60,075 research outputs found

    A virtual environment to support the distributed design of large made-to-order products

    Get PDF
    An overview of a virtual design environment (virtual platform) developed as part of the European Commission funded VRShips-ROPAX (VRS) project is presented. The main objectives for the development of the virtual platform are described, followed by the discussion of the techniques chosen to address the objectives, and finally a description of a use-case for the platform. Whilst the focus of the VRS virtual platform was to facilitate the design of ROPAX (roll-on passengers and cargo) vessels, the components within the platform are entirely generic and may be applied to the distributed design of any type of vessel, or other complex made-to-order products

    An overview of the VRS virtual platform

    Get PDF
    This paper provides an overview of the development of the virtual platform within the European Commission funded VRShips-ROPAX (VRS) project. This project is a major collaboration of approximately 40 industrial, regulatory, consultancy and academic partners with the objective of producing two novel platforms. A physical platform will be designed and produced representing a scale model of a novel ROPAX vessel with the following criteria: 2000 passengers; 400 cabins; 2000 nautical mile range, and a service speed of 38 knots. The aim of the virtual platform is to demonstrate that vessels may be designed to meet these criteria, which was not previously possible using individual tools and conventional design approaches. To achieve this objective requires the integration of design and simulation tools representing concept, embodiment, detail, production, and operation life-phases into the virtual platform, to enable distributed design activity to be undertaken. The main objectives for the development of the virtual platform are described, followed by the discussion of the techniques chosen to address the objectives, and finally a description of a use-case for the platform. Whilst the focus of the VRS virtual platform was to facilitate the design of ROPAX vessels, the components within the platform are entirely generic and may be applied to the distributed design of any type of vessel, or other complex made-to-order products

    Higher-Order Process Modeling: Product-Lining, Variability Modeling and Beyond

    Full text link
    We present a graphical and dynamic framework for binding and execution of business) process models. It is tailored to integrate 1) ad hoc processes modeled graphically, 2) third party services discovered in the (Inter)net, and 3) (dynamically) synthesized process chains that solve situation-specific tasks, with the synthesis taking place not only at design time, but also at runtime. Key to our approach is the introduction of type-safe stacked second-order execution contexts that allow for higher-order process modeling. Tamed by our underlying strict service-oriented notion of abstraction, this approach is tailored also to be used by application experts with little technical knowledge: users can select, modify, construct and then pass (component) processes during process execution as if they were data. We illustrate the impact and essence of our framework along a concrete, realistic (business) process modeling scenario: the development of Springer's browser-based Online Conference Service (OCS). The most advanced feature of our new framework allows one to combine online synthesis with the integration of the synthesized process into the running application. This ability leads to a particularly flexible way of implementing self-adaption, and to a particularly concise and powerful way of achieving variability not only at design time, but also at runtime.Comment: In Proceedings Festschrift for Dave Schmidt, arXiv:1309.455

    Can open-source projects (re-) shape the SDN/NFV-driven telecommunication market?

    Get PDF
    Telecom network operators face rapidly changing business needs. Due to their dependence on long product cycles they lack the ability to quickly respond to changing user demands. To spur innovation and stay competitive, network operators are investigating technological solutions with a proven track record in other application domains such as open source software projects. Open source software enables parties to learn, use, or contribute to technology from which they were previously excluded. OSS has reshaped many application areas including the landscape of operating systems and consumer software. The paradigmshift in telecommunication systems towards Software-Defined Networking introduces possibilities to benefit from open source projects. Implementing the control part of networks in software enables speedier adaption and innovation, and less dependencies on legacy protocols or algorithms hard-coded in the control part of network devices. The recently proposed concept of Network Function Virtualization pushes the softwarization of telecommunication functionalities even further down to the data plane. Within the NFV paradigm, functionality which was previously reserved for dedicated hardware implementations can now be implemented in software and deployed on generic Commercial Off-The Shelf (COTS) hardware. This paper provides an overview of existing open source initiatives for SDN/NFV-based network architectures, involving infrastructure to orchestration-related functionality. It situates them in a business process context and identifies the pros and cons for the market in general, as well as for individual actors

    Enhancing competitive advantage for European maritime sector

    Get PDF
    This poster presentation explores the topic of enhancing competitive advantage for the European maritime sector

    An extensible manufacturing resource model for process integration

    Get PDF
    Driven by industrial needs and enabled by process technology and information technology, enterprise integration is rapidly shifting from information integration to process integration to improve overall performance of enterprises. Traditional resource models are established based on the needs of individual applications. They cannot effectively serve process integration which needs resources to be represented in a unified, comprehensive and flexible way to meet the needs of various applications for different business processes. This paper looks into this issue and presents a configurable and extensible resource model which can be rapidly reconfigured and extended to serve for different applications. To achieve generality, the presented resource model is established from macro level and micro level. A semantic representation method is developed to improve the flexibility and extensibility of the model
    • …
    corecore