5 research outputs found

    Efficient Detection of Counterfeit Products in Large-scale RFID Systems Using Batch Authentication Protocols

    Get PDF
    RFID technology facilitates processing of product information, making it a promising technology for anti-counterfeiting. However, in large-scale RFID applications, such as supply chain, retail industry, pharmaceutical industry, total tag estimation and tag authentication are two major research issues. Though there are per-tag authentication protocols and probabilistic approaches for total tag estimation in RFID systems, the RFID authentication protocols are mainly per-tag-based where the reader authenticates one tag at each time. For a batch of tags, current RFID systems have to identify them and then authenticate each tag sequentially, one at a time. This increases the protocol execution time due to the large volume of authentication data. In this paper, we propose to detect counterfeit tags in large-scale system using efficient batch authentication protocol. We propose FSA-based protocol, FTest, to meet the requirements of prompt and reliable batch authentication in large-scale RFID applications. FTest can determine the validity of a batch of tags with minimal execution time which is a major goal of large-scale RFID systems. FTest can reduce protocol execution time by ensuring that the percentage of potential counterfeit products is under the user-defined threshold. The experimental result demonstrates that FTest performs significantly better than the existing counterfeit detection approaches, for example, existing authentication techniques

    A Privacy Preserving Framework for RFID Based Healthcare Systems

    Get PDF
    RFID (Radio Frequency IDentification) is anticipated to be a core technology that will be used in many practical applications of our life in near future. It has received considerable attention within the healthcare for almost a decade now. The technology’s promise to efficiently track hospital supplies, medical equipment, medications and patients is an attractive proposition to the healthcare industry. However, the prospect of wide spread use of RFID tags in the healthcare area has also triggered discussions regarding privacy, particularly because RFID data in transit may easily be intercepted and can be send to track its user (owner). In a nutshell, this technology has not really seen its true potential in healthcare industry since privacy concerns raised by the tag bearers are not properly addressed by existing identification techniques. There are two major types of privacy preservation techniques that are required in an RFID based healthcare system—(1) a privacy preserving authentication protocol is required while sensing RFID tags for different identification and monitoring purposes, and (2) a privacy preserving access control mechanism is required to restrict unauthorized access of private information while providing healthcare services using the tag ID. In this paper, we propose a framework (PriSens-HSAC) that makes an effort to address the above mentioned two privacy issues. To the best of our knowledge, it is the first framework to provide increased privacy in RFID based healthcare systems, using RFID authentication along with access control technique

    Protecting Privacy and Ensuring Security of RFID Systems Using Private Authentication Protocols

    Get PDF
    Radio Frequency IDentification (RFID) systems have been studied as an emerging technology for automatic identification of objects and assets in various applications ranging from inventory tracking to point of sale applications and from healthcare applications to e-passport. The expansion of RFID technology, however, gives rise to severe security and privacy concerns. To ensure the widespread deployment of this technology, the security and privacy threats must be addressed. However, providing solutions to the security and privacy threats has been a challenge due to extremely inadequate resources of typical RFID tags. Authentication protocols can be a possible solution to secure RFID communications. In this thesis, we consider RFID authentication protocols based on symmetric key cryptography. We identify the security and privacy requirements for an RFID system. We present four protocols in this thesis. First, we propose a lightweight authentication protocol for typical tags that can perform symmetric key operations. This protocol makes use of pseudo random number generators (PRNG) and one way hash functions to ensure the security and privacy requirements of RFID systems. Second, we define the desynchronizing attack and describe the vulnerabilities of this attack in RFID systems. We propose a robust authentication protocol that can prevent the desynchronizing attack. This protocol can recover the disabled tags that are desynchronized with the reader because of this attack. Third, we introduce a novel authentication protocol based on elliptic curve cryptography (ECC) to avoid the counterfeiting problem of RFID systems. This protocol is appropriate for the RFID tags that can perform the operations of ECC. Finally, to address the tradeoff between scalability and privacy of RFID systems, we propose an efficient anonymous authentication protocol. We characterize the privacy of RFID systems and prove that our protocol preserves the privacy of RFID tags and achieves better scalability as well

    Supporting Recovery, Privacy and Security in RFID Systems Using a Robust Authentication Protocol

    No full text
    RFID systems have been scrutinized nowadays as one of the emerging technologies in pervasive environment. And authentication becomes indispensible in applications where security and privacy are major concerns. Besides thwarting some major attacks, RFID systems need to be able to recover from unexpected conditions during operation. In this paper, we propose a Robust Authentication Protocol (RoAP) that supports not only security and privacy, but also recovery in RFID systems. The protocol can get back the desynchronized tags and readers to their normal state, and thus provides robustness. We also present a safety ring consisted of six major goals that have to ensure by each RFID system to be secured. This paper illustrates security and robustness analysis of the protocol. Finally, we present the implementation of our authentication protocol

    Ensuring Application Specific Security, Privacy and Performance Goals in RFID Systems

    Get PDF
    Radio Frequency IDentification (RFID) is an automatic identification technology that uses radio frequency to identify objects. Securing RFID systems and providing privacy in RFID applications has been the focus of much academic work lately. To ensure universal acceptance of RFID technology, security and privacy issued must be addressed into the design of any RFID application. Due to the constraints on memory, power, storage capacity, and amount of logic on RFID devices, traditional public key based strong security mechanisms are unsuitable for them. Usually, low cost general authentication protocols are used to secure RFID systems. However, the generic authentication protocols provide relatively low performance for different types of RFID applications. We identified that each RFID application has unique research challenges and different performance bottlenecks based on the characteristics of the system. One strategy is to devise security protocols such that application specific goals are met and system specific performance requirements are maximized. This dissertation aims to address the problem of devising application specific security protocols for current and next generation RFID systems so that in each application area maximum performance can be achieved and system specific goals are met. In this dissertation, we propose four different authentication techniques for RFID technologies, providing solutions to the following research issues: 1) detecting counterfeit as well as ensuring low response time in large scale RFID systems, 2) preserving privacy and maintaining scalability in RFID based healthcare systems, 3) ensuring security and survivability of Computational RFID (CRFID) networks, and 4) detecting missing WISP tags efficiently to ensure reliability of CRFID based system\u27s decision. The techniques presented in this dissertation achieve good levels of privacy, provide security, scale to large systems, and can be implemented on resource-constrained RFID devices
    corecore