19 research outputs found

    Network-Coded Multiple Access

    Full text link
    This paper proposes and experimentally demonstrates a first wireless local area network (WLAN) system that jointly exploits physical-layer network coding (PNC) and multiuser decoding (MUD) to boost system throughput. We refer to this multiple access mode as Network-Coded Multiple Access (NCMA). Prior studies on PNC mostly focused on relay networks. NCMA is the first realized multiple access scheme that establishes the usefulness of PNC in a non-relay setting. NCMA allows multiple nodes to transmit simultaneously to the access point (AP) to boost throughput. In the non-relay setting, when two nodes A and B transmit to the AP simultaneously, the AP aims to obtain both packet A and packet B rather than their network-coded packet. An interesting question is whether network coding, specifically PNC which extracts packet (A XOR B), can still be useful in such a setting. We provide an affirmative answer to this question with a novel two-layer decoding approach amenable to real-time implementation. Our USRP prototype indicates that NCMA can boost throughput by 100% in the medium-high SNR regime (>=10dB). We believe further throughput enhancement is possible by allowing more than two users to transmit together

    When Channel Bonding is Beneficial for Opportunistic Spectrum Access Networks

    Full text link
    Transmission over multiple frequency bands combined into one logical channel speeds up data transfer for wireless networks. On the other hand, the allocation of multiple channels to a single user decreases the probability of finding a free logical channel for new connections, which may result in a network-wide throughput loss. While this relationship has been studied experimentally, especially in the WLAN configuration, little is known on how to analytically model such phenomena. With the advent of Opportunistic Spectrum Access (OSA) networks, it is even more important to understand the circumstances in which it is beneficial to bond channels occupied by primary users with dynamic duty cycle patterns. In this paper we propose an analytical framework which allows the investigation of the average channel throughput at the medium access control layer for OSA networks with channel bonding enabled. We show that channel bonding is generally beneficial, though the extent of the benefits depend on the features of the OSA network, including OSA network size and the total number of channels available for bonding. In addition, we show that performance benefits can be realized by adaptively changing the number of bonded channels depending on network conditions. Finally, we evaluate channel bonding considering physical layer constraints, i.e. throughput reduction compared to the theoretical throughput of a single virtual channel due to a transmission power limit for any bonding size.Comment: accepted to IEEE Transactions on Wireless Communication

    Bringing cross-layer MIMO to today's wireless LANs

    Get PDF
    Recent years have seen major innovations in cross-layer wireless designs. Despite demonstrating significant throughput gains, hardly any of these technologies have made it into real networks. Deploying cross-layer innovations requires adoption from Wi-Fi chip manufacturers. Yet, manufacturers hesitate to undertake major investments without a better understanding of how these designs interact with real networks and applications. This paper presents the first step towards breaking this stalemate, by enabling the adoption of cross-layer designs in today's networks with commodity Wi-Fi cards and actual applications. We present OpenRF, a cross-layer architecture for managing MIMO signal processing. OpenRF enables access points on the same channel to cancel their interference at each other's clients, while beamforming their signal to their own clients. OpenRF is self-configuring, so that network administrators need not understand MIMO or physical layer techniques. We patch the iwlwifi driver to support OpenRF on off-the-shelf Intel cards. We deploy OpenRF on a 20-node network, showing how it manages the complex interaction of cross-layer design with a real network stack, TCP, bursty traffic, and real applications. Our results demonstrate an average gain of 1.6x for TCP traffic and a significant reduction in response time for real-time applications, like remote desktop.National Science Foundation (U.S.

    Clearing the Rf Smog: Making 802.11 Robust to Cross-Technology Interference

    Get PDF
    Recent studies show that high-power cross-technology interference is becoming a major problem in today’s 802.11 networks. Devices like baby monitors and cordless phones can cause a wireless LAN to lose connectivity. The existing approach for dealing with such high-power interferers makes the 802.11 network switch to a different channel; yet the ISM band is becoming increasingly crowded with diverse technologies, and hence many 802.11 access points may not find an interference-free channel. This paper presents TIMO, a MIMO design that enables 802.11n to communicate in the presence of high-power cross-technology interference. Unlike existing MIMO designs, however, which require all concurrent transmissions to belong to the same technology, TIMO can exploit MIMO capabilities to decode in the presence of a signal from a different technology, hence enabling diverse technologies to share the same frequency band. We implement a prototype of TIMO in GNURadio-USRP2 and show that it enables 802.11n to communicate in the presence of interference from baby monitors, cordless phones, and microwave ovens, transforming scenarios with a complete loss of connectivity to operational networks.National Science Foundation (U.S.) (NSF grant CNS-0831660)National Science Foundation (U.S.) (NSF grant CNS- 0721857)United States. Defense Advanced Research Projects Agency (DARPA ITMANET

    Enabling LTE and WiFi Coexisting in 5 GHz for Efficient Spectrum Utilization

    Get PDF
    corecore