242,111 research outputs found

    An Architecture for Provenance Systems

    No full text
    This document covers the logical and process architectures of provenance systems. The logical architecture identifies key roles and their interactions, whereas the process architecture discusses distribution and security. A fundamental aspect of our presentation is its technology-independent nature, which makes it reusable: the principles that are exposed in this document may be applied to different technologies

    E-infrastructures fostering multi-centre collaborative research into the intensive care management of patients with brain injury

    Get PDF
    Clinical research is becoming ever more collaborative with multi-centre trials now a common practice. With this in mind, never has it been more important to have secure access to data and, in so doing, tackle the challenges of inter-organisational data access and usage. This is especially the case for research conducted within the brain injury domain due to the complicated multi-trauma nature of the disease with its associated complex collation of time-series data of varying resolution and quality. It is now widely accepted that advances in treatment within this group of patients will only be delivered if the technical infrastructures underpinning the collection and validation of multi-centre research data for clinical trials is improved. In recognition of this need, IT-based multi-centre e-Infrastructures such as the Brain Monitoring with Information Technology group (BrainIT - www.brainit.org) and Cooperative Study on Brain Injury Depolarisations (COSBID - www.cosbid.de) have been formed. A serious impediment to the effective implementation of these networks is access to the know-how and experience needed to install, deploy and manage security-oriented middleware systems that provide secure access to distributed hospital based datasets and especially the linkage of these data sets across sites. The recently funded EU framework VII ICT project Advanced Arterial Hypotension Adverse Event prediction through a Novel Bayesian Neural Network (AVERT-IT) is focused upon tackling these challenges. This chapter describes the problems inherent to data collection within the brain injury medical domain, the current IT-based solutions designed to address these problems and how they perform in practice. We outline how the authors have collaborated towards developing Grid solutions to address the major technical issues. Towards this end we describe a prototype solution which ultimately formed the basis for the AVERT-IT project. We describe the design of the underlying Grid infrastructure for AVERT-IT and how it will be used to produce novel approaches to data collection, data validation and clinical trial design is also presented

    Initial experiences in developing e-health solutions across Scotland

    Get PDF
    The MRC funded Virtual Organisations for Trials and Epidemiological Studies (VOTES) project is a collaborative effort between e-Science, clinical and ethical research centres across the UK including the universities of Oxford, Glasgow, Imperial, Nottingham and Leicester. The project started in September 2005 and is due to run for 3 years. The primary goal of VOTES is to develop a reusable Grid framework through which a multitude of clinical trials and epidemiological studies can be supported. The National e-Science Centre (NeSC) at the University of Glasgow are looking at developing the Scottish components of this framework. This paper presents the initial experiences in developing this framework and in accessing and using existing data sets, services and software across the NHS in Scotland

    A Design of MAC Model Based on the Separation of Duties and Data Coloring: DSDC-MAC

    Get PDF
    Among the access control methods for database security, there is Mandatory Access Control (MAC) model in which the security level is set to both the subject and the object to enhance the security control. Legacy MAC models have focused only on one thing, either confidentiality or integrity. Thus, it can cause collisions between security policies in supporting confidentiality and integrity simultaneously. In addition, they do not provide a granular security class policy of subjects and objects in terms of subjects\u27 roles or tasks. In this paper, we present the security policy of Bell_LaPadula Model (BLP) model and Biba model as one complemented policy. In addition, Duties Separation and Data Coloring (DSDC)-MAC model applying new data coloring security method is proposed to enable granular access control from the viewpoint of Segregation of Duty (SoD). The case study demonstrated that the proposed modeling work maintains the practicality through the design of Human Resources management System. The proposed model in this study is suitable for organizations like military forces or intelligence agencies where confidential information should be carefully handled. Furthermore, this model is expected to protect systems against malicious insiders and improve the confidentiality and integrity of data

    Security oriented e-infrastructures supporting neurological research and clinical trials

    Get PDF
    The neurological and wider clinical domains stand to gain greatly from the vision of the grid in providing seamless yet secure access to distributed, heterogeneous computational resources and data sets. Whilst a wealth of clinical data exists within local, regional and national healthcare boundaries, access to and usage of these data sets demands that fine grained security is supported and subsequently enforced. This paper explores the security challenges of the e-health domain, focusing in particular on authorization. The context of these explorations is the MRC funded VOTES (Virtual Organisations for Trials and Epidemiological Studies) and the JISC funded GLASS (Glasgow early adoption of Shibboleth project) which are developing Grid infrastructures for clinical trials with case studies in the brain trauma domain

    Supporting security-oriented, inter-disciplinary research: crossing the social, clinical and geospatial domains

    Get PDF
    How many people have had a chronic disease for longer than 5-years in Scotland? How has this impacted upon their choices of employment? Are there any geographical clusters in Scotland where a high-incidence of patients with such long-term illness can be found? How does the life expectancy of such individuals compare with the national averages? Such questions are important to understand the health of nations and the best ways in which health care should be delivered and measured for their impact and success. In tackling such research questions, e-Infrastructures need to provide tailored, secure access to an extensible range of distributed resources including primary and secondary e-Health clinical data; social science data, and geospatial data sets amongst numerous others. In this paper we describe the security models underlying these e-Infrastructures and demonstrate their implementation in supporting secure, federated access to a variety of distributed and heterogeneous data sets exploiting the results of a variety of projects at the National e-Science Centre (NeSC) at the University of Glasgow
    corecore