8 research outputs found

    A Systematic Literature Review on Software Refactoring

    Full text link
    Due to the growing complexity of software systems, there has been a dramatic increase in research and industry demand on refactoring. Refactoring research nowadays addresses challenges beyond code transformation to include, but not limited to, scheduling the opportune time to carry refactoring, recommending specific refactoring activities, detecting refactoring opportunities and testing the correctness of applied refactoring. Very few studies focused on the challenges that practitioners face when refactoring software systems and what should be the current refactoring research focus from the developers’perspective and based on the current literature. Without such knowledge, tool builders invest in the wrong direction, and researchers miss many opportunities for improving the practice of refactoring. In this thesis, we collected papers from several publication sources and analyzed them to identify what do developers ask about refactoring and the relevant topics in the field We found that developers and researchers are asking about design patterns, design and user interface refactoring, web services, parallel programming, and mobile apps. We also identified what popular refactoring challenges are the most difficult and the current important topics and questions related to refactoring. Moreover, we discovered gaps between existing research on refactoring and the challenges developers face.Master of ScienceSoftware Engineering, College of Engineering & Computer ScienceUniversity of Michigan-Dearbornhttps://deepblue.lib.umich.edu/bitstream/2027.42/154827/1/Jallal Elhazzat Final Thesis.pdfDescription of Jallal Elhazzat Final Thesis.pdf : Thesi

    Explainable Search-Based Refactoring

    Full text link
    http://deepblue.lib.umich.edu/bitstream/2027.42/170141/1/TSE_Explainability__Copy_ (1).pdfSEL

    Mining, Understanding and Integrating User Preferences in Software Refactoring Using Computational Search, Machine Learning, and Dimensionality Reduction

    Full text link
    Search-Based Software Engineering (SBSE) is a software development practice which focuses on couching software engineering problems as optimization problems using metaheuristic techniques to automate the search for near optimal solutions to those problems. While SBSE has been successfully applied to a wide variety of software engineering problems, our understanding of the extent and nature of how software engineering problems can be formulated as automated or semi-automated search is still lacking. The majority of software engineering solutions are very subjective and present difficulties to formally define fitness functions to evaluate them. Current studies focus on guiding the search of optimal solutions rather than performing it. It is unclear yet the degree of interaction required with software engineers during the optimization process and how to reduce it. In this work, we focus on search-based software maintenance and evolution problems including software refactoring and software remodularization to improve the quality of systems. We propose to address the following challenges: • A major challenge in adapting a search-based technique for a software engineering problem is the definition of the fitness function. In most cases, fitness functions are ill-defined or subjective. • Most existing refactoring studies do not include the developer in the loop to analyze suggested refactoring solutions, and give their feedback during the optimization process. In addition, some quality metrics are cost-expensive leading to cost-expensive fitness functions. Moreover, while quality metrics evaluate the structural improvements of the refactored system, it is impossible to evaluate the semantic coherence of the design without user interactions. • Finally, several metrics can be dependent and correlated, thus it may be possible to reduce the number of objectives/dimensions when addressing refactoring problems. To address the above challenges, this work provides new techniques and tools to formulate software refactoring as scalable and learning-based search problem. We proposed novel interactive learning-based techniques using machine learning to incorporate developers knowledge and preferences in the search, resulting in more efficient and cost-effective search-based refactoring recommendation systems. We designed and implemented novel objective reduction SBSE methodologies to support scalable number of objectives. The proposed solutions were empirically evaluated in academic (open-source systems) and industrial settings.Ph.D.College of Engineering and Computer ScienceUniversity of Michigan-Dearbornhttps://deepblue.lib.umich.edu/bitstream/2027.42/138970/1/Dea Final Dissertation.pdfDescription of Dea Final Dissertation.pdf : DissertationDescription of Troh Josselin Dea Signed Certification Form.pdf : Committee signature fil

    Software restructuring: understanding longitudinal architectural changes and refactoring

    Get PDF
    The complexity of software systems increases as the systems evolve. As the degradation of the system's structure accumulates, maintenance effort and defect-proneness tend to increase. In addition, developers often opt to employ sub-optimal solutions in order to achieve short-time goals, in a phenomenon that has been recently called technical debt. In this context, software restructuring serves as a way to alleviate and/or prevent structural degradation. Restructuring of software is usually performed in either higher or lower levels of granularity, where the first indicates broader changes in the system's structural architecture and the latter indicates refactorings performed to fewer and localised code elements. Although tools to assist architectural changes and refactoring are available, there is still no evidence these approaches are widely adopted by practitioners. Hence, an understanding of how developers perform architectural changes and refactoring in their daily basis and in the context of the software development processes they adopt is necessary. Current software development is iterative and incremental with short cycles of development and release. Thus, tools and processes that enable this development model, such as continuous integration and code review, are widespread among software engineering practitioners. Hence, this thesis investigates how developers perform longitudinal and incremental architectural changes and refactoring during code review through a wide range of empirical studies that consider different moments of the development lifecycle, different approaches, different automated tools and different analysis mechanisms. Finally, the observations and conclusions drawn from these empirical investigations extend the existing knowledge on how developers restructure software systems, in a way that future studies can leverage this knowledge to propose new tools and approaches that better fit developers' working routines and development processes

    Commits Analysis for Software Refactoring Documentation and Recommendation

    Full text link
    Software projects frequently evolve to meet new requirements and/or to fix bugs. While this evolution is critical, it may have a negative impact on the quality of the system. To improve the quality of software systems, the first step is “detection" of code antipatterns to be restructured which can be considered as “refactoring opportunities". The second step is the “prioritization" of code fragments to be refactored/fixed. The third step is “recommendation" of refactorings to fix the detected quality issues. The fourth step is “testing" the recommended refactorings to evaluate their correctness. The fifth step is the “documentation" of the applied refactorings. In this thesis, we addressed the above five steps: 1. We designed a bi-level multi-objective optimization approach to enable the generation of antipattern examples that can improve the efficiency of detection rules for bad quality designs. 2. Regarding refactoring recommendations, we first identify refactoring opportunities by analyzing developer commit messages and quality of changed files, then we distill this knowledge into usable context driven refactoring recommendations to complement static and dynamic analysis of code. 3. We proposed an interactive refactoring recommendation approach that enables developers to pinpoint their preferences simultaneously in the objective (quality metrics) and decision (code location) spaces. 4. We proposed a semi-automated refactoring documentation bot that helps developers to interactively check and validate the documentation of the refactorings and/or quality improvements at the file level for each opened pull-request before being reviewed or merged to the master 5. We performed interviews with and a survey of practitioners as well as a quantitative analysis of 1,193 commit messages containing refactorings to establish a refactoring documentation model as a set of components. 6. We formulated the recommendation of code reviewers as a multi-objective search problem to balance the conflicting objectives of expertise, availability, and history of collaborations. 7. We built a dataset composed of 50,000+ composite code changes pertaining to more than 7,000 open-source projects. Then, we proposed and evaluated a new deep learning technique to generate commit messages for composite code changes based on an attentional encoder-decoder with two encoders and BERT embeddings.Ph.D.College of Engineering & Computer ScienceUniversity of Michigan-Dearbornhttp://deepblue.lib.umich.edu/bitstream/2027.42/169486/1/Soumaya Rebai final dissertation.pdfDescription of Soumaya Rebai final dissertation.pdf : Dissertatio

    Explainable, Security-Aware and Dependency-Aware Framework for Intelligent Software Refactoring

    Full text link
    As software systems continue to grow in size and complexity, their maintenance continues to become more challenging and costly. Even for the most technologically sophisticated and competent organizations, building and maintaining high-performing software applications with high-quality-code is an extremely challenging and expensive endeavor. Software Refactoring is widely recognized as the key component for maintaining high-quality software by restructuring existing code and reducing technical debt. However, refactoring is difficult to achieve and often neglected due to several limitations in the existing refactoring techniques that reduce their effectiveness. These limitation include, but not limited to, detecting refactoring opportunities, recommending specific refactoring activities, and explaining the recommended changes. Existing techniques are mainly focused on the use of quality metrics such as coupling, cohesion, and the Quality Metrics for Object Oriented Design (QMOOD). However, there are many other factors identified in this work to assist and facilitate different maintenance activities for developers: 1. To structure the refactoring field and existing research results, this dissertation provides the most scalable and comprehensive systematic literature review analyzing the results of 3183 research papers on refactoring covering the last three decades. Based on this survey, we created a taxonomy to classify the existing research, identified research trends and highlighted gaps in the literature for further research. 2. To draw attention to what should be the current refactoring research focus from the developers’ perspective, we carried out the first large scale refactoring study on the most popular online Q&A forum for developers, Stack Overflow. We collected and analyzed posts to identify what developers ask about refactoring, the challenges that practitioners face when refactoring software systems, and what should be the current refactoring research focus from the developers’ perspective. 3. To improve the detection of refactoring opportunities in terms of quality and security in the context of mobile apps, we designed a framework that recommends the files to be refactored based on user reviews. We also considered the detection of refactoring opportunities in the context of web services. We proposed a machine learning-based approach that helps service providers and subscribers predict the quality of service with the least costs. Furthermore, to help developers make an accurate assessment of the quality of their software systems and decide if the code should be refactored, we propose a clustering-based approach to automatically identify the preferred benchmark to use for the quality assessment of a project. 4. Regarding the refactoring generation process, we proposed different techniques to enhance the change operators and seeding mechanism by using the history of applied refactorings and incorporating refactoring dependencies in order to improve the quality of the refactoring solutions. We also introduced the security aspect when generating refactoring recommendations, by investigating the possible impact of improving different quality attributes on a set of security metrics and finding the best trade-off between them. In another approach, we recommend refactorings to prioritize fixing quality issues in security-critical files, improve quality attributes and remove code smells. All the above contributions were validated at the large scale on thousands of open source and industry projects in collaboration with industry partners and the open source community. The contributions of this dissertation are integrated in a cloud-based refactoring framework which is currently used by practitioners.Ph.D.College of Engineering & Computer ScienceUniversity of Michigan-Dearbornhttp://deepblue.lib.umich.edu/bitstream/2027.42/171082/1/Chaima Abid Final Dissertation.pdfDescription of Chaima Abid Final Dissertation.pdf : Dissertatio

    Supervised Software Modularisation

    Full text link
    This paper is concerned with the challenge of reorganising a software system into modules that both obey sound design principles and are sensible to domain experts. The problem has given rise to several unsupervised automated approaches that use techniques such as clustering and Formal Concept Analysis. Although results are often partially correct, they usually require refinement to enable the developer to integrate domain knowledge. This paper presents the SUMO algorithm, an approach that is complementary to existing techniques and enables the maintainer to refine their results. The algorithm is guaranteed to eventually yield a result that is satisfactory to the maintainer, and the evaluation on a diverse range of systems shows that this occurs with a reasonably low amount of effort
    corecore