2,115 research outputs found

    HIL: designing an exokernel for the data center

    Full text link
    We propose a new Exokernel-like layer to allow mutually untrusting physically deployed services to efficiently share the resources of a data center. We believe that such a layer offers not only efficiency gains, but may also enable new economic models, new applications, and new security-sensitive uses. A prototype (currently in active use) demonstrates that the proposed layer is viable, and can support a variety of existing provisioning tools and use cases.Partial support for this work was provided by the MassTech Collaborative Research Matching Grant Program, National Science Foundation awards 1347525 and 1149232 as well as the several commercial partners of the Massachusetts Open Cloud who may be found at http://www.massopencloud.or

    A secure cloud with minimal provider trust

    Full text link
    Bolted is a new architecture for a bare metal cloud with the goal of providing security-sensitive customers of a cloud the same level of security and control that they can obtain in their own private data centers. It allows tenants to elastically allocate secure resources within a cloud while being protected from other previous, current, and future tenants of the cloud. The provisioning of a new server to a tenant isolates a bare metal server, only allowing it to communicate with other tenant's servers once its critical firmware and software have been attested to the tenant. Tenants, rather than the provider, control the tradeoffs between security, price, and performance. A prototype demonstrates scalable end-to-end security with small overhead compared to a less secure alternative.Published versio

    An Experiment on Bare-Metal BigData Provisioning

    Full text link
    Many BigData customers use on-demand platforms in the cloud, where they can get a dedicated virtual cluster in a couple of minutes and pay only for the time they use. Increasingly, there is a demand for bare-metal bigdata solutions for applications that cannot tolerate the unpredictability and performance degradation of virtualized systems. Existing bare-metal solutions can introduce delays of 10s of minutes to provision a cluster by installing operating systems and applications on the local disks of servers. This has motivated recent research developing sophisticated mechanisms to optimize this installation. These approaches assume that using network mounted boot disks incur unacceptable run-time overhead. Our analysis suggest that while this assumption is true for application data, it is incorrect for operating systems and applications, and network mounting the boot disk and applications result in negligible run-time impact while leading to faster provisioning time.This research was supported in part by the MassTech Collaborative Research Matching Grant Program, NSF awards 1347525 and 1414119 and several commercial partners of the Massachusetts Open Cloud who may be found at http://www.massopencloud.or

    Using Open Stack for an Open Cloud Exchange(OCX)

    Full text link
    We are developing a new public cloud, the Massachusetts Open Cloud (MOC) based on the model of an Open Cloud eXchange (OCX). We discuss in this paper the vision of an OCX and how we intend to realize it using the OpenStack open-source cloud platform in the MOC. A limited form of an OCX can be achieved today by layering new services on top of OpenStack. We have performed an analysis of OpenStack to determine the changes needed in order to fully realize the OCX model. We describe these proposed changes, which although significant and requiring broad community involvement will provide functionality of value to both existing single-provider clouds as well as future multi-provider ones

    Evaluation and Deployment of a Private Cloud Framework at DI-FCT-NOVA

    Get PDF
    In today’s technological landscape, there is an ever-increasing demand for computing resources for simulations, machine learning, or other use-cases. This demand can be seen across the business world, with the success of Amazon’s AWS and Microsoft’s Azure offer- ings, which provide a cloud of on-demand computing resources to any paying customer. The necessity for computing resources is no less felt in the academic world, where departments are forced to assign researchers and teachers to time-consuming system administrator roles, to allocate resources to users, leading to delays and wasted potential. Allowing researchers to request computing resources and then get them, on-demand, with minimal input from any administrative staff, is a great boon. Not only does it increase productivity of the administrators themselves, but it also allows users (teachers, researchers and students) to get the resources they need faster, and more securely. This goal is attainable through the use of a cloud management framework to assist in the administration of a department’s computing infrastructure. This dissertation aims to provide a critical evaluation on the adequacy of three cloud management frameworks, evaluating the requirements for a private cloud at the DI- FCT-NOVA, as well as which features of the selected cloud framework may be used in the fulfilment of the department’s needs. The final goal is to architect and deploy the selected framework to DI-FCT-NOVA, which will give the department a maintainable state-of-the-art private cloud deployment, capable of adequately responding to the needs of its users.No cenário tecnológico atual, existe uma necessidade crescente por recursos computaci- onais quer para simulações, aprendizagem automática, ou outros fins. Essa necessidade pode ser vista no mundo dos negócios, traduzindo-se no sucesso da Amazon AWS e a da Microsoft Azure, entre outras, que oferecem clouds de recursos computacionais a qualquer cliente, sujeito a diferentes formas de pagamento. A necessidade de recursos computacionais não é menos sentida no mundo académico, onde departamentos são forçados a atribuir a investigadores e professores tarefas onerosas que desperdiçam o seu potencial, como administração de sistemas computacionais com o fim de alocar recursos quem deles necessita (docentes, investigadores e estudantes). Permitir que se peçam recursos computacionais, e estes sejam alocados com o mínimo de interacção de uma equipa administrativa, é um grande benefício. Isto não só aumenta a produtividade dos próprios administradores, como também permite que se obtenham os recursos mais depressa, e de forma mais segura. Esta meta é alcançável através do uso de uma framework de gestão de cloud, cujo objectivo é assistir na administração da infraestrutura computacional de um departamento. Esta dissertação tem como objectivo fornecer uma avaliação crítica da adequação de três frameworks de gestão de cloud, avaliar os requisitos necessários para uma cloud privada no DI-FCT-NOVA, e identificar que funcionalidades da framework selecionada podem ser utilizadas para a satisfação dos requisitos indicados. O objectivo final é dese- nhar e instalar a framework selecionada no DI-FCT-NOVA, oferecendo assim uma cloud privada de última geração, capaz de responder adequadamente às necessidades dos seus utilizadores - docentes, investigadores e estudantes

    Market driven elastic secure infrastructure

    Full text link
    In today’s Data Centers, a combination of factors leads to the static allocation of physical servers and switches into dedicated clusters such that it is difficult to add or remove hardware from these clusters for short periods of time. This silofication of the hardware leads to inefficient use of clusters. This dissertation proposes a novel architecture for improving the efficiency of clusters by enabling them to add or remove bare-metal servers for short periods of time. We demonstrate by implementing a working prototype of the architecture that such silos can be broken and it is possible to share servers between clusters that are managed by different tools, have different security requirements, and are operated by tenants of the Data Center, which may not trust each other. Physical servers and switches in a Data Center are grouped for a combination of reasons. They are used for different purposes (staging, production, research, etc); host applications required for servicing specific workloads (HPC, Cloud, Big Data, etc); and/or configured to meet stringent security and compliance requirements. Additionally, different provisioning systems and tools such as Openstack-Ironic, MaaS, Foreman, etc that are used to manage these clusters take control of the servers making it difficult to add or remove the hardware from their control. Moreover, these clusters are typically stood up with sufficient capacity to meet anticipated peak workload. This leads to inefficient usage of the clusters. They are under-utilized during off-peak hours and in the cases where the demand exceeds capacity the clusters suffer from degraded quality of service (QoS) or may violate service level objectives (SLOs). Although today’s clouds offer huge benefits in terms of on-demand elasticity, economies of scale, and a pay-as-you-go model yet many organizations are reluctant to move their workloads to the cloud. Organizations that (i) needs total control of their hardware (ii) has custom deployment practices (iii) needs to match stringent security and compliance requirements or (iv) do not want to pay high costs incurred from running workloads in the cloud prefers to own its hardware and host it in a data center. This includes a large section of the economy including financial companies, medical institutions, and government agencies that continue to host their own clusters outside of the public cloud. Considering that all the clusters may not undergo peak demand at the same time provides an opportunity to improve the efficiency of clusters by sharing resources between them. The dissertation describes the design and implementation of the Market Driven Elastic Secure Infrastructure (MESI) as an alternative to the public cloud and as an architecture for the lowest layer of the public cloud to improve its efficiency. It allows mutually non-trusting physically deployed services to share the physical servers of a data center efficiently. The approach proposed here is to build a system composed of a set of services each fulfilling a specific functionality. A tenant of the MESI has to trust only a minimal functionality of the tenant that offers the hardware resources. The rest of the services can be deployed by each tenant themselves MESI is based on the idea of enabling tenants to share hardware they own with tenants they may not trust and between clusters with different security requirements. The architecture provides control and freedom of choice to the tenants whether they wish to deploy and manage these services themselves or use them from a trusted third party. MESI services fit into three layers that build on each other to provide: 1) Elastic Infrastructure, 2) Elastic Secure Infrastructure, and 3) Market-driven Elastic Secure Infrastructure. 1) Hardware Isolation Layer (HIL) – the bottommost layer of MESI is designed for moving nodes between multiple tools and schedulers used for managing the clusters. It defines HIL to control the layer 2 switches and bare-metal servers such that tenants can elastically adjust the size of the clusters in response to the changing demand of the workload. It enables the movement of nodes between clusters with minimal to no modifications required to the tools and workflow used for managing these clusters. (2) Elastic Secure Infrastructure (ESI) builds on HIL to enable sharing of servers between clusters with different security requirements and mutually non-trusting tenants of the Data Center. ESI enables the borrowing tenant to minimize its trust in the node provider and take control of trade-offs between cost, performance, and security. This enables sharing of nodes between tenants that are not only part of the same organization by can be organization tenants in a co-located Data Center. (3) The Bare-metal Marketplace is an incentive-based system that uses economic principles of the marketplace to encourage the tenants to share their servers with others not just when they do not need them but also when others need them more. It provides tenants the ability to define their own cluster objectives and sharing constraints and the freedom to decide the number of nodes they wish to share with others. MESI is evaluated using prototype implementations at each layer of the architecture. (i) The HIL prototype implemented with only 3000 Lines of Code (LOC) is able to support many provisioning tools and schedulers with little to no modification; adds no overhead to the performance of the clusters and is in active production use at MOC managing over 150 servers and 11 switches. (ii) The ESI prototype builds on the HIL prototype and adds to it an attestation service, a provisioning service, and a deterministically built open-source firmware. Results demonstrate that it is possible to build a cluster that is secure, elastic, and fairly quick to set up. The tenant requires only minimum trust in the provider for the availability of the node. (iii) The MESI prototype demonstrates the feasibility of having a one-of-kind multi-provider marketplace for trading bare-metal servers where providers also use the nodes. The evaluation of the MESI prototype shows that all the clusters benefit from participating in the marketplace. It uses agents to trade bare-metal servers in a marketplace to meet the requirements of their clusters. Results show that compared to operating as silos individual clusters see a 50% improvement in the total work done; up to 75% improvement (reduction) in waiting for queues and up to 60% improvement in the aggregate utilization of the test bed. This dissertation makes the following contributions: (i) It defines the architecture of MESI allows mutually non-trusting tenants of the data center to share resources between clusters with different security requirements. (ii) Demonstrates that it is possible to design a service that breaks the silos of static allocation of clusters yet has a small Trusted Computing Base (TCB) and no overhead to the performance of the clusters. (iii) Provides a unique architecture that puts the tenant in control of its own security and minimizes the trust needed in the provider for sharing nodes. (iv) A working prototype of a multi-provider marketplace for bare-metal servers which is a first proof-of-concept that demonstrates that it is possible to trade real bare-metal nodes at practical time scales such that moving nodes between clusters is sufficiently fast to be able to get some useful work done. (v) Finally results show that it is possible to encourage even mutually non-trusting tenants to share their nodes with each other without any central authority making allocation decisions. Many smart, dedicated engineers and researchers have contributed to this work over the years. I have jointly led the efforts to design the HIL and the ESI layer; led the design and implementation of the bare-metal marketplace and the overall MESI architecture

    Towards non-intrusive software introspection and beyond

    Full text link
    Continuous verification and security analysis of software systems are of paramount importance to many organizations. The state-of-the-art for such operations implements agent-based approaches to inspect the provisioned software stack for security and compliance issues. However, this approach, which runs agents on the systems being analyzed, is vulnerable to some attacks, can incur substantial performance impact, and can introduce significant complexity. In this paper, we present the design and prototype implementation of a general-purpose approach for Non-intrusive Software Introspection (NSI). By adhering to NSI, organizations hosting in the cloud can as well control the software introspection workflow with reduced trust in the provider. Experimental analysis of real-world applications demonstrates that NSI presents a lightweight and scalable approach, and has a negligible impact on the performance of applications running on the instance being introspected.Accepted manuscrip
    • …
    corecore