22,935 research outputs found

    Dimensionality reduction methods for machine translation quality estimation

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s10590-013-9139-3[EN] Quality estimation (QE) for machine translation is usually addressed as a regression problem where a learning model is used to predict a quality score from a (usually highly-redundant) set of features that represent the translation. This redundancy hinders model learning, and thus penalizes the performance of quality estimation systems. We propose different dimensionality reduction methods based on partial least squares regression to overcome this problem, and compare them against several reduction methods previously used in the QE literature. Moreover, we study how the use of such methods influence the performance of different learning models. Experiments carried out on the English-Spanish WMT12 QE task showed that it is possible to improve prediction accuracy while significantly reducing the size of the feature sets.This work supported by the European Union Seventh Framework Program (FP7/2007-2013) under the CasMaCat project (grants agreement no. 287576), by Spanish MICINN under TIASA (TIN2009-14205-C04-02) project, and by the Generalitat Valenciana under grant ALMPR (Prometeo/2009/014).González Rubio, J.; Navarro Cerdán, JR.; Casacuberta Nolla, F. (2013). Dimensionality reduction methods for machine translation quality estimation. Machine Translation. 27(3-4):281-301. https://doi.org/10.1007/s10590-013-9139-3S281301273-4Amaldi E, Kann V (1998) On the approximability of minimizing nonzero variables or unsatisfied relations in linear systems. Theor Comput Sci 209(1–2):237–260Anderson TW (1958) An introduction to multivariate statistical analysis. Wiley, New YorkAvramidis E (2012) Quality estimation for machine translation output using linguistic analysis and decoding features. In: Proceedings of the seventh workshop on statistical machine translation, pp 84–90Bellman RE (1961) Adaptive control processes: a guided tour. Rand Corporation research studies. Princeton University Press, PrincetonBisani M, Ney H (2004) Bootstrap estimates for confidence intervals in asr performance evaluation. In: Proceedings of the IEEE international conference on acoustics, speech, and signal processing, vol 1, pp 409–412Blatz J, Fitzgerald E, Foster G, Gandrabur S, Goutte C, Kulesza A, Sanchis A, Ueffing N (2004) Confidence estimation for machine translation. In: Proceedings of the international conference on Computational Linguistics, pp 315–321Callison-Burch C, Koehn P, Monz C, Post M, Soricut R, Specia L (2012) Findings of the 2012 workshop on statistical machine translation. In: Proceedings of the seventh workshop on statistical machine translation, pp 10–51Chong I, Jun C (2005) Performance of some variable selection methods when multicollinearity is present. Chemom Intell Lab Syst 78(1–2):103–112Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297Gamon M, Aue A, Smets M (2005) Sentence-Level MT evaluation without reference translations: beyond language modeling. In: Proceedings of the conference of the European Association for Machine TranslationGandrabur S, Foster G (2003) Confidence estimation for text prediction. In: Proceedings of the conference on computational natural language learning, pp 315–321Geladi P, Kowalski BR (1986) Partial least-squares regression: a tutorial. Anal Chim Acta 185(1):1–17González-Rubio J, Ortiz-Martínez D, Casacuberta F (2010) Balancing user effort and translation error in interactive machine translation via confidence measures. In: Proceedinss of the meeting of the association for computational linguistics, pp 173–177González-Rubio J, Sanchís A, Casacuberta F (2012) Prhlt submission to the wmt12 quality estimation task. In: Proceedings of the seventh workshop on statistical machine translation, pp 104–108Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. Machine Learning Research 3:1157–1182Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH (2009) The WEKA data mining software: an update. SIGKDD Explor Newsl 11(1):10–18Hotelling H (1931) The generalization of Student’s ratio. Ann Math Stat 2(3):360–378Koehn P, Hoang H, Birch A, Callison-Burch C, Federico M, Bertoldi N, Cowan B, Shen W, Moran C, Zens R, Dyer C, Bojar O, Constantin A, Herbst E (2007) Moses: open source toolkit for statistical machine translation. In: Proceedings of the association for computational linguistics, demonstration sessionKohavi R, John GH (1997) Wrappers for feature subset selection. Artif Intell 97(1–2):273–324Pearson K (1901) On lines and planes of closest fit to systems of points in space. Philos Mag 2:559–572Platt JC (1999) Using analytic QP and sparseness to speed training of support vector machines. In: Proceedings of the conference on advances in neural information processing systems II, pp 557–563Quinlan RJ (1992) Learning with continuous classes. In: Proceedings of the Australian joint conference on artificial intelligence, pp 343–348Quirk C (2004) Training a sentence-level machine translation confidence measure. In: Proceedings of conference on language resources and evaluation, pp 825–828Sanchis A, Juan A, Vidal E (2007) Estimation of confidence measures for machine translation. In: Proceedings of the machine translation summit XI, pp 407–412Scott DW, Thompson JR (1983) Probability density estimation in higher dimensions. In: Proceedings of the fifteenth symposium on the interface, computer science and statistics, pp 173–179Soricut R, Echihabi A (2010) TrustRank: inducing trust in automatic translations via ranking. In: Proceedings of the meeting of the association for computational linguistics, pp 612–621Soricut R, Bach N, Wang Z (2012) The SDL language weaver systems in the WMT12 quality estimation shared task. In: Proceedings of the seventh workshop on statistical machine translation. Montreal, Canada, pp 145–151Specia L, Saunders C, Wang Z, Shawe-Taylor J, Turchi M (2009a) Improving the confidence of machine translation quality estimates. In: Proceedings of the machine translation summit XIISpecia L, Turchi M, Cancedda N, Dymetman M, Cristianini N (2009b) Estimating the sentence-level quality of machine translation systems. In: Proceedings of the meeting of the European Association for Machine Translation, pp 28–35Tibshirani R (1996) Regression shrinkage and selection via the lasso. J R Stat Soc Ser B 58:267–288Ueffing N, Ney H (2007) Word-level confidence estimation for machine translation. Comput Ling 33:9–40Ueffing N, Macherey K, Ney H (2003) Confidence measures for statistical machine translation. In: Proceedings of the MT summit IX, pp 394–401Wold H (1966) Estimation of principal components and related models by iterative least squares. Academic Press, New Yor

    Learning labelled dependencies in machine translation evaluation

    Get PDF
    Recently novel MT evaluation metrics have been presented which go beyond pure string matching, and which correlate better than other existing metrics with human judgements. Other research in this area has presented machine learning methods which learn directly from human judgements. In this paper, we present a novel combination of dependency- and machine learning-based approaches to automatic MT evaluation, and demonstrate greater correlations with human judgement than the existing state-of-the-art methods. In addition, we examine the extent to which our novel method can be generalised across different tasks and domains

    A Survey of Paraphrasing and Textual Entailment Methods

    Full text link
    Paraphrasing methods recognize, generate, or extract phrases, sentences, or longer natural language expressions that convey almost the same information. Textual entailment methods, on the other hand, recognize, generate, or extract pairs of natural language expressions, such that a human who reads (and trusts) the first element of a pair would most likely infer that the other element is also true. Paraphrasing can be seen as bidirectional textual entailment and methods from the two areas are often similar. Both kinds of methods are useful, at least in principle, in a wide range of natural language processing applications, including question answering, summarization, text generation, and machine translation. We summarize key ideas from the two areas by considering in turn recognition, generation, and extraction methods, also pointing to prominent articles and resources.Comment: Technical Report, Natural Language Processing Group, Department of Informatics, Athens University of Economics and Business, Greece, 201

    Selective Attention for Context-aware Neural Machine Translation

    Full text link
    Despite the progress made in sentence-level NMT, current systems still fall short at achieving fluent, good quality translation for a full document. Recent works in context-aware NMT consider only a few previous sentences as context and may not scale to entire documents. To this end, we propose a novel and scalable top-down approach to hierarchical attention for context-aware NMT which uses sparse attention to selectively focus on relevant sentences in the document context and then attends to key words in those sentences. We also propose single-level attention approaches based on sentence or word-level information in the context. The document-level context representation, produced from these attention modules, is integrated into the encoder or decoder of the Transformer model depending on whether we use monolingual or bilingual context. Our experiments and evaluation on English-German datasets in different document MT settings show that our selective attention approach not only significantly outperforms context-agnostic baselines but also surpasses context-aware baselines in most cases.Comment: Accepted at NAACL-HLT 201

    Bridging SMT and TM with translation recommendation

    Get PDF
    We propose a translation recommendation framework to integrate Statistical Machine Translation (SMT) output with Translation Memory (TM) systems. The framework recommends SMT outputs to a TM user when it predicts that SMT outputs are more suitable for post-editing than the hits provided by the TM. We describe an implementation of this framework using an SVM binary classifier. We exploit methods to fine-tune the classifier and investigate a variety of features of different types. We rely on automatic MT evaluation metrics to approximate human judgements in our experiments. Experimental results show that our system can achieve 0.85 precision at 0.89 recall, excluding exact matches. futhermore, it is possible for the end-user to achieve a desired balance between precision and recall by adjusting confidence levels
    corecore