545 research outputs found

    Supporting Cooperative Caching in Disruption Tolerant Networks

    Full text link

    Performance Evaluation of Caching Policies in NDN - an ICN Architecture

    Full text link
    Information Centric Networking (ICN) advocates the philosophy of accessing the content independent of its location. Owing to this location independence in ICN, the routers en-route can be enabled to cache the content to serve the future requests for the same content locally. Several ICN architectures have been proposed in the literature along with various caching algorithms for caching and cache replacement at the routers en-route. The aim of this paper is to critically evaluate various caching policies using Named Data Networking (NDN), an ICN architecture proposed in literature. We have presented the performance comparison of different caching policies naming First In First Out (FIFO), Least Recently Used (LRU), and Universal Caching (UC) in two network models; Watts-Strogatz (WS) model (suitable for dense short link networks such as sensor networks) and Sprint topology (better suited for large Internet Service Provider (ISP) networks) using ndnSIM, an ns3 based discrete event simulator for NDN architecture. Our results indicate that UC outperforms other caching policies such as LRU and FIFO and makes UC a better alternative for both sensor networks and ISP networks

    Optimal Caching Policy of Stochastic Updating Information in Delay Tolerant Networks

    Get PDF
    To increase the speed of information retrieval, one message may have multiple replicas in Delay Tolerant Networks (DTN). In this paper, we adopt a discrete time model and focus on the caching policy of stochastic updating information. In particular, the source creates new version in every time slot with certain probability. New version is usually more useful than the older one. We use a utility function to denote the availability of different versions. To constrain the number of replicas, we propose a probabilistic management policy and nodes to discard information with certain probability determined by the version of the information. Our objective is to find the best value of the probability to maximize the total utility value. Because new version is created with certain probability, nodes other than the source may not know whether the information stored in them is the latest version. Therefore, they can make decisions only according to the local state and decisions based on the local state can be seen as local-policy. We also explore the global-policy, that is, nodes understand the real state. We prove that the optimal policies in both cases conform to the threshold form. Simulations based on both synthetic and real motion traces show the accuracy of our theoretical model. Surprisingly, numerical results show that local-policy is better than the global-policy in some cases

    Data Access In Disruption Tolerant Networks Using Cooperative Caching

    Get PDF
    Disruption tolerant networks (DTNs) consist of mobile devices that call each other opportunistically.Due to the low node density and impulsive nodemobility, only broken network connectivity exists in DTNs, and the ensuing obscurity of maintaining end-to end communication links makes it obligatory to use “carry and-forward” methods for data transmission. Models ofsuch networks consist of groups of individuals moving in adversity mending areas, military battlefields, or urbansensing applications. In such networks, node mobilityis subjugated to let mobile nodes take data as communicate and forward data opportunistically when contacting others. The input difficulty is, consequently, how to decide the suitable communicate assortment plan

    Enhanced Distributed File Replication Protocol for Efficient File Sharing in Wireless Mobile Ad-Hoc Networks.

    Get PDF
    File sharing applications in mobile unintended networks (MANETs) have attracted additional and additional attention in recent years. The potency of file querying suffers from the distinctive properties of such networks as well as node quality and restricted communication vary and resource. associate degree intuitive methodology to alleviate this drawback is to form file replicas within the network. However, despite the efforts on file replication, no analysis has targeted on the worldwide optimum duplicate creation with minimum average querying delay. Specifically, current file replication protocols in mobile unintended networks have 2 shortcomings. First, they lack a rule to portion restricted resources to completely different files so as to reduce the typical querying delay. Second, they merely contemplate storage as offered resources for replicas, however neglect the actual fact that the file holders’ frequency of meeting different nodes additionally plays a crucial role in deciding file availableness. Actually, a node that contains a higher meeting frequency with others provides higher availableness to its files. This becomes even additional evident in sparsely distributed MANETs, during which nodes meet disruptively. during this paper, we have a tendency to introduce a replacement conception of resource for file replication, that considers each node storage and meeting frequency. we have a tendency to on paper study the influence of resource allocation on the typical querying delay and derive a resource allocation rule to reduce the typical querying delay. we have a tendency to additional propose a distributed file replication protocol to appreciate the projected rule. intensive trace-driven experiments with synthesized traces and real traces show that our protocol are able to do shorter average querying delay at a lower value than current replication protocols
    • …
    corecore