151 research outputs found

    Secure 3G user authentication in ad-hoc serving networks

    Get PDF
    The convergence of cellular and IP technologies has pushed the integration of 3G and WLAN networks to the forefront. With 3G networks\u27 failure to deliver feasible bandwidth to the customer and the emerging popularity, ease of use and high throughput of 802.11 WLANs, integrating secure access to 3G services from WLANs has become a primary focus. 3G user authentication initiated from WLANs has been defined by an enhancement to the extensible authentication protocol, EAP, used to transport user authentication requests over WLANs. The EAP-AKA protocol executes the 3G USIM user challenge and response authentication process over the IP backbone for WLAN serving networks. To improve the degree of control of 3G subscribers, spatial control has been proposed for 3G-WLAN user authentication. Successful execution of 3G security algorithms can be limited to a specified area by encrypting a user\u27s authentication challenge with spatial data defining his/her visited WLAN. With 3G networks\u27 limited capacity to determine a user\u27s location to the granularity of a small WLAN area and restricted access to users\u27 location due to privacy, 3G operators must rely on spatial data sent from visited WLANs to implement control for authentication. The risks of implementing EAP-AKA spatial control by 3G operators with no prior relationship or trust for serving WLAN networks are presented in this paper. An ad-hoc architecture is proposed for serving networks in 3G-WLAN integration and the advantages of this architecture that facilitate secure 3G user authentication are identified. Algorithms are proposed to define robust trust relationships between the parties in 3G-WLAN networks. The security of 3G user authentication is further protected by new mechanisms defined that are based on the quality of trust established between parties

    Wireless Communications: Myths and Reality

    Get PDF
    The use of wireless communications and computing is growing quickly, and wireless technologies are an active area of research and application. Many myths exist about different aspects of wireless computing. The purpose of this article is to examine the more prominent popular beliefs in this area. We address these beliefs using a framework consisting of three dimensions: technology, business, and society. For technology, wireless\u27 limited bandwidth and its effect on new wireless applications and services are discussed. For business, the anticipated revenue opportunities of Wi-Fi and mobile e-commerce are addressed. For society, issues of wireless security and its effect on wireless adoption are examined. Based on these examinations, we propose research directions along each dimension

    MDS-WLAN: Maximal Data Security in WLAN for Resisting Potential Threats

    Get PDF
    The utmost security standards over Wireless Local Area Network (WLAN) are still an unsolved answer in research community as well as among the commercial users. There are various prior attempts in proposing security of WLAN that lacks focus on access point and is found to be quite complex implementation of cryptography. The proposed paper presents a novel, simple, and yet robust technique called as MDS-WLAN i.e. maximal data security in WLAN. The system is evaluated over laboratory prototype and mitigation measures are drawn for resisting wormhole attack, Sybil attack, and rogue access point issue in WLAN. The outcome of the MDS is compared with conventional AES and SHA that shows optimal communication performance and highest data security

    Potential Applications of IPsec in Next Generation Networks

    Get PDF

    Delivery of Personalized and Adaptive Content to Mobile Devices:A Framework and Enabling Technology

    Get PDF
    Many innovative wireless applications that aim to provide mobile information access are emerging. Since people have different information needs and preferences, one of the challenges for mobile information systems is to take advantage of the convenience of handheld devices and provide personalized information to the right person in a preferred format. However, the unique features of wireless networks and mobile devices pose challenges to personalized mobile content delivery. This paper proposes a generic framework for delivering personalized and adaptive content to mobile users. It introduces a variety of enabling technologies and highlights important issues in this area. The framework can be applied to many applications such as mobile commerce and context-aware mobile services

    A Framework for the Self-Configuration of Wireless Mesh Networks

    Get PDF
    The use of wireless radio technology is well established for narrowband access systems, but its use for broadband access is relatively new. Wireless mesh architecture is a first step towards providing high-bandwidth wireless network coverage, spectral efficiency, and economic advantage. However, the widespread adoption and use of Wireless Mesh Networks (WMN) as a backbone for large wireless access networks and for last-mile subscriber access is heavily dependent on the technology’s ease of deployment. In order for WMNs to be regarded as mainstream technology, it needs to gain a competitive edge compared to wireline technologies such as DSL and cable. To achieve this, a broadband wireless network must be self-configuring, self-healing and self-organizing. In this thesis, we address these challenges. First, we propose a four-stage scheme (power-up, bootstrapping, network registration, and network optimization). We develop algorithms for each of these stages, taking advantage of the inherent properties of WMNs to determine the network’s topology. The novel part of our scheme is in the de-coupling of the subscriber’s credentials from the network hardware. This is a key part of our architecture as it helps ensure quick network enrolment, management and portability. It also helps, in our opinion, make the concept of widespread deployment using commodity hardware feasible

    From cellular networks to mobile cloud computing: security and efficiency of smartphone systems.

    Get PDF
    In my first year of my Computer Science degree, if somebody had told me that the few years ahead of me could have been the last ones of the so-called PC-era, I would have hardly believed him. Sure, I could imagine computers becoming smaller, faster and cheaper, but I could have never imagined that in such a short time the focus of the market would have so dramatically shifted from PCs to personal devices. Today, smartphones and tablets have become our inseparable companions, changing for the better numerous aspects of our daily life. The way we plan our days, we communicate with people, we listen to music, we search for information, we take pictures, we spend our free time and the way we note our ideas has been totally revolutionized thanks to them. At the same time, thanks also to the rapid growth of the Cloud Computing based services, most of our data and of the Internet services that we use every day are just a login-distance away from any device connected to the Internet that we can find around us. We can edit our documents, look our and our friends’ pictures and videos, share our thoughts, access our bank account, pay our taxes using a familiar interface independently from where we are. What is the most fascinating thing is that all these new possibilities are not anymore at the hand of technically-savvy geeks only, but they are available to newer and older generations alike thanks to the efforts that recently have been put into building user interfaces that feel more natural and intuitive even to totally unexperienced users. Despite of that, we are still far from an ideal world. Service providers, software engineers, hardware manufacturers and security experts are having a hard time in trying to satisfy the always growing expectations of a number of users that is steadily increasing every day. People are always longing for faster mobile connectivity at lower prices, for longer lasting batteries and for more powerful devices. On top of that, users are more and more exposed to new security threats, either because they tend to ignore even the most basic security-practices, or because virus writers have found new ways to exploit the now world-sized market of mobile devices. For instance, more people accessing the Internet from their mobile devices forces the existing network infrastructure to be continuously updated in order to cope with the constantly increase in data consumption. As a consequence, AT&T’s subscribers in the United States were getting extremely slow or no service at all because of the mobile network straining to meet iPhone users’ demand [5]. The company switched from unlimited traffic plans to tiered pricing for mobile data users in summer 2010. Similarly, Dutch T-Mobile’s infrastructure has not been able to cope with intense data traffic, thus forcing the company to issue refunds for affected users [6]. Another important aspect is that of mobile security. Around a billion of people today have their personal information on Facebook and half of them access Facebook from their mobile phone [7]; the size of the online-banking in America has almost doubled since 2004, with 16% of the American mobile users conducting financial-related activities from their mobile device [8]; on 2010, customers spent one billion of dollars buying products on Amazon via mobile devices [9]. These numbers give an idea of the amount of people that today could find themselves in trouble by not giving enough care into protecting their mobile device from unauthorized access. A distracted user who loses his phone, or just forgets it in a public place, even if for a short time only, could allow someone else to get unrestrained access to his online identity. By copying the contents of the phone, including passwords and access keys, an attacker could steal money from the user’s bank account, read the user’s emails, steal the user’s personal files stored on the cloud, use the user’s personal information to conduct scams, frauds, and other crimes using his name and so on. But identity theft is not the only security problem affecting mobile users. Between 2011 and 2012, the number of unique viruses and malwares targeting mobile devices has increased more than six times, according to a recent report [10]. Typically, these try to get installed in the target device by convincing the user to download an infected app, or by making them follow a link to a malicious web site. The problems just exposed are major issues affecting user’s experience nowadays. We believe that finding effective, yet simple and widely adoptable solutions may require a new point of view, a shift in the way these problems are tackled. For these reasons, we evaluated the possibility of using a hybrid approach, that is, one where different technologies are brought together to create new, previously unexplored solutions. We started by considering the issues affecting the mobile network infrastructure. While it is true that the usage of mobile connectivity has significantly increased over the past few years, it is also true that socially close users tend to be interested in the same content, like, the same Youtube videos, the same application updates, the same news and so on. By knowing that, operators, instead of spending billions [11] to update their mobile network, could try an orthogonal approach and leverage an ad-hoc wireless network between the mobile devices, referred to in literature as Pocket Switched Networks [12]. Indeed, most of the smartphones on the market today are equipped with short-ranged radio interfaces (i.e., Bluetooth, WiFi) that allow them to exchange data whenever they are close enough to each other. Popular data could be then stored and transferred directly between devices in the same social context in an ad-hoc fashion instead of being downloaded multiple times from the mobile network. We therefore studied the possibility of channeling traffic to a few, socially important users in the network called VIP delegates, that can help distributing contents to the rest of the network. We evaluated VIP selection strategies that are based on the properties of the social network between mobile devices users. In Chapter 2, through extensive evaluations with real and synthetic traces, we show the effectiveness of VIP delegation both in terms of coverage and required number of VIPs – down to 7% in average of VIPs are needed in campus-like scenarios to offload about 90% of the traffic. These results have also been presented in [1]. Next we moved to the security issues. On of the highest threats to the security of mobile users is that of an identity theft performed using the data stored on the device. The problem highlighted by this kind of attacks is that the most commonly used authentication mechanisms completely fail to distinguish the honest user from somebody who just happens to know the user’s login credentials or private keys. To be resistant to identity theft attacks, an authentication mechanism should, instead, be built to leverage some intrinsic and difficult to replicate characteristic of each user. We proposed the Personal Marks and Community Certificates systems with this aim in mind. They constitute an authentication mechanism that uses the social context sensed by the smartphone by means of Bluetooth or WiFi radios as a biometric way to identify the owner of a device. Personal Marks is a simple cryptographic protocol that works well when the attacker tries to use the stolen credentials in the social community of the victim. Community Certificates works well when the adversary has the goal of using the stolen credentials when interacting with entities that are far from the social network of the victim. When combined, these mechanisms provide an excellent protection against identity theft attacks. In Chapter 3 we prove our ideas and solutions with extensive simulations in both simulated and real world scenarios—with mobility traces collected in a real life experiment. This study appeared in [2]. Another way of accessing the private data of a user, other than getting physical access to his device, could be by means of a malware. An emerging trend in the way people are fooled into installing malware-infected apps is that of exploiting existing trust relationships between socially close users, like those between Facebook friends. In this way, the malware can rapidly expand through social links from a small set of infected devices towards the rest of the network. In our quest for hybrid solutions to the problem of malware spreading in social networks of mobile users we developed a novel approach based on the Mobile Cloud Computing paradigm. In this new paradigm, a mobile device can alleviate the burden of computationally intensive tasks by offloading them to a software clone running on the cloud. Also, the clones associated to devices of users in the same community are connected in a social peer-to-peer network, thus allowing lightweight content sharing between friends. CloudShield is a suite of protocols that provides an efficient way stop the malware spread by sending a small set of patches from the clones to the infected devices. Our experiments on different datasets show that CloudShield is able to better and more efficiently contain malware spreading in mobile wireless networks than the state-of-the-art solutions presented in literature. These findings (which are not included in this dissertation) appeared in [3] and are the result of a joint work with P.h.D student S. Kosta from Sapienza University. My main contribution to this work was in the simulation of both the malware spreading and of the patching protocol schemes on the different social networks datasets. The Mobile Cloud Computing paradigm seems to be an excellent resource for mobile systems. It alleviates battery consumption on smartphones, it helps backing up user’s data on-the-fly and, as CloudShield proves, it can also be used to find new, effective, solutions to existing problems. However, the communication between the mobile devices and their clones needed by such paradigm certainly does not come for free. It costs both in terms of bandwidth (the traffic overhead to communicate with the cloud) and in terms of energy (computation and use of network interfaces on the device). Being aware of the issues that heavy computation or communication can cause to both the battery life of the devices [13], and to the mobile infrastructure, we decided to study the actual feasibility of both mobile computation offloading and mobile software/data backups in real-life scenarios. In our study we considered two types of clones: The off-clone, whose purpose is to support computation offloading, and the back-clone, which comes to use when a restore of user’s data and apps is needed. In Chapter 5 we give a precise evaluation of the feasibility and costs of both off-clones and back-clones in terms of bandwidth and energy consumption on the real device. We achieved this by means measurements done on a real testbed of 11 Android smartphones and on their relative clones running on the Amazon EC2 public cloud. The smartphones have been used as the primary mobile by the participants for the whole experiment duration. This study has been presented in [4] and is the result of a collaboration with P.h.D. Student S. Kosta from Sapienza University. S. Kosta mainly contributed to the experimental setup, deployment of the testbed and data collection

    Emerging Risks and Criminal Investigation of 3G “Smart Phones”

    Get PDF
    The ever increasing use of the mobile devises in particular smart phones means a new concern for security threats. Smart phone capabilities are because of Enhanced Data Rates for Global Evolution (EDGE) platform which delivers up to 7 times faster than a normal 56K Modem. The capability of 3G mobile telephone devices makes their use of value to the criminal community as a data terminal in the facilitation of organised crime or terrorism. The effective targeting of these devices from criminal and security intelligence perspectives and subsequent detailed forensic examination of the targeted device will significantly enhance the evidence available to the law enforcement community. This Paper is a technical overview of the structure and capability of the 3G networks and how the network services may be exploited by a criminal or (organised) group of criminals

    On secure communication in integrated internet and heterogeneous multi-hop wireless networks.

    Get PDF
    Integration of the Internet with a Cellular Network, WMAN, WLAN, and MANET presents an exceptional promise by having co-existence of conventional WWANs/WMANs/WLANs with wireless ad hoc networks to provide ubiquitous communication. We call such integrated networks providing internet accessibility for mobile users as heterogeneous multi-hop wireless networks where the Internet and wireless infrastructure such as WLAN access points (APs) and base stations (BSs) constitute the backbone for various emerging wireless networks (e.g., multi-hop WLAN and ad hoc networks. Earlier approaches for the Internet connectivity either provide only unidirectional connectivity for ad hoc hosts or cause high overhead as well as delay for providing full bi-directional connections. In this dissertation, a new protocol is proposed for integrated Internet and ad hoc networks for supporting bi-directional global connectivity for ad hoc hosts. In order to provide efficient mobility management for mobile users in an integrated network, a mobility management protocol called multi-hop cellular IP (MCIP) has been proposed to provide a micro-mobility management framework for heterogeneous multi-hop network. The micro-mobility is achieved by differentiating the local domain from the global domain. At the same time, the MCIP protocol extends Mobile IP protocol for providing macro-mobility support between local domains either for single hop MSs or multi-hop MSs. In the MCIP protocol, new location and mobility management approaches are developed for tracking mobile stations, paging, and handoff management. This dissertation also provides a security protocol for integrated Internet and MANET to establish distributed trust relationships amongst mobile infrastructures. This protocol protects communication between two mobile stations against the attacks either from the Internet side or from wireless side. Moreover, a secure macro/micro-mobility protocol (SM3P) have been introduced and evaluated for preventing mobility-related attacks either for single-hop MSs or multi-hop MSs. In the proposed SM3P, mobile IP security has been extended for supporting macro-mobility across local domains through the process of multi-hop registration and authentication. In a local domain, a certificate-based authentication achieves the effective routing and micro-mobility protection from a range of potential security threats
    corecore