
Journal of Multivariate Analysis 102 (2011) 993–1007

Contents lists available at ScienceDirect

Journal of Multivariate Analysis

journal homepage: www.elsevier.com/locate/jmva

On qualitative robustness of support vector machines
Robert Hable ∗, Andreas Christmann
Department of Mathematics, University of Bayreuth, D-95440 Bayreuth, Germany

a r t i c l e i n f o

Article history:
Received 21 May 2010
Available online 12 March 2011

AMS 2000 subject classifications:
62G08
62G35

Keywords:
Classification
Machine learning
Nonparametric regression
Qualitative robustness
Support vector machines

a b s t r a c t

Support vector machines (SVMs) have attracted much attention in theoretical and in
applied statistics. The main topics of recent interest are consistency, learning rates and
robustness. We address the open problem whether SVMs are qualitatively robust. Our
results show that SVMs are qualitatively robust for any fixed regularization parameter λ.
However, under extremely mild conditions on the SVM, it turns out that SVMs are not
qualitatively robust any more for any null sequence λn, which are the classical sequences
needed to obtain universal consistency. This lack of qualitative robustness is of a rather
theoretical nature becausewe show that, in any case, SVMs fulfill a finite sample qualitative
robustness property.

For a fixed regularization parameter, SVMs can be represented by a functional on the set
of all probabilitymeasures. Qualitative robustness is proven by showing that this functional
is continuous with respect to the topology generated by weak convergence of probability
measures. Combined with the existence and uniqueness of SVMs, our results show that
SVMs are the solutions of a well-posed mathematical problem in Hadamard’s sense.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Two of the most important topics in statistics are classification and regression. Both settings assume that the outcome
y ∈ Y of a random variable Y (output variable) is influenced by an observed value x ∈ X (input variable). On the basis of
a finite data set ((x1, y1), . . . , (xn, yn)) ∈ (X × Y)n, the goal is to find an ‘‘optimal’’ predictor f : X → Y which makes a
prediction f (x) for an unobserved y. In parametric statistics, a signal plus noise relationship

y = fθ (x) + ε

is often assumed, where fθ is precisely known except for a finite parameter θ ∈ Rp and ε is an error term (generated from
a Normal distribution). In this way, the goal of estimating an ‘‘optimal’’ predictor (which can be any function f : X → Y)
reduces to the much simpler task of estimating the parameter θ ∈ Rp. Since, in many applications, such strong assumptions
can hardly be justified, nonparametric regression has been developed which avoids (or at least considerably weakens) such
assumptions. In statistical machine learning, the method of support vector machines has been developed as a method of
nonparametric regression; see e.g., [34,26,31]. In this framework, the estimation of the predictor (called empirical SVM) is a
function f which solves the minimization problem

min
f∈H

1
n

n−
i=1

L(xi, yi, f (xi)) + λ‖f ‖2
H , (1)

where H is a certain function space. The first term in (1) is the empirical mean of the losses caused by the predictions f (xi),
as measured by the loss function L. That is, the first term rates the quality of the predictor f . The second term penalizes the
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complexity of f in order to avoid overfitting, λ is a positive real number. The space H is a reproducing kernel Hilbert space
(RKHS) which consists of functions f : X → R.

Since the rise of robust statistics [32,19], it is well-known that imperceptible small deviations of the real world from
model assumptions may lead to arbitrarily wrong conclusions; see e.g. [23,24,22] for some recent books on robust statistics.
While many practitioners are aware of the need for robust methods in classical parametric statistics, it is quite often
overseen that robustness is also a crucial issue in nonparametric statistics. For example, the sample mean can be seen as a
nonparametric procedure which is non-robust since it is extremely sensitive to outliers: Let X1, . . . , Xn be i.i.d. random
variables with unknown distribution P and the task is to estimate the expectation of P. If the observed data are really
generated by the ideal P (and if expectation and variance of P exist), then the samplemean is the optimal estimator. However,
it frequently happens in the real world that, due to outliers or small model violations, the observed data are not generated
by the ideal P but by another distribution P′. Even if P′ is close to the ideal P, the sample meanmay lead to disastrous results.
Detailed descriptions and some examples of such effects are given, e.g., in [32,19], and [20, Section1.1].

In nonparametric regression, similar effects can occur. In this setting, it is often assumed that (X1, Y1), . . . , (Xn, Yn) are
i.i.d. random variables with unknown distribution P. This distribution P determines in which way the output variable Yi is
influenced by the input variable Xi. However, estimating a predictor f : X → Y can be severely distorted if the observed
data (x1, y1), . . . , (xn, yn) are not generated by P but (due to small errors) by another distribution P′ which may be close
to the ideal P. In order to safeguard from severe distortions, an estimator Sn should fulfill some kind of continuity: If the
real distribution P′ is close to the ideal distribution P, then the distribution of the estimator Sn should hardly be affected
(uniformly in the sample sizes n ∈ N). This kind of robustness is called qualitative robustness and has been formalized in
[17,18] for estimators taking values in Rp.

In order to study this notion of robust statistics for support vectormachines,weneed a generalization of this formalization
as given by [11] because, here, the values of the estimator are functions f : X → Y which are elements of a (typically infinite
dimensional) Hilbert space H . In case of support vector machines, the estimators

Sn : (X × Y)n → H

can be represented by a functional

S : M1(X × Y) → H

on the set M1(X × Y) of all probability measures on X × Y:

Sn((x1, y1), . . . , (xn, yn)) = S


1
n

n−
i=1

δ(xi,yi)



for every (x1, y1), . . . , (xn, yn) ∈ X×Y where 1
n

∑n
i=1 δ(xi,yi) is the empirical measure and δ(xi,yi) denotes the Dirac measure

in (xi, yi). It is shown by [11] that, in such cases, the qualitative robustness of a sequence of estimators (Sn)n∈N follows
from the continuity of the functional S (with respect to the topology of weak convergence of probability measures). While
quantitative robustness of support vectormachines has already been investigated bymeans of Hampel’s influence functions
and bounds for the maxbias in [7] and bymeans of Bouligand influence functions in [8], results about qualitative robustness
of support vector machines have not been published so far. The goal of this paper is to fill this gap on research on qualitative
robustness of support vector machines.

Under very mild conditions, we obtain the following results: For fixed regularization parameters, support vector
machines are qualitatively robust in the sense of [17,11]. If classical null sequencesλn needed to obtain universal consistency
are used, support vector machines are not qualitatively robust any more in this sense. Roughly speaking, qualitative
robustness fails for null sequences λn because the notion of qualitative robustness originating from [17] not only requires
a continuity property but even equicontinuity over all possible sample sizes and this conflicts with universal consistency.
However, this lack of robustness is of a rather theoretical nature because, in applications, one is always faced with a finite
sample of a fixed size and our results show that support vector machines are ‘‘qualitatively robust’’ for finite samples of any
fixed size — a property which we will call finite sample qualitative robustness.

The structure of the article is as follows: In Section 2, we recall the basic setup concerning support vector machines,
define the functional S which represents the SVM-estimators Sn, n ∈ N, and give the mathematical definitions of qualitative
robustness and finite sample qualitative robustness. In Section 3,we show that the functional S of support vectormachines is,
in fact, continuous under very mild assumptions (Theorem 3.3). This implies that support vector machines are qualitatively
robust for any fixed regularization parameter λ > 0 and are finite sample qualitatively robust for every sequence
of regularization parameters (λn)n∈N ⊂ (0, ∞) (Theorem 3.1). We also demonstrate that, for null sequences (λn)n∈N,
finite sample robustness can neither be strengthened to ordinary qualitative robustness in Hampel’s sense [17,11] nor to
qualitative robustness in the sense of [4] (qualitative resistance). As a byproduct, it follows from Theorem 3.3 that empirical
support vectormachines are continuous in the data – i.e., they are hardly affected by slight changes in the data (Corollary 3.5).
Under somewhat different assumptions, this has already been shown in [31, Lemma 5.13].

Section 4 contains some concluding remarks. All proofs are given in the Appendix.
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2. Support vector machines and qualitative robustness

Let (Ω, A,Q) be a probability space and let X be a Polish space with Borel-σ -algebra B(X). That is, X is a separable
completely metrizable topological space (e.g., a closed subset of Rd). Let Y be a closed subset of R with Borel-σ -algebra
B(Y). The Borel-σ -algebra of X×Y is denoted by B(X×Y) and the set of all probability measures on (X×Y, B(X×Y))
is denoted by M1(X × Y). Let

X1, . . . , Xn : (Ω, A,Q) −→ (X, B(X))

and
Y1, . . . , Yn : (Ω, A,Q) −→ (Y, B(Y))

be random variables such that (X1, Y1), . . . , (Xn, Yn) are independent and identically distributed according to some
unknown probability measure P ∈ M1(X × Y).

A measurable map L : X × Y × R → [0, ∞) is called a loss function. It is assumed that L(x, y, y) = 0 for every
(x, y) ∈ X × Y — that is, the loss is zero if the prediction f (x) equals the observed value y. In addition, we will assume that

L(x, y, ·) : R → [0, ∞), t → L(x, y, t)
is convex for every (x, y) ∈ X × Y and that the following uniform Lipschitz property is fulfilled for a positive real number
|L|1 ∈ (0, ∞):

sup
(x,y)∈X×Y

|L(x, y, t) − L(x, y, t ′)| ≤ |L|1 · |t − t ′| ∀t, t ′ ∈ R. (2)

We restrict our attention to Lipschitz continuous loss functions because the use of loss functions which are not Lipschitz
continuous (such as the least squares loss on unbounded domains) usually conflicts with several notions of robustness; see,
e.g., [31, Section10.4].

The risk of a measurable function f : X → R is defined by

RL,P(f ) =

∫
X×Y

L(x, y, f (x)) P(d(x, y))

where P(d(x, y)) denotes integration by P with respect to x and y.
Let k : X × X → R be a bounded and continuous kernel with reproducing kernel Hilbert space (RKHS) H . See e.g. [26]

or [31] for details about these concepts. Note that H is a Polish space since every Hilbert space is complete and, according
to [31, Lemma 4.29], H is separable. Furthermore, every f ∈ H is a bounded and continuous function f : X → R; see
[31, Lemma 4.28]. In particular, every f ∈ H is measurable and its regularized risk is defined to be

RL,P,λ(f ) = RL,P(f ) + λ‖f ‖2
H

for λ ∈ (0, ∞).
An element f ∈ H is called a support vector machine and denoted by fL,P,λ if it minimizes the regularized risk in H . That is,

RL,P(fL,P,λ) + λ‖fL,P,λ‖2
H = inf

f∈H
(RL,P(f ) + λ‖f ‖2

H).

We would like to consider a functional
S : P → fL,P,λ. (3)

However, support vector machines fL,P,λ need not exist for every probability measure P ∈ M1(X × Y) and, therefore, S
cannot be defined on M1(X × Y) in this way. A sufficient condition for the existence of a support vector machine based
on a bounded kernel k is, for example, RL,P(0) < ∞; see [31, Corollary 5.3]. In order to enlarge the applicability of support
vector machines, the following extension has been developed in [9]. Following an idea already used by [21] forM-estimates,
a shifted loss function L∗

: X × Y × R → R is defined by
L∗(x, y, t) = L(x, y, t) − L(x, y, 0) ∀(x, y, t) ∈ X × Y × R.

Then, similar to the original loss function L, define the L∗- risk by

RL∗,P(f ) =

∫
L∗(x, y, f (x)) P(d(x, y))

and the regularized L∗- risk by
RL∗,P,λ(f ) = RL∗,P(f ) + λ‖f ‖2

H

for every f ∈ H . In complete analogy to fL,P,λ, we define the support vector machine based on the shifted loss function L∗ by

fL∗,P,λ = arg inf
f∈H

(RL∗,P(f ) + λ‖f ‖2
H).

The following theorem summarizes some basic results derived by [9]:

Theorem 2.1. For every P ∈ M1(X × Y) and every λ ∈ (0, ∞), there exists a unique fL∗,P,λ ∈ H which minimizes RL∗,P,λ, i.e.

RL∗,P(fL∗,P,λ) + λ‖fL∗,P,λ‖
2
H = inf

f∈H
(RL∗,P(f ) + λ‖f ‖2

H).
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If a support vector machine fL,P,λ ∈ H exists (which minimizes RL,P,λ in H), then

fL∗,P,λ = fL,P,λ.

According to this theorem, the map

S : M1(X × Y) → H, P → fL∗,P,λ

exists, is uniquely defined and extends the functional in (3). Therefore, S may be called an SVM-functional.
In order to estimate a measurable map f : X → R which minimizes the risk

RL,P(f ) =

∫
X×Y

L(x, y, f (x)) P(d(x, y)),

the SVM-estimator is defined by

Sn : (X × Y)n → H, Dn → fL,Dn,λn

where fL,Dn,λn is that function f ∈ H which minimizes

1
n

n−
i=1

L(xi, yi, f (xi)) + λn‖f ‖2
H

in H for Dn = ((x1, x2), . . . , (xn, yn)) ∈ (X × Y)n and λn ∈ (0, ∞) is the regularization parameter. Let PDn be the empirical
measure corresponding to the data Dn for sample size n ∈ N. Then, for λ = λn, the definitions given above yield

fL,Dn,λn = Sn(Dn) = S(PDn) = fL,PDn ,λn . (4)

Note that the support vector machine uniquely exists for every empirical measure. In particular, this also implies fL,Dn,λn =

fL∗,PDn ,λn .
The main goal of the article is to investigate qualitative robustness of the sequence of SVM-estimators (Sn)n∈N. According to [17]
and [11, Definition 1], the sequence (Sn)n∈N is called qualitatively robust if the functions

M1(X × Y) → M1(H), P → Sn(Pn), n ∈ N,

are equicontinuous with respect to the weak topologies on M1(X × Y) and M1(H). Occasionally, we will replace
equicontinuity by continuity and call (Sn)n∈N finite sample qualitatively robust then. Here, M1(H) denotes the set of all
probability measures on (H, B(H)), B(H) is the Borel-σ -algebra on H , and Sn(Pn) denotes the image measure of Pn with
respect to Sn. Hence, Sn(Pn) is the measure on (H, B(H)) which is defined by

(Sn(Pn))(F) = Pn({Dn ∈ (X × Y)n | Sn(Dn) ∈ F})

for every Borel-measurable subset F ⊂ H . Of course, this definition only makes sense if the SVM-estimators are measurable
with respect to the Borel-σ -algebras. This measurability is assured by Corollary 3.5 below.

Since the weak topologies on M1(X × Y) and M1(H) are metrizable by the Prokhorov metric dPro (see Appendix A.1),
the sequence of SVM-estimators (Sn)n∈N is qualitatively robust if and only if for every P ∈ M1(X × Y) and every ρ > 0
there is an ε > 0 such that

dPro(Q, P) < ε ⇒ dPro(Sn(Qn), Sn(Pn)) < ρ ∀n ∈ N.

The sequence of SVM-estimators (Sn)n∈N is finite sample qualitatively robust if and only if for every P ∈ M1(X × Y) and
every ρ > 0 and every n ∈ N, there is an εn > 0 such that

dPro(Q, P) < εn ⇒ dPro(Sn(Qn), Sn(Pn)) < ρ.

Roughly speaking, qualitative robustness and finite sample qualitative robustnessmean that the SVM-estimator tolerates
two kinds of errors in the data: small errors in many observations (xi, yi) and large errors in a small fraction of the data
set. These two kinds of errors only have slight effects on the distribution and, therefore, on the performance of the SVM-
estimator. Fig. 1 gives a graphical illustration of qualitative robustness.

3. Main results

The following theorem is ourmain result and shows that support vectormachines are (finite sample) qualitatively robust
under mild conditions.

Theorem 3.1. Let X be a Polish space and let Y be a closed subset of R. Let the loss function be a continuous function
L : X × Y × R → [0, ∞) such that L(x, y, y) = 0 for every (x, y) ∈ X × Y and

L(x, y, ·) : R → [0, ∞), t → L(x, y, t)

is convex for every (x, y) ∈ X × Y. Assume that L fulfills the uniform Lipschitz Property (2) for a real number |L|1 ∈ (0, ∞).
Furthermore, let k : X × X → R be a bounded and continuous kernel with RKHS H.
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Fig. 1. Sketch: reasoning of robustness of S(P). Left: P, a neighborhood of P, and M1(X × Y). Right: S(P), a neighborhood of S(P), and the space of all
probability measures of S(P) for P ∈ M1(X × Y).

Then, the sequence of SVM-estimators (Sn)n∈N is finite sample qualitatively robust for every sequence of regularization
parameters (λn)n∈N ⊂ (0, ∞). If the regularization parameters λn = λ ∈ (0, ∞) do not depend on n ∈ N, then the sequence of
SVM-estimators (Sn)n∈N is qualitatively robust.

Of course, this theorem applies to classification (e.g. Y = {−1, 1}) and regression (e.g. Y = R or Y = [0, ∞)). In particular,
note that every function g : Y → R is continuous if Y is a discrete set — e.g. Y = {−1, 1}. That is, in this case, assuming L
to be continuous reduces to the assumption that

X × R → [0, ∞), (x, t) → L(x, y, t)

is continuous for every y ∈ Y. Many of themost common loss functions are permitted in the theorem, e.g. the hinge loss and
logistic loss for classification, ε-insensitive loss and Huber’s loss for regression, and the pinball loss for quantile regression.
The least squares loss is ruled out in Theorem 3.1 —which is not surprising as it is the prominent standard example of a loss
function which typically conflicts with robustness if X and Y are unbounded; see, e.g., [7,8].

Assuming continuity of the kernel kdoes not seem to be very restrictive as all of themost commonkernels are continuous.
Assuming k to be bounded is quite natural in order to ensure good robustness properties. While the Gaussian RBF kernel is
always bounded, polynomial kernels (except for the constant kernel) and the exponential kernel are bounded if and only if
X is bounded.

Our result shows qualitative robustness in the sense of [17,11] only for fixed regularization parameters λ which do not
depend on the sample size. However, it is necessary to choose appropriate null sequences (λn)n∈N ⊂ (0, ∞) in order to prove
universal consistency of the risk RL∗,P(fL∗,Dn,λn)

P
−→ inff∈F RL∗,P(f ) and fL∗,Dn,λn

P
−→ arg inff∈F RL∗,P(f ) for n → ∞ where F

denotes the set of allmeasurable functions f : X → R. Universal consistency of support vector machines was shown by [27,
35,28].We also refer to [6,1,9,30]. For sequences (λn)n∈N ⊂ (0, ∞), our result only shows finite sample qualitative robustness
of support vector machines. Though this is weaker than ordinary qualitative robustness, it is comparably meaningful in
applications because, in applications, one is always faced with a finite sample of a fixed size.

In case of null sequences (λn)n∈N ⊂ (0, ∞), finite sample robustness cannot be strengthened to ordinary qualitative
robustness. The following proposition shows that, for null sequences (λn)n∈N ⊂ (0, ∞), support vector machines cannot be
qualitatively robust in the in the sense of [17,11]. This shows that the asymptotic results on universal consistency of support
vector machines – which require appropriate null sequences (λn)n∈N ⊂ (0, ∞) – are in conflict with Hampel’s standard
notion of qualitative robustness. Such a partial conflict between consistency and qualitative robustness also happens in
ill-posed estimation problems where the goal is to estimate the value of a discontinuous functional T : P → T (P). In this
case, every consistent estimator is not qualitatively robust in the ordinary sense as follows from [18, Lemma 3] and [11,
Theorem 1]. This happens for example in nonparametric density estimation as has been pointed out in [11, Section 2].
In addition, support vector machines also cannot be qualitatively robust in the sense of [4] (qualitative resistance) for
null sequences (λn)n∈N because qualitative resistance of support vector machines would imply qualitative robustness in
Hampel’s sense; see [4, Theorems 3.1, 4.1 and 4.2] and [18, Theorem 3]. For simplicity, the following proposition focuses on
regression because it is assumed that {0, 1} ⊂ Y. A similar proposition (with a similar proof) can also be given in case of
binary classification with support vector machines where usually Y = {−1, 1}.

Proposition 3.2. Let X be a Polish space and let Y be a closed subset of R such that {0, 1} ⊂ Y. Let k be a bounded kernel with
RKHS H. Let L be a convex loss function such that L(x, y, y) = 0 for every (x, y) ∈ X × Y. In addition, assume that there are
x0, x1 ∈ X such that

∃ f̃ ∈ H : f̃ (x0) = 0, f̃ (x1) ≠ 0 (5)
L(x1, 1, 0) > 0. (6)

Let (λn)n∈N ⊂ (0, ∞) be any sequence such that limn→∞ λn = 0. Then, the sequence of estimators

Sn : (X × Y)n → H, Dn → fL,Dn,λn , n ∈ N,

is not qualitatively robust.
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Note that, assumptions (5) and (6) in Proposition 3.2 are virtually always fulfilled except for degenerated cases (e.g. k a
constant function or L ≡ 0).

The proof of our main result, Theorem 3.1, is based on the following theorem which is interesting on its own.

Theorem 3.3. Let λ ∈ (0, ∞) be fixed. Under the assumptions of Theorem 3.1, the SVM-functional

S : M1(X × Y) → H, P → fL∗,P,λ

is continuous with respect to the weak topology on M1(X × Y) and the norm topology on H.

As a generalization of earlier results by, e.g., [36,13,29], [9, Theorem 7] derived a representer theorem which showed that
for every P0 ∈ M1(X × Y), there is a bounded map hP0 : X × Y → R such that fL∗,P0,λ = −

1
2λ


hP0Φ dP0 and

‖fL∗,P,λ − fL∗,P0,λ‖H ≤ λ−1
∫ hP0Φ dP −

∫
hP0Φ dP0

 (7)

for every P ∈ M1(X × Y). The integrals in (7) are Bochner integrals of the H-valued function hP0Φ : X × Y → H ,
(x, y) → hP0(x, y)Φ(x) where Φ is the canonical feature map of k, i.e. Φ(x) = k(·, x) for all x ∈ X. This offers an
elegant possibility of proving Theorem 3.3 if we would accept some additional smoothness assumptions: The statement of
Theorem 3.3 is true if


hP0Φ dPn converges to


hP0Φ dP0 for every weakly convergent sequence Pn → P0. In the following,

we show that the integrals indeed converge – under the additional smoothness assumptions that the derivative ∂L
∂t (x, y, t)

exists and is continuous for every (x, y, t) ∈ X×Y×R. These assumptions are fulfilled e.g. for the logistic loss function and
Huber’s loss function. In this case, it follows from [9, Theorem 7] that hP0 is continuous. Since Φ is continuous and bounded
(see e.g. [31, p. 124 and Lemma 4.29]), the integrand hP0Φ : X × Y → H is continuous and bounded. Then, it follows
from [5, p. III.40] that


hP0Φ dPn converges to


hP0Φ dP0 for every weakly convergent sequence Pn → P0, just as in case of

real-valued integrands; see Appendix A.1.
Unfortunately, this short proof only works under the additional assumption of a continuous partial derivative ∂L

∂t and this
assumption rules out many loss functions used in practice, such as hinge, absolute distance and ε-insensitive for regression
and pinball for quantile regression. Therefore, our proof of Theorem 3.3 (without this additional assumption) does not use
the representer theorem and Bochner integrals; it is mainly based on the theory of Hilbert spaces and weak convergence of
measures. In the following, we give some corollaries of Theorem 3.3.

Let Cb(X) be the Banach space of all bounded, continuous functions f : X → R with norm
‖f ‖∞ = sup

x∈X
|f (x)|.

Since k is continuous and bounded, we immediately get from Theorem 3.3 and [31, Lemma 4.28]:

Corollary 3.4. Let λ ∈ (0, ∞) be fixed. Under the assumptions of Theorem 3.1, the SVM-functional

M1(X × Y) → Cb(X), P → fL∗,P,λ

is continuous with respect to the weak topology on M1(X × Y) and the norm topology on Cb(X).
That is, supx∈X |fL,P′,λ(x) − fL,P,λ(x)| is small if P′ is close to P.

The next corollary is similar to [31, Lemma 5.13]. The main difference is that Corollary 3.5 does not assume
differentiability of the loss function but assumes Lipschitz continuity of the loss function and boundedness of the kernel
instead. Therefore, Corollary 3.5 also covers the popular hinge loss, the ε-insensitive loss and the pinball loss, which are not
covered by [31, Lemma 5.13]. In combination with existence and uniqueness of support vector machines (see Theorem 2.1),
this result shows that a support vector machine is the solution of a well-posed mathematical problem in the sense of [16].

Corollary 3.5. Under the assumptions of Theorem 3.1, the SVM-estimator

Sn : (X × Y)n → H, Dn → fL,Dn,λn

is continuous for every λn ∈ (0, ∞) and every n ∈ N.

In particular, it follows from Corollary 3.5 that the SVM-estimator Sn is measurable.

Remark 3.6. Let dn be a metric which generates the topology on (X × Y)n, e.g. the Euclidean metric on Rn(q+1) if X ⊂ Rq.
Then Corollary 3.5 and [31, Lemma 4.28] imply the following continuity property of the SVM-estimator: For every ε > 0
and every data set Dn ∈ (X × Y)n, there is a δ > 0 such that

sup
x∈X

|fL,D′
n,λn

(x) − fL,Dn,λn(x)| < ε

if D′
n ∈ (X × Y)n is any other data set with n observations and dn(D′

n,Dn) < δ.

We finish this section with a corollary about strong consistency of support vector machines which arises as a by-product
of Theorem 3.3. Often, asymptotic results of support vector machines show the convergence in probability of the risk
RL∗,P(fL∗,Dn,λn) to the so-called Bayes risk inff∈F RL∗,P(f ) and of fL∗,Dn,λn to arg inff∈F RL∗,P(f ), where F is the set of all
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measurable functions f : X → R and (λn)n∈N is a suitable null sequence. In contrast to that, the following corollary provides
for fixed λ ∈ (0, ∞) almost sure convergence of RL∗,P(fL∗,Dn,λ) to RL∗,P(fL∗,P,λ) and of fL∗,Dn,λ to fL∗,P,λ. This is an interesting
fact, although the limit RL∗,P(fL∗,P,λ) will in general differ from the Bayes risk.

Recall from Section 2 that the data points (xi, yi) from the data set Dn = ((x1, x2), . . . (xn, yn)) are realizations of
i.i.d. random variables

(Xi, Yi) : (Ω, A,Q) −→ (X × Y, B(X × Y)), n ∈ N,

such that

(Xi, Yi) ∼ P ∀n ∈ N.

Corollary 3.7. Define the random vectors

Dn := ((X1, Y1), . . . , (Xn, Yn))

and the corresponding H-valued random functions

fL∗,Dn,λ = arg inf
f∈H


1
n

n−
i=1

L∗(Xi, Yi, f (Xi)) + λ‖f ‖2
H


, n ∈ N.

From the assumptions of Theorem 3.1, it follows that

(a) limn→∞ ‖fL∗,Dn,λ − fL∗,P,λ‖H = 0 almost sure
(b) limn→∞ supx∈X |fL∗,Dn,λ(x) − fL∗,P,λ(x)| = 0 almost sure
(c) limn→∞ RL∗,P,λ(fL∗,Dn,λ) = RL∗,P,λ(fL∗,P,λ) almost sure
(d) limn→∞ RL∗,P(fL∗,Dn,λ) = RL∗,P(fL∗,P,λ) almost sure.

If the support vector machine fL,P,λ exists, then assertions (a)–(d) are also valid for L instead of L∗.

4. Conclusions

It is well-known that outliers in data sets or other moderate model violations can pose a serious problem to a statistical
analysis. On the one hand, practitioners can hardly guarantee that their data sets do not contain any outliers, while, on the
other hand, many statistical methods are very sensitive even to small violations of the assumed statistical model. Since
support vector machines play an important role in statistical machine learning, investigating their performance in the
presence of moderate model violations is a crucial topic — the more so as support vector machines are frequently applied
to large and complex high-dimensional data sets.

In this article, we showed that support vector machines are qualitatively robust for fixed regularization parameters
λ ∈ (0, ∞). For sequences of regularization parameters (λn)n∈N ⊂ (0, ∞), we showed that support vector machines
still enjoy a finite sample qualitative robustness property. In any case, this means that the performance of support vector
machines is hardly affected by the following two kinds of errors: large errors in a small fraction of the data set and small
errors in the whole data set. This not only means that these errors do not lead to large errors in the support vector machines
but also that even the finite sample distribution of support vector machines is hardly affected.
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Appendix

In Appendix A.1, we briefly recall some facts about weak convergence of probability measures. In addition, we show that
weak convergence of probability measures on a Polish space implies convergence of the corresponding Bochner integrals of
bounded, continuous functions. Appendix A.2 contains all proofs.

A.1. Weak convergence of probability measures and bochner integrals

Let Z be a Polish space with Borel-σ -algebra B(Z), let d be a metric on Z which generates the topology on Z and let
M1(Z) be the set of all probability measures on (Z, B(Z)).

A sequence (Pn)n∈N of probabilitymeasures onZ converges to a probabilitymeasure P0 in theweak topology onM1(Z) if

lim
n→∞

∫
g dPn =

∫
g dP0 ∀g ∈ Cb(Z)

where Cb(Z) denotes the set of all bounded, continuous functions g : Z → R, see [3, Section1.1].
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The weak topology on M1(Z) is metrizable by the Prokhorov metric dPro; see e.g. [20, Section2.2]. The Prokhorov metric
dPro on M1(Z) is defined by

dPro(P1, P2) = inf{ε ∈ (0, ∞) | P1(B) < P2(Bε) + ε ∀B ∈ B(Z)}

where Bε
= {z ∈ Z | infz′∈B d(z, z ′) < ε}.

Let g : Z → R be a continuous and bounded function. By definition, we have limn→∞


g dPn =


g dP0 for every

sequence (Pn)n∈N ⊂ M1(Z)which convergesweakly inM1(Z) to someP0. The following theorem states that this is still valid
for Bochner integrals if g is replaced by a vector-valued continuous andbounded functionΨ : Z → H , whereH is a separable
Banach space. This follows from a corresponding statement in [5, p. III.40] for locally compact spaces Z. Boundedness of Ψ

means that supz∈Z ‖Ψ (z)‖H < ∞.

Theorem A.1. Let Z be a Polish space with Borel-σ -algebra B(Z) and let H be a separable Banach space. If Ψ : Z → H is a
continuous and bounded function, then∫

Ψ dPn −→

∫
Ψ dP0 (n → ∞)

for every sequence (Pn)n∈N ⊂ M1(Z) which converges weakly in M1(Z) to some P0.

A.2. Proofs

In order to prove the main theorem, i.e. Theorem 3.1, we have to prove Theorem 3.3 and Corollary 3.5 at first.

Proof of Theorem 3.3. Since the proof is somewhat involved, we start with a short outline. The proof is divided into four
parts. Part 1 is concerned with some important preparations. We have to show that (fL∗,Pn,λ)n∈N converges to fL∗,P0,λ in H
if the sequence of probability measures (Pn)n∈N weakly converges to the probability measure P0. According to Part 1, the
sequence (fL∗,Pn,λ)n∈N is bounded in the Hilbert space H . Therefore, there is a subsequence (fL∗,Pnℓ ,λ)ℓ∈N of (fL∗,Pn,λ)n∈N which
weakly converges in H . Then, it is shown in Part 2 and Part 3 that

lim
ℓ→∞

RL∗,Pnℓ
(fL∗,Pnℓ ,λ) = RL∗,P0(fL∗,P0,λ) (8)

lim
ℓ→∞

RL∗,Pnℓ ,λ(fL∗,Pnℓ ,λ) = RL∗,P0,λ(fL∗,P0,λ). (9)

Because of

‖f ‖2
H =

1
λ

(RL∗,P,λ(f ) − RL∗,P(f )) ∀P ∈ M1(X × Y) ∀f ∈ H,

it follows from (8) and (9) that limℓ→∞ ‖fL∗,Pnℓ ,λ‖H = ‖fL∗,P0,λ‖H . Since this convergence of the norms together with weak
convergence in the Hilbert space H implies (strong) convergence in H , we get that the subsequence (fL∗,Pnℓ ,λ)ℓ∈N converges
to fL∗,P0,λ inH . Part 4 extends this result to thewhole sequence (fL∗,Pn,λ)n∈N. Themain difficulty in the proof is the verification
of (8) in Part 3.

In order to shorten notation, define

L∗

f : X × Y → R, (x, y) → L∗(x, y, f (x)) = L(x, y, f (x)) − L(x, y, 0)

for every measurable f : X → R. Following e.g. [33,25], we use the notation

Pg =

∫
g dP

for integrals of real-valued functions g with respect to P. This leads to a very efficient notation which is more intuitive here
because, in the following, P rather acts as a linear functional on a function space than as a probabilitymeasure on aσ -algebra.

By use of these notations, we may write

PL∗

f =

∫
L∗

f dP = RL∗,P(f )

for the (shifted) risk of f ∈ H . Accordingly, the (shifted) regularized risk of f ∈ H is

RL∗,P,λ(f ) = RL∗,P(f ) + λ‖f ‖2
H = PL∗

f + λ‖f ‖2
H .

In case of k ≡ 0, the statement of Theorem 3.3 is trivial. Therefore, we may assume k ≢ 0 in the following.
Part 1: Since the loss function L, the shifted loss L∗ and the regularization parameter λ ∈ (0, ∞) are fixed, we may drop
them in the notation and write

fP := fL∗,P,λ = S(P) ∀P ∈ M1(X × Y).
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Recall from Theorem 2.1 that fL∗,P,λ is equal to the support vector machine fL,P,λ if fL,P,λ exists. That is, we have fP = fL,P,λ in
the latter case. According to [9, (17),(16)],

‖fP‖∞ ≤
1
λ

|L|1 · ‖k‖2
∞

(10)

‖fP‖H ≤


1
λ

|L|1

∫
|fP| dP

(10)
≤

1
λ

|L|1 · ‖k‖∞ (11)

for every P ∈ M1(X × Y). Since the kernel k is continuous and bounded, [31, Lemma 4.28] yields

f ∈ Cb(X) ∀f ∈ H. (12)

Therefore, continuity of L implies continuity of

L∗

f : X × Y → R, (x, y) → L(x, y, f (x)) − L(x, y, 0)

for every f ∈ H . Furthermore, the uniform Lipschitz property of L implies

sup
x,y

|L∗

f (x, y)| = sup
x,y

|L(x, y, f (x)) − L(x, y, 0)|

≤ sup
x′

sup
x,y

|L(x, y, f (x′)) − L(x, y, 0)| ≤ sup
x′

|L|1 · |f (x′) − 0|

= |L|1 · ‖f ‖∞

for every f ∈ H . Hence, we obtain

L∗

f ∈ Cb(X × Y) ∀f ∈ H. (13)

In particular, the above calculation and (10) imply

‖L∗

fP‖∞ ≤
1
λ

|L|21 · ‖k‖2
∞

∀P ∈ M1(X × Y). (14)

For the remaining parts of the proof, let (Pn)n∈N0 ⊂ M1(X × Y) be any fixed sequence such that

Pn −→ P0 (n → ∞)

in the weak topology on M1(X × Y) — that is,

lim
n→∞

Png = P0g ∀g ∈ Cb(X × Y). (15)

In particular, (13) and (15) imply

lim
n→∞

PnL∗

f = P0L∗

f ∀f ∈ H. (16)

In order to shorten the notation, define

fn := fPn = fL∗,Pn,λ = S(Pn) ∀n ∈ N ∪ {0}.

Hence, we have to show that (fn)n∈N converges to f0 in H — that is,

lim
n→∞

‖fn − f0‖H = 0. (17)

Part 2: In this part of the proof, it is shown that

lim sup
n→∞

PnL∗

fn + λ‖fn‖2
H ≤ P0L∗

f0 + λ‖f0‖2
H . (18)

Due to (13), the mapping

M1(X × Y) → R, P → PL∗

f + λ‖f ‖2
H

is defined well and continuous for every f ∈ H . As being the (pointwise) infimum over a family of continuous functions, the
function

M1(X × Y) → R, P → inf
f∈H

(PL∗

f + λ‖f ‖2
H)
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is upper semicontinuous; see, e.g., [12, Prop. 1.1.36]. Therefore, the definition of fn implies

lim sup
n→∞

(PnL∗

fn + λ‖fn‖2
H) = lim sup

n→∞

inf
f∈H

(PnL∗

f + λ‖f ‖2
H)

≤ inf
f∈H

(P0L∗

f + λ‖f ‖2
H) = P0L∗

f0 + λ‖f0‖2
H .

Part 3: In this part of the proof, the following statement is shown:
Let (fnℓ

)ℓ∈N be a subsequence of (fn)n∈N and assume that (fnℓ
)ℓ∈N converges weakly in H to some f ′

0 ∈ H . Then, the
following three assertions are true:

lim
ℓ→∞

Pnℓ
L∗

fnℓ
= P0L∗

f ′0
(19)

f ′

0 = f0 (20)

lim
ℓ→∞

‖fnℓ
− f0‖H = 0. (21)

In order to prove this, we will also have to deal with subsequences of the subsequence (fnℓ
)ℓ∈N. As this would lead to a

somewhat cumbersome notation, we define

P′

ℓ := Pnℓ
and f ′

ℓ := fnℓ
ℓ ∈ N.

Thus, f ′

ℓ = fL∗,Pnℓ ,λ for every ℓ ∈ N. Then, the assumption of weak convergence in the Hilbert space H equals

lim
ℓ→∞

⟨f ′

ℓ, h⟩H = ⟨f ′

0, h⟩H ∀h ∈ H. (22)

First of all, we show (19) by proving

lim sup
ℓ→∞

|P′

ℓL
∗

f ′
ℓ
− P0L∗

f ′0
| ≤ ε0 (23)

for every fixed ε0 > 0. In order to do this, fix any ε0 > 0 and define

ε :=
ε0

|L|1 · ( 1
λ
|L|1 · ‖k‖2

∞
+ ‖f ′

0‖∞)
> 0. (24)

Since X × Y is a Polish space, weak convergence of (P′

ℓ)ℓ∈N implies uniform tightness of (P′

ℓ)ℓ∈N (see e.g. [14, Theorem
11.5.3]). That is, there is a compact subset Kε ⊂ X × Y such that its complement K c

ε fulfills

lim sup
ℓ→∞

P′

ℓ(K
c
ε ) < ε. (25)

Since Kε is compact and the projection τX : X × Y → X, (x, y) → x is continuous, K̃ε := τX (Kε) is compact in X. For
every ℓ ∈ N0, the restriction of f ′

ℓ to K̃ε is denoted by f̃ ′

ℓ . Let k̃ be the restriction of k to K̃ε and let H̃ be its RKHS. According
to [2, Section4.2], (f̃ ′

ℓ)ℓ∈N is a bounded sequence in H̃ as (f ′

ℓ)ℓ∈N is bounded inH according to (11). Hence, (f̃ ′

ℓ)ℓ∈N is relatively
compact in Cb(K̃ε) according to [31, Corollary 4.31].

The following reasoning shows that (f̃ ′

ℓ)ℓ∈N converges to f̃ ′

0 in Cb(K̃ε) — that is,

lim
ℓ→∞

sup
x∈K̃ε

|f ′

ℓ(x) − f ′

0(x)| = 0. (26)

We will show (26) by contradiction. If (26) is not true, then there is a δ > 0 and a subsequence (f̃ ′

ℓj
)j∈N such that

sup
x∈K̃ε

|f ′

ℓj
(x) − f ′

0(x)| > δ ∀j ∈ N. (27)

Relative compactness of (f̃ ′

ℓ)ℓ∈N implies that there is a further subsequence (f̃ ′

ℓjm
)m∈N which converges in Cb(K̃ε) to some

h̃0 ∈ Cb(K̃ε). Then,

h̃0(x) = lim
m→∞

f̃ ′

ℓjm
(x) = lim

m→∞
f ′

ℓjm
(x) = lim

m→∞
⟨f ′

ℓjm
, Φ(x)⟩H

(22)
= ⟨f ′

0, Φ(x)⟩H = f ′

0(x) = f̃ ′

0(x)

for every x ∈ K̃ε . That is, f̃ ′

0 is the limit of (f̃ ′

ℓjm
)m∈N —which is the desired contradiction to (27). Therefore, (26) is true.
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Now, we can prove (23): Firstly, the triangle inequality and the Lipschitz continuity of L yield

lim sup
ℓ→∞

|P′

ℓL
∗

f ′
ℓ
− P0L∗

f ′0
| ≤ lim sup

ℓ→∞

|P′

ℓL
∗

f ′
ℓ
− P′

ℓL
∗

f ′0
| + |P′

ℓL
∗

f ′0
− P0L∗

f ′0
|

(16)
= lim sup

ℓ→∞

|P′

ℓL
∗

f ′
ℓ
− P′

ℓL
∗

f ′0
|

= lim sup
ℓ→∞

∫ L(x, y, f ′

ℓ(x)) − L(x, y, f ′

0(x))dP
′

ℓ


≤ lim sup

ℓ→∞

∫
|L|1 · |f ′

ℓ(x) − f ′

0(x)|P
′

ℓ(d(x, y))

= |L|1 · lim sup
ℓ→∞

∫
Kε

|f ′

ℓ(x) − f ′

0(x)|P
′

ℓ(d(x, y)) +

∫
K c
ε

|f ′

ℓ(x) − f ′

0(x)|P
′

ℓ(d(x, y))


.

Secondly, using K̃ε = τX (Kε), we obtain

lim sup
ℓ→∞

∫
Kε

|f ′

ℓ(x) − f ′

0(x)|P
′

ℓ(d(x, y)) ≤ lim sup
ℓ→∞

sup
(x,y)∈Kε

|f ′

ℓ(x) − f ′

0(x)| = lim sup
ℓ→∞

sup
x∈K̃ε

|f ′

ℓ(x) − f ′

0(x)|
(26)
= 0.

Thirdly,

lim sup
ℓ→∞

∫
K c
ε

|f ′

ℓ(x) − f ′

0(x)|P
′

ℓ(d(x, y)) ≤ lim sup
ℓ→∞

P′

ℓ(K
c
ε ) · (‖f ′

ℓ‖∞ + ‖f ′

0‖∞)

(25)
≤ lim sup

ℓ→∞

ε · (‖f ′

ℓ‖∞ + ‖f ′

0‖∞)
(10),(24)

=
ε0

|L|1
.

Combining these three calculations proves (23). Since ε0 > 0 was arbitrarily chosen in (23), this proves (19).
Next, we prove (20): Due to weak convergence of (fnℓ

)ℓ∈N in H , it follows from [10, Exercise V.1.9] that

‖f ′

0‖H ≤ lim inf
ℓ→∞

‖fnℓ
‖H . (28)

Therefore, the definition of f0 = fL∗,P0,λ implies

P0L∗

f0 + λ‖f0‖2
H = inf

f∈H
(P0L∗

f + λ‖f ‖2
H)

≤ P0L∗

f ′0
+ λ‖f ′

0‖
2
H

(19), (28)
≤ lim inf

ℓ→∞

(Pnℓ
L∗

fnℓ
+ λ‖fnℓ

‖
2
H)

≤ lim sup
ℓ→∞

(Pnℓ
L∗

fnℓ
+ λ‖fnℓ

‖
2
H)

(18)
≤ P0L∗

f0 + λ‖f0‖2
H .

Due to this calculation, it follows that

P0L∗

f0 + λ‖f0‖2
H = inf

f∈H
(P0L∗

f + λ‖f ‖2
H) = P0L∗

f ′0
+ λ‖f ′

0‖
2
H (29)

and

P0L∗

f0 + λ‖f0‖2
H = lim

ℓ→∞

(Pnℓ
L∗

fnℓ
+ λ‖fnℓ

‖
2
H). (30)

According to Theorem 2.1, f0 = fL∗,P0,λ is the unique minimizer of the function

H → R, f → P0L∗

f + λ‖f ‖2
H

and, therefore, (29) implies f0 = f ′

0— i.e. (20).
Completing Part 3 of the proof, (21) is shown now:

lim
ℓ→∞

‖fnℓ
‖
2
H = lim

ℓ→∞

1
λ

((Pnℓ
L∗

fnℓ
+ λ‖fnℓ

‖
2
H) − Pnℓ

L∗

fnℓ
)

(19), (30)
=

1
λ

((P0L∗

f0 + λ‖f0‖2
H) − P0L∗

f0) = ‖f0‖2
H .

By assumption, the sequence (fnℓ
)ℓ∈N converges weakly to some f ′

0 ∈ H and by (20), we know that f ′

0 = f0. In addition, we
have proven limℓ→∞ ‖fnℓ

‖H = ‖f0‖H now. This convergence of the norms together with weak convergence implies strong
convergence in the Hilbert space H , — see, e.g., [10, Exercise V.1.8]. That is, we have proven (21).
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Part 4: In this final part of the proof, (17) is shown. This is done by contradiction: If (17) is not true, there is an ε > 0 and a
subsequence (fnℓ

)ℓ∈N of (fn)n∈N such that

‖fnℓ
− f0‖H > ε ∀ℓ ∈ N. (31)

According to (11), (fnℓ
)ℓ∈N = (fPnℓ )ℓ∈N is bounded in H . Hence, the sequence (fnℓ

)ℓ∈N contains a further subsequence that
weakly converges in H to some f ′

0; see e.g. [15, Corollary IV.4.7]. Without loss of generality, we may therefore assume that
(fnℓ

)ℓ∈N weakly converges in H to some f ′

0 . (Otherwise, we can choose another subsequence in (31)). Next, it follows from
Part 3, that (fnℓ

)ℓ∈N strongly converges in H to f0 – which is a contradiction to (31). �

Proof of Corollary 3.5. Let (Dn,m)m∈N be a sequence in (X × Y)n which converges to some Dn,0 ∈ (X × Y)n. Then, the
corresponding sequence of empiricalmeasures (PDn,m)m∈N weakly converges inM1(X×Y) toPDn,0 . Therefore, the statement
follows from Theorem 3.3 and (4). �

Based on [11], the main theorem essentially is a consequence of Theorem 3.3.

Proof of Theorem 3.1. First, assume that λn = λ does not depend on the sample size n ∈ N. According to Corollary 3.5, the
SVM-estimator

Sn : (X × Y)n → H, Dn → fL,Dn,λ

is continuous and, therefore, measurable with respect to the Borel-σ -algebras for every n ∈ N. The mapping

S : M1(X × Y) → H, P → fL∗,P,λ

is a continuous functional due to Theorem 3.3. Furthermore,

Sn(Dn) = S(PDn) ∀Dn ∈ (X × Y)n ∀n ∈ N.

As already mentioned in Section 2, H is a separable Hilbert space and, therefore, a Polish space. Hence, the sequence of
SVM-estimators (Sn)n∈N is qualitatively robust according to [11, Theorem 2].

Next, let (λn)n∈N ⊂ (0, ∞) be any sequence. Fix any n ∈ N. Then, the previous result implies for the fixed n ∈ N: for
every P ∈ M1(X × Y) and every ρ > 0, there is an εn > 0 such that

dPro(Q, P) < εn ⇒ dPro(Sn(Qn), Sn(Pn)) < ρ.

That is, (Sn)n∈N is finite sample qualitatively robust. �

Proof of Proposition 3.2. Without loss of generality, we may assume that

f̃ (x0) = 0 and f̃ (x1) = 1. (32)

(Otherwise, we can divide f̃ by f̃ (x1).) Since the function R → [0, ∞), t → L(x1, 1, t) is convex, it is also continuous.
Therefore, (6) implies the existence of an γ ∈ (0, 1) such that

L(x1, 1, γ ) > 0. (33)

Note that convexity of the loss function, L(x1, 1, 1) = 0 and L(x1, 1, γ ) > 0 imply

0 = L(x1, 1, 1) ≤ L(x1, 1, t) < L(x1, 1, γ ) ≤ L(x1, 1, s) (34)

for 0 ≤ s ≤ γ < t ≤ 1. Define P0 := δ(x0,0). Since fL,δ(x0,0),λn = 0, it follows that

Pn
0({Dn ∈ (X × Y)n | fL,Dn,λn = 0}) = 1. (35)

Next, fix any ε ∈ (0, 1) and define the mixture distribution

Pε := (1 − ε)P0 + εδ(x1,1) = (1 − ε)δ(x0,0) + εδ(x1,1).

For every n ∈ N, let Z′
n be the subset of (X × Y)n which consists of all those elements Dn = (D(1)

n , . . . ,D(n)
n ) ∈ (X × Y)n

where

D(i)
n ∈ {(x0, 0), (x1, 1)} ∀i ∈ {1, . . . , n}.

In addition, let Z′′
n be the subset of (X × Y)n which consists of all those elements Dn = (D(1)

n , . . . ,D(n)
n ) ∈ (X × Y)n where

♯({i ∈ {1, . . . , n} | D(i)
n = (x1, 1)}) ≥

ε

2
. (36)
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Define Zn := Z′
n ∩ Z′′

n . Then, we have Pn
ε(Z

′
n) = 1 and, according to the law of large numbers [14, Theorem 8.3.5],

limn→∞ Pn
ε(Z

′′
n) = 1. Hence, there is an nε,1 ∈ N such that

Pn
ε(Zn) ≥

1
2

∀n ≥ nε,1. (37)

Due to limn→∞ λn = 0 and (33), there is an nε,2 ∈ N such that

λn‖f̃ ‖2
H <

ε

2
L(x1, 1, γ ) ∀n ≥ nε,2. (38)

In the following, we show

fL,Dn,λn(x1) > γ ∀Dn ∈ Zn, ∀n ≥ nε,2. (39)

To this end, fix any Dn ∈ Zn. In order to prove (39), it is enough to show the following assertion for every n ≥ nε,2:

f ∈ H, f (x1) ≤ γ ⇒ RL,Dn,λn(f̃ ) ≤ RL,Dn,λn(f ). (40)

The definition of Zn and (32) imply

RL,Dn,λn(f̃ ) = RL,Dn(f̃ ) + λn‖f̃ ‖2
H = λn‖f̃ ‖2

H .

For every f ∈ H such that f (x1) ≤ γ , the definition of Zn implies

RL,Dn,λn(f ) ≥ RL,Dn(f )
(36)
≥

ε

2
L(x1, 1, f (x1))

(34)
≥

ε

2
L(x1, 1, γ ).

Hence, (40) follows from (38) and, therefore, we have proven (39).
Define nε = max{nε,1, nε,2}. By assumption, k is a bounded, non-zero kernel. According to [31, Lemma 4.23], this implies

‖fL,Dn,λn‖H ≥
‖fL,Dn,λn‖∞

‖k‖∞

(39)
≥

γ

‖k‖∞

∀Dn ∈ Zn, ∀n ≥ nε

and, therefore,

‖fL,Dn,λn‖H ≥ min


γ

‖k‖∞

, 1


=: c ∀Dn ∈ Zn, ∀n ≥ nε. (41)

Define F := {f ∈ H | ‖f ‖H ≥ c} and

F
c
2 :=


f ∈ H | inf

f ′∈F
‖f − f ′

‖H ≤
c
2


⊂ {f ∈ H | ‖f ‖H > 0}. (42)

Hence, for every n ≥ nε , we obtain
Sn(Pn

ε)

(F) = Pn

ε({Dn | ‖fL,Dn,λn‖H ≥ c})
(41)
≥ Pn

ε(Zn)

(37)
≥

1
2

(41)
≥

c
2

(35)
= Pn

0({Dn | ‖fL,Dn,λn‖H > 0}) +
c
2

= [Sn(Pn
0)]({f ∈ H | ‖f ‖H > 0}) +

c
2

(42)
≥ [Sn(Pn

0)]

F

c
2


+

c
2
.

According to the definition of the Prokhorov distance (see Appendix A.1), it follows that

sup
n∈N

dPro(Sn(Pn
0), Sn(P

n
ε)) ≥

c
2
. (43)

In addition, we have dPro(P0, Pε) ≤ ε because Pε is an ε-mixture of P0. Since c > 0 does not depend on ε ∈ (0, 1) and ε may
be arbitrarily small, this proves that (Sn)n∈N is not qualitatively robust in P0. �

Proof of Corollary 3.7. Let PDn denote the function which maps ω ∈ Ω to the empirical measure 1
n

∑n
i=1 δ(Xi(ω),Yi(ω)).

According to Varadarajan’s Theorem [14, Theorem 11.4.1], there is a set N ∈ A such that Q(N) = 0 and PDn(ω) weakly
converges to P for every ω ∈ Ω \ N . Then, Theorem 3.3 implies

lim
n→∞

‖fL∗,Dn(ω),λ − fL∗,P,λ‖H
(4)
= lim

n→∞
‖S(PDn(ω)) − S(P)‖H = 0
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for every ω ∈ Ω \ N . This proves (a) and, due to [31, Lemma 4.28], (b). The Lipschitz continuity of L∗ implies

|RL∗,P(fL∗,Dn(ω),λ) − RL∗,P(fL∗,P,λ)| =

∫ L(x, y, fL∗,Dn(ω),λ(x)) − L(x, y, fL∗,P,λ(x)) P(d(x, y))


≤

∫
sup
x′,y′

|L(x′, y′, fL∗,Dn(ω),λ(x)) − L(x′, y′, fL∗,P,λ(x))| P(d(x, y))

≤

∫
|L|1 · |fL∗,Dn(ω),λ(x) − fL∗,P,λ(x)| P(d(x, y))

≤ |L|1 · ‖fL∗,Dn(ω),λ − fL∗,P,λ‖∞

for every ω ∈ Ω . According to (b), the last term converges to 0 for Q-almost every ω ∈ Ω and this implies (d). Finally, (c)
follows from (a) and (d).

If fL,P,λ exists, then fL∗,P,λ is equal to fL,P,λ (Theorem 2.1). In particular, there is an f ∈ H such that (x, y) → L(x, y, f (x))
is P- integrable. Since Lipschitz-continuity of L and H ⊂ Cb(X) (see [31, Lemma 4.28]) implies P-integrability of (x, y) →

L∗(x, y, f (x)) = L(x, y, f (x)) − L(x, y, 0), we get that (x, y) → L(x, y, 0) is also P-integrable. Therefore, RL∗,P(f ) is equal to
RL,P(f )−RL,P(0) for every f ∈ H , andRL,P(0) is a finite constant which does not depend on f . Furthermore, fL∗,Dn,λ = fL,Dn,λ

for every Dn ∈ (X × Y)n; see Section 2. Hence, the original assertions (a)–(d) for L∗ turn into the corresponding assertions
for L instead of L∗. �

Proof of Theorem A.1. If Ψ = 0, the statement is true. Assume Ψ ≠ 0 now and assume that the statement of the theorem
is not true. Then, there is an ε > 0 and a subsequence (Pnℓ

)ℓ∈N such that∫ Ψ dPnl −

∫
Ψ dP0


H

> ε ∀ ℓ ∈ N. (44)

Since the sequence (Pn)n∈N weakly converges to P0, it is uniformly tight; see, e.g., [14, Theorem 11.5.3]. That is, there is a
compact subset K ⊂ Z such that

Pnℓ


Z \ K


<

ε

4 sup
z

‖Ψ (z)‖H
∀ ℓ ∈ N0. (45)

For every ℓ ∈ N, let P̃nℓ
denote the restriction of Pnℓ

to the Borel-σ -algebraB(K) of K . Let Ψ̃ denote the restriction ofΨ to K .
Since K is a compact Polish space, the set M(K) of all finite signedmeasures on B(K) is the dual space of C(K) (the set of all
continuous functions f : K → R); see e.g. [14, Theorem 7.1.1 and 7.4.1]. Accordingly, M(K) is precisely the set of all (real)
measures in the sense of [5, Section III.1]; see also [5, Subsection III.1.5 and III.1.8]. Since (P̃nℓ

)ℓ∈N is relatively compact in the
vague topology of M(K) [5, Subsection III.1.9], wemay assumewithout loss of generality that (P̃nℓ

)ℓ∈N vaguely converges to
some positive finite measure P̃′

0. (Otherwise, we may replace (P̃nℓ
)ℓ∈N by a further subsequence.) According to [5, p. III.40],

vague convergence implies∫
Ψ̃ dP̃nℓ

−→

∫
Ψ̃ dP̃′

0 (ℓ → ∞) (46)

for Pettis and Bochner integrals (since H is assumed to be a separable Banach space, Pettis integrals and Bochner integrals
coincide; see e.g. [14, p. 150]).

Let H∗ be the dual space of H . Note that F ◦ Ψ is continuous and bounded on Z for every F ∈ H∗. Hence, it follows from
weak convergence of (Pnℓ

)ℓ∈N to P0 and a property of the Bochner integral [12, Theorem 3.10.16] that

lim
ℓ→∞

F
∫

Ψ dPnℓ


= lim

ℓ→∞

∫
F ◦ Ψ dPnℓ

=

∫
F ◦ Ψ dP0 = F

∫
Ψ dP0


.

Accordingly, vague convergence of (P̃nℓ
)ℓ∈N to P̃′

0 implies limℓ→∞ F


Ψ̃ dP̃nℓ


= F


Ψ̃ dP̃′

0


. Hence,

lim
ℓ→∞

F
∫

Ψ dPnℓ
−

∫
Ψ̃ dP̃nℓ


= F

∫
Ψ dP0 −

∫
Ψ̃ dP̃′

0


. (47)

For every ℓ ∈ N,∫ Ψ dPnℓ
−

∫
Ψ̃ dP̃nℓ


H

=

∫
Z\K

Ψ dPnℓ


H

≤

∫
Z\K

‖Ψ ‖H dPnℓ

(45)
≤

ε

4
. (48)
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For every ℓ ∈ N and every F ∈ H∗ such that ‖F‖H∗ ≤ 1, (48) implies
F Ψ dPnℓ

−


Ψ̃ dP̃nℓ

 ≤
ε
4 and, because of (47),

also
F Ψ dPnℓ

−


Ψ̃ dP̃nℓ

 ≤
ε
4 . Hence, it follows from [15, Corollary II.3.15] that∫ Ψ dP0 −

∫
Ψ̃ dP̃′

0


H

≤
ε

4
. (49)

By using the triangle inequality, we obtain∫ Ψ dPnℓ
−

∫
Ψ dP0


H

≤

∫ Ψ dPnℓ
−

∫
Ψ̃ dP̃nℓ


H

+

∫ Ψ̃ dP̃nℓ
−

∫
Ψ̃ dP̃′

0


H

+

∫ Ψ̃ dP̃′

0 −

∫
Ψ dP0


H

,

so that (46), (48) and (49) imply lim supℓ→∞

 Ψ dPnℓ
−


Ψ dP0

H ≤

ε
2 . This is a contradiction to (44). �
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