8,082 research outputs found

    CVXR: An R Package for Disciplined Convex Optimization

    Get PDF
    CVXR is an R package that provides an object-oriented modeling language for convex optimization, similar to CVX, CVXPY, YALMIP, and Convex.jl. It allows the user to formulate convex optimization problems in a natural mathematical syntax rather than the restrictive form required by most solvers. The user specifies an objective and set of constraints by combining constants, variables, and parameters using a library of functions with known mathematical properties. CVXR then applies signed disciplined convex programming (DCP) to verify the problem's convexity. Once verified, the problem is converted into standard conic form using graph implementations and passed to a cone solver such as ECOS or SCS. We demonstrate CVXR's modeling framework with several applications.Comment: 34 pages, 9 figure

    Stochasticity from function -- why the Bayesian brain may need no noise

    Get PDF
    An increasing body of evidence suggests that the trial-to-trial variability of spiking activity in the brain is not mere noise, but rather the reflection of a sampling-based encoding scheme for probabilistic computing. Since the precise statistical properties of neural activity are important in this context, many models assume an ad-hoc source of well-behaved, explicit noise, either on the input or on the output side of single neuron dynamics, most often assuming an independent Poisson process in either case. However, these assumptions are somewhat problematic: neighboring neurons tend to share receptive fields, rendering both their input and their output correlated; at the same time, neurons are known to behave largely deterministically, as a function of their membrane potential and conductance. We suggest that spiking neural networks may, in fact, have no need for noise to perform sampling-based Bayesian inference. We study analytically the effect of auto- and cross-correlations in functionally Bayesian spiking networks and demonstrate how their effect translates to synaptic interaction strengths, rendering them controllable through synaptic plasticity. This allows even small ensembles of interconnected deterministic spiking networks to simultaneously and co-dependently shape their output activity through learning, enabling them to perform complex Bayesian computation without any need for noise, which we demonstrate in silico, both in classical simulation and in neuromorphic emulation. These results close a gap between the abstract models and the biology of functionally Bayesian spiking networks, effectively reducing the architectural constraints imposed on physical neural substrates required to perform probabilistic computing, be they biological or artificial

    JBendge: An Object-Oriented System for Solving, Estimating and Selecting Nonlinear Dynamic Models

    Get PDF
    We present an object-oriented software framework allowing to specify, solve, and estimate nonlinear dynamic general equilibrium (DSGE) models. The imple- mented solution methods for nding the unknown policy function are the standard linearization around the deterministic steady state, and a function iterator using a multivariate global Chebyshev polynomial approximation with the Smolyak op- erator to overcome the course of dimensionality. The operator is also useful for numerical integration and we use it for the integrals arising in rational expecta- tions and in nonlinear state space lters. The estimation step is done by a parallel Metropolis-Hastings (MH) algorithm, using a linear or nonlinear lter. Implemented are the Kalman, Extended Kalman, Particle, Smolyak Kalman, Smolyak Sum, and Smolyak Kalman Particle lters. The MH sampling step can be interactively moni- tored and controlled by sequence and statistics plots. The number of parallel threads can be adjusted to benet from multiprocessor environments. JBendge is based on the framework JStatCom, which provides a standardized ap- plication interface. All tasks are supported by an elaborate multi-threaded graphical user interface (GUI) with project management and data handling facilities.Dynamic Stochastic General Equilibrium (DSGE) Models, Bayesian Time Series Econometrics, Java, Software Development

    Estimating beta-mixing coefficients via histograms

    Full text link
    The literature on statistical learning for time series often assumes asymptotic independence or "mixing" of the data-generating process. These mixing assumptions are never tested, nor are there methods for estimating mixing coefficients from data. Additionally, for many common classes of processes (Markov processes, ARMA processes, etc.) general functional forms for various mixing rates are known, but not specific coefficients. We present the first estimator for beta-mixing coefficients based on a single stationary sample path and show that it is risk consistent. Since mixing rates depend on infinite-dimensional dependence, we use a Markov approximation based on only a finite memory length dd. We present convergence rates for the Markov approximation and show that as d→∞d\rightarrow\infty, the Markov approximation converges to the true mixing coefficient. Our estimator is constructed using dd-dimensional histogram density estimates. Allowing asymptotics in the bandwidth as well as the dimension, we prove L1L^1 concentration for the histogram as an intermediate step. Simulations wherein the mixing rates are calculable and a real-data example demonstrate our methodology.Comment: 30 pages, 8 figures. Longer version of arXiv:1103.0941 [stat.ML

    Tensor Networks for Dimensionality Reduction and Large-Scale Optimizations. Part 2 Applications and Future Perspectives

    Full text link
    Part 2 of this monograph builds on the introduction to tensor networks and their operations presented in Part 1. It focuses on tensor network models for super-compressed higher-order representation of data/parameters and related cost functions, while providing an outline of their applications in machine learning and data analytics. A particular emphasis is on the tensor train (TT) and Hierarchical Tucker (HT) decompositions, and their physically meaningful interpretations which reflect the scalability of the tensor network approach. Through a graphical approach, we also elucidate how, by virtue of the underlying low-rank tensor approximations and sophisticated contractions of core tensors, tensor networks have the ability to perform distributed computations on otherwise prohibitively large volumes of data/parameters, thereby alleviating or even eliminating the curse of dimensionality. The usefulness of this concept is illustrated over a number of applied areas, including generalized regression and classification (support tensor machines, canonical correlation analysis, higher order partial least squares), generalized eigenvalue decomposition, Riemannian optimization, and in the optimization of deep neural networks. Part 1 and Part 2 of this work can be used either as stand-alone separate texts, or indeed as a conjoint comprehensive review of the exciting field of low-rank tensor networks and tensor decompositions.Comment: 232 page

    Tensor Networks for Dimensionality Reduction and Large-Scale Optimizations. Part 2 Applications and Future Perspectives

    Full text link
    Part 2 of this monograph builds on the introduction to tensor networks and their operations presented in Part 1. It focuses on tensor network models for super-compressed higher-order representation of data/parameters and related cost functions, while providing an outline of their applications in machine learning and data analytics. A particular emphasis is on the tensor train (TT) and Hierarchical Tucker (HT) decompositions, and their physically meaningful interpretations which reflect the scalability of the tensor network approach. Through a graphical approach, we also elucidate how, by virtue of the underlying low-rank tensor approximations and sophisticated contractions of core tensors, tensor networks have the ability to perform distributed computations on otherwise prohibitively large volumes of data/parameters, thereby alleviating or even eliminating the curse of dimensionality. The usefulness of this concept is illustrated over a number of applied areas, including generalized regression and classification (support tensor machines, canonical correlation analysis, higher order partial least squares), generalized eigenvalue decomposition, Riemannian optimization, and in the optimization of deep neural networks. Part 1 and Part 2 of this work can be used either as stand-alone separate texts, or indeed as a conjoint comprehensive review of the exciting field of low-rank tensor networks and tensor decompositions.Comment: 232 page
    • 

    corecore