5 research outputs found

    A verification technique for multiple soft fault diagnosis of linear analog circuits

    Get PDF
    The paper deals with multiple soft fault diagnosis of linear analog circuits. A fault verification method is developed that allows estimating the values of a set of the parameters considered as potentially faulty. The method exploits the transmittance of the circuit and is based on a diagnostic test leading to output signal in discrete form. Applying Z-transform a diagnostic equation is written which is next reproduced. The obtained system of equations consisting of larger number of equations than the number of the parameters is solved using appropriate numerical approach. The method is adapted to real circumstances taking into account scattering of the fault–free parameters within their tolerance ranges and some errors produced by the method. In consequence, the results provided by the method have the form of ranges including the values of the tested parameters. To illustrate the method two examples of real electronic circuits are given

    New Aspects of Fault Diagnosis of Nonlinear Analog Circuits

    Get PDF
    The paper is focused on nonlinear analog circuits, with the special attention paid to circuits comprising bipolar and MOS transistors manufactured in micrometer and submicrometer technology. The problem of fault diagnosis of this class of circuits is discussed, including locating faulty elements and evaluating their parameters. The paper deals with multiple parametric fault diagnosis using the simulation after test approach as well as detection and location of single catastrophic faults, using the simulation before test approach. The discussed methods are based on diagnostic test, leading to a system of nonlinear algebraic type equations, which are not given in explicit analytical form. An important and new aspect of the fault diagnosis is finding multiple solutions of the test equation, i.e. several sets of the parameters values that meet the test. Another new problems in this area are global fault diagnosis of technological parameters in CMOS circuits fabricated in submicrometer technology and testing the circuits  having multiple DC operating points. To solve these problems several methods have been recently developed, which employ  different concepts and mathematical tools of nonlinear analysis. In this paper they are sketched and illustrated.  All the discussed methods are based on the homotopy (continuation) idea. It is shown that various versions of homotopy and combinations  of the homotopy with some other mathematical algorithms lead to very powerful tools for fault diagnosis of nonlinear analog circuits.  To trace the homotopy path which allows finding multiple solutions, the simplicial method, the restart method, the theory of linear complementarity problem and Lemke's algorithm are employed. For illustration four numerical examples are given

    Priori Information Based Support Vector Regression and Its Applications

    Get PDF
    In order to extract the priori information (PI) provided by real monitored values of peak particle velocity (PPV) and increase the prediction accuracy of PPV, PI based support vector regression (SVR) is established. Firstly, to extract the PI provided by monitored data from the aspect of mathematics, the probability density of PPV is estimated with ε-SVR. Secondly, in order to make full use of the PI about fluctuation of PPV between the maximal value and the minimal value in a certain period of time, probability density estimated with ε-SVR is incorporated into training data, and then the dimensionality of training data is increased. Thirdly, using the training data with a higher dimension, a method of predicting PPV called PI-ε-SVR is proposed. Finally, with the collected values of PPV induced by underwater blasting at Dajin Island in Taishan nuclear power station in China, contrastive experiments are made to show the effectiveness of the proposed method

    Support Vector Machine for soft fault location in electrical circuits

    No full text
    corecore