1,153 research outputs found

    Supervisory Control of Fuzzy Discrete Event Systems: A Formal Approach

    Full text link
    Fuzzy {\it discrete event systems} (DESs) were proposed recently by Lin and Ying [19], which may better cope with the real-world problems with fuzziness, impreciseness, and subjectivity such as those in biomedicine. As a continuation of [19], in this paper we further develop fuzzy DESs by dealing with supervisory control of fuzzy DESs. More specifically, (i) we reformulate the parallel composition of crisp DESs, and then define the parallel composition of fuzzy DESs that is equivalent to that in [19]; {\it max-product} and {\it max-min} automata for modeling fuzzy DESs are considered; (ii) we deal with a number of fundamental problems regarding supervisory control of fuzzy DESs, particularly demonstrate controllability theorem and nonblocking controllability theorem of fuzzy DESs, and thus present the conditions for the existence of supervisors in fuzzy DESs; (iii) we analyze the complexity for presenting a uniform criterion to test the fuzzy controllability condition of fuzzy DESs modeled by max-product automata; in particular, we present in detail a general computing method for checking whether or not the fuzzy controllability condition holds, if max-min automata are used to model fuzzy DESs, and by means of this method we can search for all possible fuzzy states reachable from initial fuzzy state in max-min automata; also, we introduce the fuzzy nn-controllability condition for some practical problems; (iv) a number of examples serving to illustrate the applications of the derived results and methods are described; some basic properties related to supervisory control of fuzzy DESs are investigated. To conclude, some related issues are raised for further consideration

    Petri net controllers for Generalized Mutual Exclusion Constraints with floor operators

    Get PDF
    In this paper a special type of nonlinear marking specifications called stair generalized mutual exclusion constraints (stair-GMECs) is defined. A stair-GMEC can be represented by an inequality whose left-hand is a linear combination of floor functions. Stair-GMECs have higher modeling power than classical GMECs and can model legal marking sets that cannot be defined by OR–AND GMECs. We propose two algorithms to enforce a stair-GMEC as a closed-loop net, in which the control structure is composed by a residue counter, remainder counters, and duplicate transitions. We also show that the proposed control structure is maximally permissive since it prevents all and only the illegal trajectories of a plant net. This approach can be applied to both bounded and unbounded nets. Several examples are proposed to illustrate the approach

    Discrete events: Perspectives from system theory

    Get PDF
    Systems Theory;differentiaal/ integraal-vergelijkingen

    Optimal Supervisory Control Synthesis

    Full text link
    The place invariant method is well known as an elegant way to construct a Petri net controller. It is possible to use the constraint for preventing forbidden states. But in general case, the number forbidden states can be very large giving a great number of control places. In this paper is presented a systematic method to reduce the size and the number of constraints. This method is applicable for safe and conservative Petri nets giving a maximally permissive controller.Comment: Journ\'ee sur l'Instrumentation Industrielle J2I, ORAN : Alg\'erie (2009
    corecore