording sites is only observed during ventricular pacing or 

ventricular premature beats introduced at more rapid heart rates (330 – 420 bpm), producing 

a reentrant pathway demonstrating slow (<0.1 M/sec) but not extremely slow conduction 

velocities (<0.025 M/sec).  For single, late coupled PVBs, conduction block and localized 

reentry were formed at different anatomic sites within IZ epicardium, with extremely slow 

conduction evidenced by an isoelectric interval, supporting only a single “reentrant 

ventricular beat”14,15. 

 Size of the Arrhythmia Circuit – Overall, the physical size of the isoelectric portion 

of the paths giving rise to late-coupled, rate-dependent PVB formation remains small, 2.4 + 
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1.2 mm in the antegrade direction.  The small size of the tissue pathway involved in 

arrhythmia generation and the prolonged isoelectric period present require an extremely 

slow conduction velocity.  Such a slow conduction velocity would be consistent with 

decremental conduction within the anterior atrial transitional tissue approach to the AV node 

and the compact atrioventricular node9,16, activation transverse to myocardial fiber 

orientation during zig-zag patterns of activation through surviving strands of myocardium 

separated by fibrosis17, conduction across a poorly excitable or inexcitable gap within in vitro 

myocardial tissue10 and Purkinje fibers18-22, and ephaptic conduction between closely 

approximated ferret papillary muscles contained within an inexcitable gap8.  In all instances 

when there was a 2 mm or greater separation of the latest site of activation for the sinus 

heart beat and the earliest site of PVB activation, an interposed unipolar electrode recording 

site failed to demonstrate local activation during the isoelectric interval. 

 Delay in in vitro models of reflection require either a sucrose18-20 or a hyperkalemic10, 

18-20, 23,24 gap. The sucrose gap (with added calcium chloride to prevent uncoupling) provides 

a pure electrotonic gap while hyperkalemia provides depolarization, producing both 

electrotonus and L-type calcium mediated “slow calcium” current10, 18-20 as mechanisms for 

slow conduction at velocities less than 0.050 M/sec.  The exact basis for the slow conduction 

and large conduction delays over a 1-4 mm gap of epicardium in the present studies remains 

to be determined. 

 Variable Patterns of Conduction Block – The late-coupled PVBs demonstrated a 

characteristic pattern of stability, going from normal rhythm to bigeminy to trigeminy to 

quadrigeminy, with an increase in heart rate (Figures 1 and 2).  At heart rates intermediate to 

those producing a stable pattern of PVB formation were heart rates producing metastable 

patterns of arrhythmia formation (Figure 1).  This arrhythmia pattern is very characteristic for 
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reflection, as produced by the interposition of an inexcitable gap in a normal papillary 

muscle10 or Purkinje fiber18-22.  This ex vivo arrhythmia model very closely reproduces many 

of the salient properties of late-coupled PVB formation in the infarcted canine heart including 

the characteristic pattern of rate-dependent arrhythmia formation, close apposition (1-2 mm) 

of relatively normal action potential generation/conduction, and a short segment of 

inexcitable tissue.  Although electrotonic conduction during the isoelectric interval can be 

provided by an inexcitable gap and may be responsible for much of the isoelectric interval, 

depressed sodium channels23 within the transition zones between normal and inexcitable 

tissues (or in the case of the L-type channels within the poorly excitable central region19, 24) 

may provide the basis for some of the delay as well as the Wenckebach-like periodicity 

needed for arrhythmia formation. Note the fractionated electrograms subsequent to the end 

of surface ECG activation for the sinus beat preceding the PVB as well as preceding surface 

ECG activation for the PVB, at both ends of the isoelectric period. 

Clinical Implications – Concealed reentry is a term developed by Langendorf and 

colleagues25, 26 utilizing deductive reasoning and clinical ECG records.  The clinical 

investigators suggested that higher orders of block on the surface ECG may reflect lower 

orders of arrhythmia formation at localized sites in the heart.  These observations and the 

concept of concealed reentry as an arrhythmia mechanisms was further supported by the 

work of other investigators27.  The value of the hypothesis is not diminished when type II 

reflection is considered as a reentrant mechanism and is applicable for periodic arrhythmia 

formation described by El-Sherif et al7 as well as the present experiments.  Both studies 

suggest a reentrant mechanism complete with a prolonged isoelectric period representing a 

considerable portion of the PVB coupling interval. The close approximation of the last site of 

sinus beat activation with the earliest site of PVB activation, despite a prolonged coupling 
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interval would be consistent with Type II reflection as an arrhythmia mechanism.  The 

prolonged isoelectric interval represents that significant chronological component of the 

coupling interval consistent with electrotonus and very slow impulse transmission. 

The present rate-dependent, late-coupled single PVBs with a normal axis and left 

bundle branch block morphology described in the present studies may represent an 

interesting, yet potentially benign ventricular arrhythmia. The very slow conduction observed 

in the present studies is incapable of supporting the rapid sustained ventricular arrhythmias 

characteristic of risk for sudden coronary death.  Rapid sustained arrhythmia requires a 

different anatomic and electrophysiologic substrate.  The present data, however, provides 

strong evidence for type II reflection/reentry as a mechanism capable of producing rate-

dependent, periodic arrhythmia in the setting of healing myocardial infarction, days 4-5 

following myocardial infarction in the dog. 
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Table 1 – Unipolar Epicardial Mapping of Double Potential Formation and Rate-Dependent 

Arrhythmia Formation 

 

 

 

Distance from Site of Latest 

Activation (mm) 

Mean Conduction Velocity Into 

PVB Origin (mm/msec) 

Mean Conduction Velocity 

Out of PVB Origin (mm/sec) 

1.0 mm (N=2) 0.050, 0.014 0.025, 0.017 

1.4 mm (N=2) 0.050, 0.026 0.045, 0.045 

2.0 mm (N=1) 0.020 0.050 

2.8 mm (N=3) 0.070, 0.025, 0.017 0.090, 0.050, 0.035 

4.0 mm (N=2) 0.050, 0.023 0.050, 0.045 

   

X + SD = 2.3 + 1.1 0.025 + 0.010 0.045 + 0.020 
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Figure 1  
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Figure 2 
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 Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 

 

Figure 1 – Patterns of Rate-dependent Ventricular Ectopy Formation and Periodic PVB 

Formation as a Function of Ventricular Cycle Length – In Figure 1A, individual patterns 

of 2:1, 3:1, and 4:1 PVB formation are shown in a lead II ECG during sinus rhythm observed 

at spontaneous cycle lengths of 722, 600, and 570 msec, respectively, during a single 
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experiment.  The PVB is late-coupled (550 msec) at a sinus cycle length of 570 msec, 

producing a fusion beat with the subsequent sinus heartbeat. In Figure 1B, PVB formation as 

a percentage of the total ventricular beats is shown as a function of the ventricular cycle 

length for a single representative experiment.  Stable patterns of 2:1, 3:1, and 4:1 block as 

shown above in panel A were observed with increases in the ventricular rate during atrial 

pacing. 

Figure 2 – Periodic PVB Formation as a Function of Ventricular Cycle Length – Figure 

2 (panels A-D shows electrophysiologic recordings from the anesthetized dog, 4 days post-

coronary artery occlusion during vagus nerve stimulation (panel A), right atrial pacing at a 

425 msec cycle length (panel C), and sinus rhythm (panel D).  A lead II ECG (L-2), His 

bundle electrogram (HB(eg)), normal zone (NZ) and ischemically-injured zone (IZ) 

composite electrograms, X, Y, and Z bipolar orthogonal electrograms from the borders of the 

infarct zone, and an endocardial bipolar electrogram from the IZ (P)(eg) are shown during 

vagus nerve stimulation (atrial cycle length = 760 msec)(panel A).  No periodic conduction of 

delayed IZ activity and no ventricular ectopic beats are present.  An enlarged view of the IZ 

composite electrogram and X orthogonal lead bipolar electrogram (dashed box) are shown 

in the upper part of panel B (vagus nerve stimulation). In panel C, at a paced right atrial 

cycle length of 425 msec, the late portions of the portions of the IZ composite and X 

orthogonal electrograms fractionate and delay (marked by asterisks) producing 2:1 periodic 

and delayed activation with late-coupled PVB formation (3:1). An enlargement of the IZ 

composite and X bipolar orthogonal electrogram recordings (dashed box) is shown in the 

bottom half of panel B. The same potential during sinus rhythm (488 msec cycle length) 

(panel D) demonstrate a 3:2 pattern of progressive delays (best observed in X orthogonal 

electrode recording) producing 3:1 pattern of PVB formation.    The prolonged, fractionated, 
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and delayed electrical activity best seen in the X orthogonal electrogram is delayed 

moderately, failing to exceed the T wave on the second beat and failing to initiate a PVB 

(panel D).  The delay is greater for the third beat, exceeding the QT segment, and initiating a 

late coupled PVB (panel D). 

Figure 3 – Bipolar Electrode Recordings From Ischemically-Injured (IZ) Epicardium, 4 

Days Post Coronary Artery Occlusion (panels A-C), Pace Mapping (panel D), and 

Signal Averaging of Local Bipolar Orthogonal Leads Recorded From the Infarct 

Borders (panel E) -– Lead I, II, and III ECGs (L-1, L-II, and L-III), His-bundle electrogram 

(HB(eg)), and bipolar electrode recordings of IZ epicardium from a hand-held probe (BP 

Probe) are shown for sinus rhythm (panel A)(sinus cycle length = 355 msec), during vagus 

nerve stimulation (panel B)(sinus cycle length = 835 msec), and during vagus nerve 

stimulation (panel C)(sinus cycle length = 430 msec).  Stable 2:1 conduction block of the 2nd 

potential of the double potential is observed in panel A, without arrhythmia formation.  1:1 

Conduction of the 2nd potential of the double potential in panel B at a more prolonged (835 

msec) cycle length also fails to produce PVB formation.  Periodic delay of the 2nd potential of 

the double potentials, beyond the T wave of the surface ECG, produces PVB formation as 

fusion beats (panel C) (PVBs). In Panel D is shown a six-lead ECG of a spontaneous PVB 

reproduced in a repetitive manner.  A bipolar electrode was used to record a double potential 

from IZ epicardium, with splitting of the double potential giving rise to the PVB (left hand 

panel).  Also shown are the same 6 ECG leads recorded during bipolar pacing from the site 

of double potential formation on the epicardial surface overlying myocardial infarction, 

reproducing the same ECG pattern (right hand panel) as seen with spontaneous PVBs.  

Panel E shows X, Y, and Z leads from orthogonal lead recorded from the borders of the 

anterior infarct.  During sinus rhythm (left hand side of panel E), a signal-averaged beat from 
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the IZ zone is shown for X, Y, and Z orthogonal electrodes showing significant low-voltage 

delayed activation most evident in the Z electrogram.  In the right-hand side of panel E, a 

signal-averaged atrially-paced beat and subsequent constant-coupled PVB are shown, with 

a 225 msec duration isoelectric period between the atrially-paced beat and the PVB. The 

recording was the average of 200 PVBs.  

Figure 4 – Activation Maps for a 12 x 12 mm Area of Ventricular Epicardium Overlying 

Ischemically-Injured Ventricular Epicardium, 4 Days Post Coronary Artery Occlusion - 

During Sinus Rhythm, During Vagus Nerve Stimulation, During the Beat Preceding the 

Premature Ventricular Beat (Pre PVB), and During the Premature Ventricular Beat 

(PVB) – Isochronal unipolar activation maps for sinus rhythm (Sinus)(large upper left-hand 

panel) and during vagus nerve stimulation (Vagus Nerve Stimulation)(large upper right-hand 

panel) are shown for an 11 x11 array having a 1 mm electrode separation.  Bipolar electrode 

recordings taken from IZ epicardium at the site of arrhythmia formation are also shown 

(small panels).  During sinus rhythm a maximal delay of 124 msec was recorded and during 

vagus nerve stimulation a maximal delay of 102 msec was recorded.  A double potential was 

present in both closely-spaced bipolar electrode recordings.  Isochronal unipolar activation 

maps are also shown during atrial pacing (385 msec cycle length) that produced ventricular 

trigeminy (lower panels).  The ventricular beat of atrial origin immediately preceding the PVB 

is shown in the large lower left hand panel with the latest site of activation being 126 msec.  

The earliest site of activation for the PVB occurred across an apparent line of conduction 

block (closely spaced isochrones), only 2 mm from the site of latest activation for the 

previous beat, but separated by an isoelectric interval lasting 94 msec (large lower right 

hand panel). 
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Figure 5 – Activation Maps for a 12 x 12 mm Area of Ventricular Epicardium Overlying 

Ischemically-Injured Ventricular Epicardium, 4 Days Post Coronary Artery Occlusion 

for Sinus Rhythm, the Beat Preceding the Premature Ventricular Beat (Pre-PVB), and 

the Premature Ventricular Beat – Unipolar isochronal activation maps are shown during 

sinus rhythm for beat one (Sinus)(upper left hand panel) and beat 2 immediately preceding 

the PVB (pre-PVB)(upper right hand panel) of ventricular trigeminy, and during the PVB 

(lower left panel).  The latest site of ventricular activation (128 msec) (upper left-hand panel) 

and seven other unipolar recording sites were not activated during beat 2 (upper right-hand 

panel) until following an isoelectric period lasting 190 msec. A distance of 1 mm separates 

the sites of latest activity of the pre-initiating beat and the earliest recorded electrical activity 

of the PVB. The right- hand panel shows a lead II ECG (L-II), His bundle electrogram 

(HB(eg)), and bipolar electrogram from IZ epicardium (BP(eg)) during ventricular trigeminy 

recorded previously during the experiment showing splitting and delayed conduction of the 

bipolar electrogram associated with PVB formation. 

Figure 6 – Antegrade Conduction Through Apparent Arc of Conduction Block as an 

Arrhythmia Mechanism – An approaching wave front produces an arc of conduction block 

and forces the wave front to conduct around an arc of conduction block.  For the 10 

examples studied using a dense 11 x 11 unipolar electrode array), conduction around the 

arc of block is so delayed or is completely blocked (2) that very slow conduction through the 

arc of apparent conduction block, taking 108 + 65 msec to travel 2.4 + 1.2 mm at 0.038 + 

0.020 M/sec, arrives before any conduction around the arc of apparent conduction block.  

Initial conduction for the first 1-2 mm from the earliest site of PVB activation (4) is also very 

slow (0.045 + 0.022 M/sec).  


