5,053 research outputs found

    Qualitative Robustness of Support Vector Machines

    Get PDF
    Support vector machines have attracted much attention in theoretical and in applied statistics. Main topics of recent interest are consistency, learning rates and robustness. In this article, it is shown that support vector machines are qualitatively robust. Since support vector machines can be represented by a functional on the set of all probability measures, qualitative robustness is proven by showing that this functional is continuous with respect to the topology generated by weak convergence of probability measures. Combined with the existence and uniqueness of support vector machines, our results show that support vector machines are the solutions of a well-posed mathematical problem in Hadamard's sense

    Fast rates for support vector machines using Gaussian kernels

    Full text link
    For binary classification we establish learning rates up to the order of nβˆ’1n^{-1} for support vector machines (SVMs) with hinge loss and Gaussian RBF kernels. These rates are in terms of two assumptions on the considered distributions: Tsybakov's noise assumption to establish a small estimation error, and a new geometric noise condition which is used to bound the approximation error. Unlike previously proposed concepts for bounding the approximation error, the geometric noise assumption does not employ any smoothness assumption.Comment: Published at http://dx.doi.org/10.1214/009053606000001226 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore