17 research outputs found

    Benefits of Location-Based Access Control:A Literature Study

    Get PDF
    Location-based access control (LBAC) has been suggested as a means to improve IT security. By 'grounding' users and systems to a particular location, \ud attackers supposedly have more difficulty in compromising a system. However, the motivation behind LBAC and its potential benefits have not been investigated thoroughly. To this end, we perform a structured literature review, and examine the goals that LBAC can potentially fulfill, \ud the specific LBAC systems that realize these goals and the context on which LBAC depends. Our paper has four main contributions:\ud first we propose a theoretical framework for LBAC evaluation, based on goals, systems and context. Second, we formulate and apply criteria for evaluating the usefulness of an LBAC system. Third, we identify four usage scenarios for LBAC: open areas and systems, hospitals, enterprises, and finally data centers and military facilities. Fourth, we propose directions for future research:\ud (i) assessing the tradeoffs between location-based, physical and logical access control, (ii) improving the transparency of LBAC decision making, and \ud (iii) formulating design criteria for facilities and working environments for optimal LBAC usage

    Access and information flow control to secure mobile web service compositions in resource constrained environments

    Get PDF
    The growing use of mobile web services such as electronic health records systems and applications like twitter, Facebook has increased interest in robust mechanisms for ensuring security for such information sharing services. Common security mechanisms such as access control and information flow control are either restrictive or weak in that they prevent applications from sharing data usefully, and/or allow private information leaks when used independently. Typically, when services are composed there is a resource that some or all of the services involved in the composition need to share. However, during service composition security problems arise because the resulting service is made up of different services from different security domains. A key issue that arises and that we address in this thesis is that of enforcing secure information flow control during service composition to prevent illegal access and propagation of information between the participating services. This thesis describes a model that combines access control and information flow control in one framework. We specifically consider a case study of an e-health service application, and consider how constraints like location and context dependencies impact on authentication and authorization. Furthermore, we consider how data sharing applications such as the e-health service application handle issues of unauthorized users and insecure propagation of information in resource constrained environments¹. Our framework addresses this issue of illegitimate information access and propagation by making use of the concept of program dependence graphs (PDGs). Program dependence graphs use path conditions as necessary conditions for secure information flow control. The advantage of this approach to securing information sharing is that, information is only propagated if the criteria for data sharing are verified. Our solution proposes or offers good performance, fast authentication taking into account bandwidth limitations. A security analysis shows the theoretical improvements our scheme offers. Results obtained confirm that the framework accommodates the CIA-triad (which is the confidentiality, integrity and availability model designed to guide policies of information security) of our work and can be used to motivate further research work in this field

    Location privacy policy management system

    Get PDF
    The advance in wireless communication and positioning systems has permitted development of a large variety of location-based services that, for example, can help people easily locate family members or find nearest gas station or restaurant. As location-based services become more and more popular, concerns are growing about the misuse of location information by malicious parties. In order to preserve location privacy, many efforts have been devoted to preventing service providers from determining users\u27 exact locations. Few works have sought to help users manage their privacy preferences; however management of privacy is an important issue in real applications. This work developed an easy-to-use location privacy management system. Specifically, it defines a succinct yet expressive location privacy policy constructs that can be easily understood by ordinary users. The system provides various policy management functions including policy composition, policy conflict detection, and policy recommendation. Policy composition allows users to insert and delete policies. Policy conflict detection will automatically check conflict among policies whenever there is any change. The policy recommendation system will generate recommended policies based on users\u27 basic requirements in order to reduce users\u27 burden. A system prototype has been implemented and evaluated in terms of both efficiency and effectiveness --Abstract, page iii

    An interaction-based access control model (IBAC) for collaborative services

    Get PDF
    A collaboration is a collection of services that work together to achieve a common goal. Although collaborations help when tackling difficult problems, they lead to security issues. First, a collaboration is often performed by services that are drawn from different security domains. Second, a service interacts with multiple peer services during the collaboration. These interactions are not isolated from one another--e.g., data may flow through a sequence of different services. As a result, a service is exposed to multiple peer services in varying degrees, leading to different security threats. We identify the types of interactions that can be present in collaborations, and discuss the security threats due to each type. We propose a model for representing the collaboration context so that a service can be made aware of the existing interactions. We provide an access control model for a service participating in a collaboration. We couple our access control model with a policy model, so that the access requirements from collaborations can be expressed and evaluated

    Context-Based Access for Infrequent Requests in Tanzania\u27s Health Care System

    Get PDF
    Access control is an important aspect of any information system. It is a way of ensuring that users can only access what they are authorised to and no more. This can be achieved by granting users access to resources based on pre-defined organisational and legislative rules. Although access control has been extensively studied, and as a result, a wide range of access control models, mechanisms and systems have been proposed, specific access control requirements for healthcare systems that needs to support the continuity of care in an accountable manner have not been addressed. This results in a gap between what is required by the application domain and what is actually practised, and thus access control solutions implemented for the domain become too restrictive. The continuity of care is defined as the delivery of seamless health care services to patients through integration, coordination and sharing of information between providers. This thesis, therefore, designs a context-based access control model that allows healthcare professionals to bypass access rules in an accountable manner in case of an infrequent access request involving an emergency situation. This research uses the Tanzania\u27s healthcare system as a case study domain

    An architecture and protocol, an access control model, and a sighting blurring algorithm for improving users' security in the context of location based services operating over the internet

    Get PDF
    A new type of service, known as a Location Based Service (LBS), is emerging that incorporates users' location information, and many of these LBSs operate over the Internet. However, the potential misuse of this location information is a serious concern. Therefore, the main goal of this thesis is to develop techniques, which increase users' security and privacy, for use with these LBSs. The �rst technique that we propose is a three-party protocol that is used to mutually identify and authenticate users, LBSs, and a trusted middleware infrastructure that is responsible for managing the users' identity and location information. This protocol enables users to simultaneously identify and authenticate themselves to the infrastructure using real identities, and to the LBSs using pseudonyms. This protocol can be subsequently used to securely exchange messages containing location information. The second technique that we propose is an access control model that enables users to create permissions that specify which users and LBSs are entitled to obtain location information about which other users, under what circumstances the location information is released to the users and LBSs, and the accuracy of any location information that is released to the users and LBSs. The third technique that we propose is a blurring algorithm that performs spatial blurring on users' location information. It does not perform temporal blurring, because this reduces an LBS's ability to �offer a useful service. Instead, our blurring algorithm introduces a new parameter that speci�es the frequency with which location information is released for a particular user. This frequency parameter is a function of the size of the blurred location. These three techniques can be used as part of an overall solution for providing users with increased security while using LBSs that operate over the Internet

    Advanced Location-Based Technologies and Services

    Get PDF
    Since the publication of the first edition in 2004, advances in mobile devices, positioning sensors, WiFi fingerprinting, and wireless communications, among others, have paved the way for developing new and advanced location-based services (LBSs). This second edition provides up-to-date information on LBSs, including WiFi fingerprinting, mobile computing, geospatial clouds, geospatial data mining, location privacy, and location-based social networking. It also includes new chapters on application areas such as LBSs for public health, indoor navigation, and advertising. In addition, the chapter on remote sensing has been revised to address advancements

    Security Policies That Make Sense for Complex Systems: Comprehensible Formalism for the System Consumer

    Get PDF
    Information Systems today rarely are contained within a single user workstation, server, or networked environment. Data can be transparently accessed from any location, and maintained across various network infrastructures. Cloud computing paradigms commoditize the hardware and software environments and allow an enterprise to lease computing resources by the hour, minute, or number of instances required to complete a processing task. An access control policy mediates access requests between authorized users of an information system and the system\u27s resources. Access control policies are defined at any given level of abstraction, such as the file, directory, system, or network, and can be instantiated in layers of increasing (or decreasing) abstraction. For the system end-user, the functional allocation of security policy to discrete system components, or subsystems, may be too complex for comprehension. In this dissertation, the concept of a metapolicy, or policy that governs execution of subordinate security policies, is introduced. From the user\u27s perspective, the metapolicy provides the rules for system governance that are functionally applied across the system\u27s components for policy enforcement. The metapolicy provides a method to communicate updated higher-level policy information to all components of a system; it minimizes the overhead associated with access control decisions by making access decisions at the highest level possible in the policy hierarchy. Formal definitions of policy often involve mathematical proof, formal logic, or set theoretic notation. Such policy definitions may be beyond the capability of a system user who simply wants to control information sharing. For thousands of years, mankind has used narrative and storytelling as a way to convey knowledge. This dissertation discusses how the concepts of storytelling can be embodied in computational narrative and used as a top-level requirements specification. The definition of metapolicy is further discussed, as is the relationship between the metapolicy and various access control mechanisms. The use of storytelling to derive the metapolicy and its applicability to formal requirements definition is discussed. The author\u27s hypothesis on the use of narrative to explain security policy to the system user is validated through the use of a series of survey instruments. The survey instrument applies either a traditional requirements specification language or a brief narrative to describe a security policy and asks the subject to interpret the statements. The results of this research are promising and reflect a synthesis of the disciplines of neuroscience, security, and formal methods to present a potentially more comprehensible knowledge representation of security policy
    corecore