60,251 research outputs found

    AUTOMATIC 3D LANE MARKING RECONSTRUCTION USING MULTI-VIEW AERIAL IMAGERY

    Get PDF
    The 3D information of road infrastructures are gaining importance with the development of autonomous driving. The exact absolute position and height of lane markings, for example, support lane-accurate localization. Several approaches have been proposed for the 3D reconstruction of line features from multi-view airborne optical imagery. However, standard appearance-based matching approaches for 3D reconstruction are hardly applicable on lane markings due to the similar color profile of all lane markings and the lack of textures in their neighboring areas. We present a workflow for 3D lane markings reconstruction without explicit feature matching process using multi-view aerial imagery. The aim is to optimize the best 3D line location by minimizing the distance from its back projection to the detected 2D line in all the covering images. Firstly, the lane markings are automatically extracted from aerial images using standard line detection algorithms. By projecting these extracted lines onto the Semi-Global Matching (SGM) generated Digital Surface Model (DSM), the approximate 3D line segments are generated. Starting from these approximations, the 3D lines are iteratively refined based on the detected 2D lines in the original images and the viewing geometry. The proposed approach relies on precise detection of 2D lines in image space, a pre-knowledge of the approximate 3D line segments, and it heavily relies on image orientations. Nevertheless, it avoids the problem of non-textured neighborhood and is not limited to lines of finite length. The theoretical precision of 3D reconstruction with the proposed framework is evaluated

    A Bayesian Approach to Manifold Topology Reconstruction

    Get PDF
    In this paper, we investigate the problem of statistical reconstruction of piecewise linear manifold topology. Given a noisy, probably undersampled point cloud from a one- or two-manifold, the algorithm reconstructs an approximated most likely mesh in a Bayesian sense from which the sample might have been taken. We incorporate statistical priors on the object geometry to improve the reconstruction quality if additional knowledge about the class of original shapes is available. The priors can be formulated analytically or learned from example geometry with known manifold tessellation. The statistical objective function is approximated by a linear programming / integer programming problem, for which a globally optimal solution is found. We apply the algorithm to a set of 2D and 3D reconstruction examples, demon-strating that a statistics-based manifold reconstruction is feasible, and still yields plausible results in situations where sampling conditions are violated

    Deep-Learning segmentation and 3D reconstruction of road markings using multi-view aerial imagery

    Get PDF
    The 3D information of road infrastructures are gaining importance with the development of autonomous driving. In this context, the exact 2D position of the road markings as well as the height information play an important role in e.g. lane-accurate self-localization of autonomous vehicles. In this paper, the overall task is divided into an automatic segmentation followed by a refined 3D reconstruction. For the segmentation task, we apply a wavelet-enhanced fully convolutional network on multi-view high-resolution aerial imagery. Based on the resulting 2D segments in the original images, we propose a successive workflow for the 3D reconstruction of road markings based on a least-squares line-fitting in multi-view imagery. The 3D reconstruction exploits the line character of road markings with the aim to optimize the best 3D line location by minimizing the distance from its back projection to the detected 2D line in all the covering images. Results show an improved IoU of the automatic road marking segmentation by exploiting the multi-view character of the aerial images and a more accurate 3D reconstruction of the road surface compared to the Semi Global Matching (SGM) algorithm. Further, the approach avoids the matching problem in non-textured image parts and is not limited to lines of finite length. In this paper, the approach is presented and validated on several aerial image data sets covering different scenarios like motorways and urban regions

    From Multiview Image Curves to 3D Drawings

    Full text link
    Reconstructing 3D scenes from multiple views has made impressive strides in recent years, chiefly by correlating isolated feature points, intensity patterns, or curvilinear structures. In the general setting - without controlled acquisition, abundant texture, curves and surfaces following specific models or limiting scene complexity - most methods produce unorganized point clouds, meshes, or voxel representations, with some exceptions producing unorganized clouds of 3D curve fragments. Ideally, many applications require structured representations of curves, surfaces and their spatial relationships. This paper presents a step in this direction by formulating an approach that combines 2D image curves into a collection of 3D curves, with topological connectivity between them represented as a 3D graph. This results in a 3D drawing, which is complementary to surface representations in the same sense as a 3D scaffold complements a tent taut over it. We evaluate our results against truth on synthetic and real datasets.Comment: Expanded ECCV 2016 version with tweaked figures and including an overview of the supplementary material available at multiview-3d-drawing.sourceforge.ne
    • 

    corecore