8,474 research outputs found

    Transfer Learning for Speech and Language Processing

    Full text link
    Transfer learning is a vital technique that generalizes models trained for one setting or task to other settings or tasks. For example in speech recognition, an acoustic model trained for one language can be used to recognize speech in another language, with little or no re-training data. Transfer learning is closely related to multi-task learning (cross-lingual vs. multilingual), and is traditionally studied in the name of `model adaptation'. Recent advance in deep learning shows that transfer learning becomes much easier and more effective with high-level abstract features learned by deep models, and the `transfer' can be conducted not only between data distributions and data types, but also between model structures (e.g., shallow nets and deep nets) or even model types (e.g., Bayesian models and neural models). This review paper summarizes some recent prominent research towards this direction, particularly for speech and language processing. We also report some results from our group and highlight the potential of this very interesting research field.Comment: 13 pages, APSIPA 201

    Adversarial Speaker Adaptation

    Full text link
    We propose a novel adversarial speaker adaptation (ASA) scheme, in which adversarial learning is applied to regularize the distribution of deep hidden features in a speaker-dependent (SD) deep neural network (DNN) acoustic model to be close to that of a fixed speaker-independent (SI) DNN acoustic model during adaptation. An additional discriminator network is introduced to distinguish the deep features generated by the SD model from those produced by the SI model. In ASA, with a fixed SI model as the reference, an SD model is jointly optimized with the discriminator network to minimize the senone classification loss, and simultaneously to mini-maximize the SI/SD discrimination loss on the adaptation data. With ASA, a senone-discriminative deep feature is learned in the SD model with a similar distribution to that of the SI model. With such a regularized and adapted deep feature, the SD model can perform improved automatic speech recognition on the target speaker's speech. Evaluated on the Microsoft short message dictation dataset, ASA achieves 14.4% and 7.9% relative word error rate improvements for supervised and unsupervised adaptation, respectively, over an SI model trained from 2600 hours data, with 200 adaptation utterances per speaker.Comment: 5 pages, 2 figures, ICASSP 201

    Acoustic model adaptation for ortolan bunting (Emberiza hortulana L.) song-type classification

    Get PDF
    Automatic systems for vocalization classification often require fairly large amounts of data on which to train models. However, animal vocalization data collection and transcription is a difficult and time-consuming task, so that it is expensive to create large data sets. One natural solution to this problem is the use of acoustic adaptation methods. Such methods, common in human speech recognition systems, create initial models trained on speaker independent data, then use small amounts of adaptation data to build individual-specific models. Since, as in human speech, individual vocal variability is a significant source of variation in bioacoustic data, acoustic model adaptation is naturally suited to classification in this domain as well. To demonstrate and evaluate the effectiveness of this approach, this paper presents the application of maximum likelihood linear regression adaptation to ortolan bunting (Emberiza hortulana L.) song-type classification. Classification accuracies for the adapted system are computed as a function of the amount of adaptation data and compared to caller-independent and caller-dependent systems. The experimental results indicate that given the same amount of data, supervised adaptation significantly outperforms both caller-independent and caller-dependent systems

    Conditional Teacher-Student Learning

    Full text link
    The teacher-student (T/S) learning has been shown to be effective for a variety of problems such as domain adaptation and model compression. One shortcoming of the T/S learning is that a teacher model, not always perfect, sporadically produces wrong guidance in form of posterior probabilities that misleads the student model towards a suboptimal performance. To overcome this problem, we propose a conditional T/S learning scheme, in which a "smart" student model selectively chooses to learn from either the teacher model or the ground truth labels conditioned on whether the teacher can correctly predict the ground truth. Unlike a naive linear combination of the two knowledge sources, the conditional learning is exclusively engaged with the teacher model when the teacher model's prediction is correct, and otherwise backs off to the ground truth. Thus, the student model is able to learn effectively from the teacher and even potentially surpass the teacher. We examine the proposed learning scheme on two tasks: domain adaptation on CHiME-3 dataset and speaker adaptation on Microsoft short message dictation dataset. The proposed method achieves 9.8% and 12.8% relative word error rate reductions, respectively, over T/S learning for environment adaptation and speaker-independent model for speaker adaptation.Comment: 5 pages, 1 figure, ICASSP 201
    • …
    corecore