4,134 research outputs found

    Quantum computation with Turaev-Viro codes

    Full text link
    The Turaev-Viro invariant for a closed 3-manifold is defined as the contraction of a certain tensor network. The tensors correspond to tetrahedra in a triangulation of the manifold, with values determined by a fixed spherical category. For a manifold with boundary, the tensor network has free indices that can be associated to qudits, and its contraction gives the coefficients of a quantum error-correcting code. The code has local stabilizers determined by Levin and Wen. For example, applied to the genus-one handlebody using the Z_2 category, this construction yields the well-known toric code. For other categories, such as the Fibonacci category, the construction realizes a non-abelian anyon model over a discrete lattice. By studying braid group representations acting on equivalence classes of colored ribbon graphs embedded in a punctured sphere, we identify the anyons, and give a simple recipe for mapping fusion basis states of the doubled category to ribbon graphs. We explain how suitable initial states can be prepared efficiently, how to implement braids, by successively changing the triangulation using a fixed five-qudit local unitary gate, and how to measure the topological charge. Combined with known universality results for anyonic systems, this provides a large family of schemes for quantum computation based on local deformations of stabilizer codes. These schemes may serve as a starting point for developing fault-tolerance schemes using continuous stabilizer measurements and active error-correction.Comment: 53 pages, LaTeX + 199 eps figure

    Loop operators and S-duality from curves on Riemann surfaces

    Full text link
    We study Wilson-'t Hooft loop operators in a class of N=2 superconformal field theories recently introduced by Gaiotto. In the case that the gauge group is a product of SU(2) groups, we classify all possible loop operators in terms of their electric and magnetic charges subject to the Dirac quantization condition. We then show that this precisely matches Dehn's classification of homotopy classes of non-self-intersecting curves on an associated Riemann surface--the same surface which characterizes the gauge theory. Our analysis provides an explicit prediction for the action of S-duality on loop operators in these theories which we check against the known duality transformation in several examples.Comment: 41 page

    Boundary Value Problems on Planar Graphs and Flat Surfaces with integer cone singularities, I: The Dirichlet Problem

    Full text link
    Consider a planar, bounded, mm-connected region Ω\Omega, and let \bord\Omega be its boundary. Let T\mathcal{T} be a cellular decomposition of \Omega\cup\bord\Omega, where each 2-cell is either a triangle or a quadrilateral. From these data and a conductance function we construct a canonical pair (S,f)(S,f) where SS is a genus (m−1)(m-1) singular flat surface tiled by rectangles and ff is an energy preserving mapping from T(1){\mathcal T}^{(1)} onto SS.Comment: 27 pages, 11 figures; v2 - revised definition (now denoted by the flux-gradient metric (1.9)) in section 1 and minor modifications of proofs; corrected typo

    Large scale rank of Teichmuller space

    Full text link
    Let X be quasi-isometric to either the mapping class group equipped with the word metric, or to Teichmuller space equipped with either the Teichmuller metric or the Weil-Petersson metric. We introduce a unified approach to study the coarse geometry of these spaces. We show that the quasi-Lipschitz image in X of a box in R^n is locally near a standard model of a flat in X. As a consequence, we show that, for all these spaces, the geometric rank and the topological rank are equal. The methods are axiomatic and apply to a larger class of metric spaces.Comment: Some corrections have been made. Also, the coarse differentiation statement has been modified to state that a quasi-Lipschitz map is "differentiable almost everywhere

    Boundary Value Problems on Planar Graphs and Flat Surfaces with integer cone singularities, II: The mixed Dirichlet-Neumann Problem

    Get PDF
    In this paper we continue the study started in part I (posted). We consider a planar, bounded, mm-connected region Ω\Omega, and let \bord\Omega be its boundary. Let T\mathcal{T} be a cellular decomposition of \Omega\cup\bord\Omega, where each 2-cell is either a triangle or a quadrilateral. From these data and a conductance function we construct a canonical pair (S,f)(S,f) where SS is a special type of a (possibly immersed) genus (m−1)(m-1) singular flat surface, tiled by rectangles and ff is an energy preserving mapping from T(1){\mathcal T}^{(1)} onto SS. In part I the solution of a Dirichlet problem defined on T(0){\mathcal T}^{(0)} was utilized, in this paper we employ the solution of a mixed Dirichlet-Neumann problem.Comment: 26 pages, 16 figures (color

    Protected gates for topological quantum field theories

    Get PDF
    We study restrictions on locality-preserving unitary logical gates for topological quantum codes in two spatial dimensions. A locality-preserving operation is one which maps local operators to local operators --- for example, a constant-depth quantum circuit of geometrically local gates, or evolution for a constant time governed by a geometrically-local bounded-strength Hamiltonian. Locality-preserving logical gates of topological codes are intrinsically fault tolerant because spatially localized errors remain localized, and hence sufficiently dilute errors remain correctable. By invoking general properties of two-dimensional topological field theories, we find that the locality-preserving logical gates are severely limited for codes which admit non-abelian anyons; in particular, there are no locality-preserving logical gates on the torus or the sphere with M punctures if the braiding of anyons is computationally universal. Furthermore, for Ising anyons on the M-punctured sphere, locality-preserving gates must be elements of the logical Pauli group. We derive these results by relating logical gates of a topological code to automorphisms of the Verlinde algebra of the corresponding anyon model, and by requiring the logical gates to be compatible with basis changes in the logical Hilbert space arising from local F-moves and the mapping class group.Comment: 50 pages, many figures, v3: updated to match published versio
    • …
    corecore