45 research outputs found

    Review of machine learning methods in soft robotics

    Get PDF
    Soft robots have been extensively researched due to their flexible, deformable, and adaptive characteristics. However, compared to rigid robots, soft robots have issues in modeling, calibration, and control in that the innate characteristics of the soft materials can cause complex behaviors due to non-linearity and hysteresis. To overcome these limitations, recent studies have applied various approaches based on machine learning. This paper presents existing machine learning techniques in the soft robotic fields and categorizes the implementation of machine learning approaches in different soft robotic applications, which include soft sensors, soft actuators, and applications such as soft wearable robots. An analysis of the trends of different machine learning approaches with respect to different types of soft robot applications is presented; in addition to the current limitations in the research field, followed by a summary of the existing machine learning methods for soft robots

    Nature-Inspired Self-Powered Sensors and Energy Harvesters

    Get PDF
    Chapter 3 presents a comprehensive review of the various biomimetic self-powered and low-powered MEMS pressure and flow sensors that take inspiration from the biological flow sensors found in the marine world. The sensing performance of the biological flow sensors in marine animals has inspired engineers and scientists to develop efficient state-of-the-art sensors for a variety of real-life applications. In an attempt to achieve high-performance artificial flow sensors, researchers have mimicked the morphology, sensing principle, materials, and functionality of the biological sensors. Inspiration was derived from the survival hydrodynamics featured by various marine animals to develop sensors for sensing tasks in underwater vehicles. The mechanoreceptors of crocodiles have inspired the development of slowly and rapidly adapting MEMS sensory domes for passive underwater sensing. Likewise, the lateral line sensing system in fishes which is capable of generating a three-dimensional map of the surroundings was mimicked to achieve artificial hydrodynamic vision on underwater vehicles. Harbor seals are known to achieve high sensitivity in sensing flows within the wake street of a swimming fish due to the undulatory geometry of the whiskers. Whisker inspired structures were embedded into MEMS sensing membranes to understand their vortex shedding behavior. At the outset, this work comprehensively reviews the sensing mechanisms observed in fishes, crocodiles, and harbor seals. In addition, this chapter presents an in-depth commentary on the recent developments in this area where different researchers have taken inspiration from these aforementioned underwater creatures and developed some of the most efficient artificial sensing systems

    Wet Bonding of Soft Elastomeric Microchannels

    Get PDF
    In microfluidics small amounts of fluids are circulating in channels with maximum dimensions in hundreds of micrometers. Poly(dimethylsiloxane) (PDMS) elastomers and especially commercial Sylgard 184 (Dow Corning) is widely used for fabrication of microfluidic devices due to its advantageous chemical and mechanical properties. As stretchability and softness of Sylgard 184 are limited, softer elastomers from Dragon Skin and Ecoflex product families (Smooth-On) are commonly used in applications that demand more deformability from the material. Fabrication of soft microchannels from these silicone elastomers is conducted with cast molding and layer-by-layer stacking. To create closed channels, the open channels are sealed to a flat elastomer substrate. Sylgard 184 can be sealed with oxygen plasma bonding where the increased number of functional groups form the bond between oxygen plasma treated surfaces. This method is not applicable for most softer elastomers due to silicone oils that are diffusing to the surface preventing the bonding. As an alternative, a thin layer of uncured elastomer can be used as adhesive between the layers. This bonding technique is relatively unreliable as the uncured elastomer easily flows to the open channels blocking the channel. The capillary action can be reduced by decreasing the thickness of the layer and partially curing it before bonding. Softness of the elastomer also effects on the dimensions of producible microchannels. The ceiling of the channel can collapse, or the channel walls can pair before bonding if the dimensions are not suitable for the elastomer. In this work, the soft microchannels are fabricated from commercial elastomers Dragon Skin 30, Ecoflex 00-50 and Ecoflex 00-20 by bonding the elastomer substrates with the adhesive layer to enhance reliability and reproducibility of the fabrication technique. The adhesive layer is spread evenly with a spin coater. Thus, spin speed and spin time together with viscosity of the elastomer are determining the thickness of the layer. The layer is partially cured in an oven at elevated temperature. Different spin speeds and pre-curing times are tested to find suitable parameters for each elastomer for the reliable fabrication process. Different channel widths and separations are used to discover the range of producible microchannel dimensions for these soft elastomers. The study revealed that the capillary action can be decreased but not totally prevented. Based on the results, 2000 RPM spin speed and 20-40 seconds pre-curing in oven at 60°C are proposed for the reliable and reproducible fabrication process with Ecoflex 00-50 and Ecoflex 00-20. The same spin speed is recommended for Dragon Skin 30, but pre-curing the layer is not required. Microchannels with 50 μm width are producible with Dragon Skin 30 as well as 50 µm thick channel walls. That narrow and dense channels were unfeasible with softer Ecoflex 00-50 and Ecofelx 00-20. In addition, a soft pneumatic strain sensor was fabricated from Ecoflex 00-50 to show a practical example of the studied bonding technique. The sensor changes its pneumatic resistance as response to deformation of the embedded microchannel while external force is applied. The fabricated soft strain sensor can tolerate at least 300% strain, has negligible hysteresis, and can be used to measure large strains with gauge factor close to 1

    Wearable and Stretchable Strain Sensors: Materials, Sensing Mechanisms, and Applications

    Get PDF
    Recent advances in the design and implementation of wearable resistive, capacitive, and optical strain sensors are summarized herein. Wearable and stretchable strain sensors have received extensive research interest due to their applications in personalized healthcare, human motion detection, human–machine interfaces, soft robotics, and beyond. The disconnection of overlapped nanomaterials, reversible opening/closing of microcracks in sensing films, and alteration of the tunneling resistance have been successfully adopted to develop high-performance resistive-type sensors. On the other hand, the sensing behavior of capacitive-type and optical strain sensors is largely governed by their geometrical changes under stretching/releasing cycles. The sensor design parameters, including stretchability, sensitivity, linearity, hysteresis, and dynamic durability, are comprehensively discussed. Finally, the promising applications of wearable strain sensors are highlighted in detail. Although considerable progress has been made so far, wearable strain sensors are still in their prototype stage, and several challenges in the manufacturing of integrated and multifunctional strain sensors should be yet tackled

    Ophthalmic sensors and drug delivery

    Get PDF
    Advances in multifunctional materials and technologies have allowed contact lenses to serve as wearable devices for continuous monitoring of physiological parameters and delivering drugs for ocular diseases. Since the tear fluids comprise a library of biomarkers, direct measurement of different parameters such as concentration of glucose, urea, proteins, nitrite, and chloride ions, intraocular pressure (IOP), corneal temperature, and pH can be carried out non-invasively using contact lens sensors. Microfluidic contact lens sensor based colorimetric sensing and liquid control mechanisms enable the wearers to perform self-examinations at home using smartphones. Furthermore, drug-laden contact lenses have emerged as delivery platforms using a low dosage of drugs with extended residence time and increased ocular bioavailability. This review provides an overview of contact lenses for ocular diagnostics and drug delivery applications. The designs, working principles, and sensing mechanisms of sensors and drug delivery systems are reviewed. The potential applications of contact lenses in point-of-care diagnostics and personalized medicine, along with the significance of integrating multiplexed sensing units together with drug delivery systems, have also been discussed

    New generation of interactive platforms based on novel printed smart materials

    Get PDF
    Programa doutoral em Engenharia Eletrónica e de Computadores (área de Instrumentação e Microssistemas Eletrónicos)The last decade was marked by the computer-paradigm changing with other digital devices suddenly becoming available to the general public, such as tablets and smartphones. A shift in perspective from computer to materials as the centerpiece of digital interaction is leading to a diversification of interaction contexts, objects and applications, recurring to intuitive commands and dynamic content that can proportionate more interesting and satisfying experiences. In parallel, polymer-based sensors and actuators, and their integration in different substrates or devices is an area of increasing scientific and technological interest, which current state of the art starts to permit the use of smart sensors and actuators embodied within the objects seamlessly. Electronics is no longer a rigid board with plenty of chips. New technological advances and perspectives now turned into printed electronics in polymers, textiles or paper. We are assisting to the actual scaling down of computational power into everyday use objects, a fusion of the computer with the material. Interactivity is being transposed to objects erstwhile inanimate. In this work, strain and deformation sensors and actuators were developed recurring to functional polymer composites with metallic and carbonaceous nanoparticles (NPs) inks, leading to capacitive, piezoresistive and piezoelectric effects, envisioning the creation of tangible user interfaces (TUIs). Based on smart polymer substrates such as polyvinylidene fluoride (PVDF) or polyethylene terephthalate (PET), among others, prototypes were prepared using piezoelectric and dielectric technologies. Piezoresistive prototypes were prepared with resistive inks and restive functional polymers. Materials were printed by screen printing, inkjet printing and doctor blade coating. Finally, a case study of the integration of the different materials and technologies developed is presented in a book-form factor.A última década foi marcada por uma alteração do paradigma de computador pelo súbito aparecimento dos tablets e smartphones para o público geral. A alteração de perspetiva do computador para os materiais como parte central de interação digital levou a uma diversificação dos contextos de interação, objetos e aplicações, recorrendo a comandos intuitivos e conteúdos dinâmicos capazes de tornarem a experiência mais interessante e satisfatória. Em simultâneo, sensores e atuadores de base polimérica, e a sua integração em diferentes substratos ou dispositivos é uma área de crescente interesse científico e tecnológico, e o atual estado da arte começa a permitir o uso de sensores e atuadores inteligentes perfeitamente integrados nos objetos. Eletrónica já não é sinónimo de placas rígidas cheias de componentes. Novas perspetivas e avanços tecnológicos transformaram-se em eletrónica impressa em polímeros, têxteis ou papel. Neste momento estamos a assistir à redução da computação a objetos do dia a dia, uma fusão do computador com a matéria. A interatividade está a ser transposta para objetos outrora inanimados. Neste trabalho foram desenvolvidos atuadores e sensores e de pressão e de deformação com recurso a compostos poliméricos funcionais com tintas com nanopartículas (NPs) metálicas ou de base carbónica, recorrendo aos efeitos capacitivo, piezoresistivo e piezoelétrico, com vista à criação de interfaces de usuário tangíveis (TUIs). Usando substratos poliméricos inteligentes tais como fluoreto de polivinilideno (PVDF) ou politereftalato de etileno (PET), entre outos, foi possível a preparação de protótipos de tecnologia piezoelétrica ou dielétrica. Os protótipos de tecnologia piezoresistiva foram feitos com tintas resistivas e polímeros funcionais resistivos. Os materiais foram impressos por serigrafia, jato de tinta, impressão por aerossol e revestimento de lâmina doctor blade. Para terminar, é apresentado um caso de estudo da integração dos diferentes materiais e tecnologias desenvolvidos sob o formato de um livro.This project was supported by FCT – Fundação para a Ciência e a Tecnologia, within the doctorate grant with reference SFRH/BD/110622/2015, by POCH – Programa Operacional Capital Humano, and by EU – European Union

    Textile materials

    Get PDF
    In this specialised publication, the reader will find research results and real engineering developments in the field of modern technical textiles. Modern technical textile materials, ranging from ordinary reinforcing fabrics in the construction and production of modern composite materials to specialised textile materials in the composition of electronics, sensors and other intelligent devices, play an important role in many areas of human technical activity. The use of specialized textiles, for example, in medicine makes it possible to achieve important results in diagnostics, prosthetics, surgical practice and the practice of using specialized fabrics at the health recovery stage. The use of reinforcing fabrics in construction can significantly improve the mechanical properties of concrete and various plaster mixtures, which increases the reliability and durability of various structures and buildings in general. In mechanical engineering, the use of composite materials reinforced with special textiles can simultaneously reduce weight and improve the mechanical properties of machine parts. Fabric- reinforced composites occupy a significant place in the automotive industry, aerospace engineering, and shipbuilding. Here, the mechanical reliability and thermal resistance of the body material of the product, along with its low weight, are very relevant. The presented edition will be useful and interesting for engineers and researchers whose activities are related to the design, production and application of various technical textile materials

    Modular soft pneumatic actuator system design for compliance matching

    Get PDF
    The future of robotics is personal. Never before has technology been as pervasive as it is today, with advanced mobile electronics hardware and multi-level network connectivity pushing âsmartâ devices deeper into our daily lives through home automation systems, virtual assistants, and wearable activity monitoring. As the suite of personal technology around us continues to grow in this way, augmenting and offloading the burden of routine activities of daily living, the notion that this trend will extend to robotics seems inevitable. Transitioning robots from their current principal domain of industrial factory settings to domestic, workplace, or public environments is not simply a matter of relocation or reprogramming, however. The key differences between âtraditionalâ types of robots and those which would best serve personal, proximal, human interactive applications demand a new approach to their design. Chief among these are requirements for safety, adaptability, reliability, reconfigurability, and to a more practical extent, usability. These properties frame the context and objectives of my thesis work, which seeks to provide solutions and answers to not only how these features might be achieved in personal robotic systems, but as well what benefits they can afford. I approach the investigation of these questions from a perspective of compliance matching of hardware systems to their applications, by providing methods to achieve mechanical attributes complimentary to their environment and end-use. These features are fundamental to the burgeoning field of Soft Robotics, wherein flexible, compliant materials are used as the basis for the structure, actuation, sensing, and control of complete robotic systems. Combined with pressurized air as a power source, soft pneumatic actuator (SPA) based systems offers new and novel methods of exploiting the intrinsic compliance of soft material components in robotic systems. While this strategy seems to answer many of the needs for human-safe robotic applications, it also brings new questions and challenges: What are the needs and applications personal robots may best serve? Are soft pneumatic actuators capable of these tasks, or âusefulâ work output and performance? How can SPA based systems be applied to provide complex functionality needed for operation in diverse, real-world environments? What are the theoretical and practical challenges in implementing scalable, multiple degrees of freedom systems, and how can they be overcome? I present solutions to these problems in my thesis work, elucidated through scientific design, testing and evaluation of robotic prototypes which leverage and demonstrate three key features: 1) Intrinsic compliance: provided by passive elastic and flexible component material properties, 2) Extrinsic compliance: rendered through high number of independent, controllable degrees of freedom, and 3) Complementary design: exhibited by modular, plug and play architectures which combine both attributes to achieve compliant systems. Through these core projects and others listed below I have been engaged in soft robotic technology, its application, and solutions to the challenges which are critical to providing a path forward within the soft robotics field, as well as for the future of personal robotics as a whole toward creating a better society
    corecore