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53233-1881

Tomasz S. Osiejuk
Department of Behavioural Ecology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland

�Received 11 June 2007; revised 3 January 2008; accepted 4 January 2008�

Automatic systems for vocalization classification often require fairly large amounts of data on which
to train models. However, animal vocalization data collection and transcription is a difficult and
time-consuming task, so that it is expensive to create large data sets. One natural solution to this
problem is the use of acoustic adaptation methods. Such methods, common in human speech
recognition systems, create initial models trained on speaker independent data, then use small
amounts of adaptation data to build individual-specific models. Since, as in human speech,
individual vocal variability is a significant source of variation in bioacoustic data, acoustic model
adaptation is naturally suited to classification in this domain as well. To demonstrate and evaluate
the effectiveness of this approach, this paper presents the application of maximum likelihood linear
regression adaptation to ortolan bunting �Emberiza hortulana L.� song-type classification.
Classification accuracies for the adapted system are computed as a function of the amount of
adaptation data and compared to caller-independent and caller-dependent systems. The experimental
results indicate that given the same amount of data, supervised adaptation significantly outperforms
both caller-independent and caller-dependent systems.
© 2008 Acoustical Society of America. �DOI: 10.1121/1.2837487�

PACS number�s�: 43.66.Gf, 43.80.Ka, 43.72.Fx, 43.60.Uv �DOS� Pages: 1582–1590

I. INTRODUCTION

Hidden Markov models �HMMs� have been successfully
applied to animal vocalization classification and detection in
a number of species. Kogan and Margoliash �1998� and
Anderson �1999� have shown that HMM-based classification
is more robust to noise and more effective for highly confus-
able vocalizations than a dynamic time warping approach
applied to the indigo bunting �Passerina cyanea� and zebra
finch �Taeniopygia guttata�. Other species in which HMM-
based classification has been investigated include African el-
ephants �Loxodonta africana� �Clemins et al., 2005�, beluga
whale �Delphinapterus leucas� �Clemins and Johnson, 2005�,
ortolan bunting �Emberiza hortulana L.� �Trawicki et al.,
2005�, red deer �Cervus elaphus� �Reby et al., 2006�, and
rhesus macaques �Macaca mulatto� �Li et al., 2007�. HMM
systems have been widely used to examine vocal repertoire,
identify individuals, and classify vocalizations according to
social context or behavior.

Typically, such classification systems are caller-
independent �CI�, meaning that the examples used for train-
ing the classifier come from a different set of individuals
than those used for testing. In contrast to this, systems for
human speech recognition are often speaker-dependent �SD�,
i.e., trained on the same individual who will be using the
system, since given sufficient individual-specific training
data SD systems have better performance than speaker-

independent �SI� systems. When individual-specific training
data are limited, an alternative is to use a speaker-adapted
�SA� system. In this case a SI system is trained first and then
the classification models are adapted with some individual-
specific data, called adaptation data, to better account for
individual variability in speech and pronunciation patterns.
SA systems will typically have better overall accuracy than
either SI or SD systems for small or moderate amounts of
adaptation data. The error rate of a SD system may be as low
as one-third that of a comparable SI speech recognition sys-
tem tested on the same data �Hazen, 1998; Lee et al., 1991�,
because individual speech differences are minimized in the
SD system. The goal of using adaptation is to achieve per-
formance approaching that of an ideal SD system using only
limited amounts of speaker-specific data �Kuhn et al., 2000�.

Similarly, it is possible to develop analogous classifica-
tion systems for animal vocalizations that are caller-
dependent �CD� or caller-adapted �CA�. The goal of this ap-
proach is to maximize the accuracy of the classifier while
minimizing the amount of labor required to analyze and tran-
scribe the collected data. Previous studies in animal vocal-
ization analysis have found that individual vocal variability
is one of the most important cues impacting vocalization
related behavior study in bioacoustics �Reby et al., 2006�.
Individual variability in acoustic structure has been described
in many species such as bottlenose dolphins �Tursiops trun-
cates� �Parijs et al., 2002; Janik et al., 2006�, zebra finches
�Taeniopygia guttata� �Vignal et al., 2004�, and Belding’s
ground squirrels �Spermophilus beldingi� �McCowan anda�Electronic mail: vjdtao@hotmail.com
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Hooper, 2002�. In ortolan buntings, song vocalization has
been found to differ significantly between individuals in
terms of repertoire content �Osiejuk et al., 2003� and tonality
�Osiejuk et al., 2005�. These differences have strong influ-
ence on species biology as ortolan bunting males were re-
cently shown to discriminate between neighbors and strang-
ers by song �Skierczyński et al., 2007� and to differentiate
response to songs composed of syllables originating from
local or foreign population �Osiejuk et al., 2007�. This would
imply that a CA system for animal vocalization analysis and
classification should yield measurable improvements in over-
all accuracy and performance. Because both the data collec-
tion and analysis/transcription processes are much more dif-
ficult and time-consuming for most animal species than for
human speech, utilizing a CA system to reduce the overall
data requirements for developing automated classification
systems may result in significant cost-savings. Additionally,
cross comparisons of CD, CI, and CA recognition models
have the potential to yield significant insight into the source
of individual vocal variability.

The aim of this study is to demonstrate the use of adap-
tation for animal vocalization classification and examine the
data requirements and degree of improvement provided by a
CA system over comparable CI and CD systems. The CA
system implemented for this task is based on the maximum
likelihood linear regression �MLLR� technique �Leggetter
and Woodland, 1995�. The MLLR method works by cluster-
ing the states in an HMM into groups using a regression tree,
then learning a maximum likelihood �ML� linear transforma-
tion for each group. The regression-based transformations
tune the HMM mean and covariance parameters to each new
individual represented by the adaptation data. To ensure all
parameters can be adapted, a global transformation can be
used for all HMMs in the system if only a small amount of
adaptation data is presented, so that MLLR adaptation can
improve recognition performance even with very limited ad-
aptation data �Leggetter and Woodland, 1995�. Results indi-
cate that CA does in fact provide substantial performance
improvement over both CI and limited-data CD systems.

II. DATA

A. Species under study

Ortolan buntings �Emberiza hortulana L.� are the focus
of the current study. The species has declined steadily the
last 50 years in Western Europe, and is currently listed in
Norway as critically endangered on the Norwegian red-list.
The population size is now only about 100 singing males and
declines an average of 8% annually �Dale, 2001; Steifetten
and Dale, 2006�. The initial decline of the Norwegian popu-
lation was probably due to the habitat loss related to changes
in agriculture practices �Dale, 2001�. However, 10 years of
intensive study revealed that the main reason for the continu-
ous decrease is female-biased dispersal pattern, which in iso-
lated and patchy population seriously affects sex ratio, be-
havior of males, and breeding success measured at the
population level �Dale et al., 2005, 2006; Steifetten and
Dale, 2006�. It is hoped that increasing our understanding of
male ortolan bunting vocalizations will enable us to better

understand breeding behavior and reduce the risk of extinc-
tion.

Norwegian ortolan bunting vocalizations were collected
from County Hedmark, Norway in May of 2001 and 2002
�Osiejuk et al., 2003�. The birds covered an area of approxi-
mately 500 km2 on 25 sites, and males were recorded on 11
of those sites. A team of one to three research members who
recognized and labeled the individual male buntings visited
the sites. Overall, the entire sample population in 2001 and
2002 contains 150 males, 115 of which were color-ringed for
individual identification. Because there are no known acous-
tic differences between the ringed and nonringed males, all
data were grouped together for experimental use.

Ortolan buntings communicate through fundamental
acoustical units called syllables �Osiejuk et al., 2003�. Figure
1 depicts the 19-syllable vocal repertoire used in this data
set. Individual songs are grouped into song-type categories,
e.g., ab, cb, that indicate the sequence of syllable types
present. Each song type has many specific song variants,
e.g., aaaab, aaabb, which indicate the exact repetition pat-
tern. Figure 2 shows spectrograms of three specific type ab
songs, song variants aaaab, aaabb, and aaaabb. The
waveforms in Figs. 1 and 2 are low background noise exem-
plars, taken from different individuals to illustrate the reper-
toire.

B. Data collection

Vocalizations were recorded in the morning hours be-
tween 04:00 and 11:00 in each site, using a HHB PDR 1000
Professional DAT recorder with a Telinga V Pro Science pa-
rabola, a Sony TCD-D8 DAT recorder with a Sennheiser ME
67 shotgun microphone or an Aiwa HS-200 DAT recorder
with a Sennheiser ME 67 shotgun microphone. All record-
ings were digitally transferred from Technics SV-DA 10 re-
corder via a SPDIF cable to a PC workstation with Sound-
Blaster Live! 5.1 at a sampling rate of 48 kHz with 16-bit
quantization. For a more detailed description of the methods
used to record the vocalizations, see Osiejuk et al. �2003,
2005�.

Syllable repertoire of ortolan bunting
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FIG. 1. Complete set of the 19-syllable repertoire of ortolan bunting.
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C. Data organization

The data set used here is a subset of the Osiejuk et al.
data �Osiejuk et al., 2003, 2005� including 60 song types and
19 syllables from 105 individuals. In selecting data for this
study, calls containing syllables which were identified in
only a single individual or a single song type were not in-
cluded. Different individuals were selected for the training
and testing/adaptation sets, balanced to get full coverage of
all syllables in each set.

The protocol used to separate the data into training, test,
and adaptation sets is as follows:

�1� Remove calls containing syllables identified in only a
single individual or a single song type. This gives a re-
sulting data set of 105 individuals, 60 call types, and 19
syllables.

�2� Select individuals for testing/adaptation.
�a� Sort song types in increasing order according to num-

ber of examples.
�b� Starting with the least common song type, select the

individual with the highest number of examples in
that song type �minimum two examples�.

�c� Repeat this process for each song type until the indi-
viduals selected for testing cover all 60 types.

This results in a set of 30 individuals for testing/
adaptation.

�3� Create explicit test and adaptation data sets by randomly
dividing the data into test and adaptation sets for each
selected individual, subject to a maximum of 30 vocal-
izations in each set for any one individual and song type.

�4� Group the remaining individuals into a training data set,
again reducing the number of examples to a maximum of
30 for any one individual and song type.

Descriptive statistics of the resulting training, test, and
adaptation sets are shown in Table I. From the above-detailed
process it is clear that the 75 individuals in the training set
are disjoint from the 30 individuals in the test/adaptation
data, while the test and adaptation sets share the same group

of individuals. All three sets have a full representation of
syllables. Note that the training set does not cover the full
range of 60 song types, but is still sufficient for training
syllable-level HMMs for classification, as discussed in Sec.
III. The size of the adaptation set is the same as that of the
test set to allow the data to be used for training caller-
dependent models as well as to allow a large range of varia-
tion for examining the impact of adaptation data quantity on
performance.

III. METHODS

A. Feature extraction

The primary features used in this HMM classification
system are Greenwood function cepstral coefficients
�GFCCs� �Clemins et al., 2006; Clemins and Johnson, 2006�.
GFCCs are a species-specific generalization of mel fre-
quency cepstral coefficients �MFCCs� �Huang et al., 2001�,
one of the most common feature sets used in human speech
recognition. The process for computing cepstral coefficients
begins with segmenting vocalizations into evenly spaced ap-
propriately sized windows �based on the frequency range and
vocalization patterns of the species�. For each window, a log
magnitude fast Fourier transform �FFT� is computed and
grouped into frequency bins. A discrete cosine transform is
then taken to transform the log magnitude spectrum into cep-
stral values. For GFCCs, the frequency scale of the FFT is
warped according to the Greenwood function �Greenwood,
1961� to provide a perceptually scaled axis. To do this, the
parameters of the Greenwood function are estimated from
the upper and lower bounds of the species’ hearing range
along with a warping constant of k=0.88 �LePage, 2003�.
Details of the warping equations and GFCC feature extrac-
tion process can be found in Clemins et al. �2006� and Clem-
ins and Johnson �2006�. Given basic information about a
species frequency range, GFCCs provide an accurate and
robust set of features to describe spectral characteristics over
time.

In addition to the base set of GFCC features, energy is
computed on the original time-domain data, and velocity and
acceleration coefficients representing the first- and second-
order rates of change are added. For the experiments de-
scribed here, the vocalizations are segmented using 5 ms
Hamming windows, with a 2.5 ms overlap. Twelve GFCCs
plus normalized log energy along with velocity and accelera-
tion coefficients are calculated, for a total of 39 features.

TABLE I. Distribution of the number of individuals, song types, and vocal-
izations, and vocalizations with associated frequencies on individual, song
type and syllable for training, test, and adaptation sets.

Training set Test set Adaptation set

Number of individuals 75 30 30
Number of song types 53 60 60
Number of syllables 19 19 19
Number of vocalizations 2039 864 886
Mean vocalizations/caller 27.2 28.8 29.5
Mean vocalizations/type 38.5 14.4 14.8
Mean vocalizations/syllable 107.3 45.5 46.6

Song type ab
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FIG. 2. ab-type song variation in ortolan bunting.
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Frequency warping is done using a given hearing range from
400 to 7200 Hz, with 26 triangular frequency bins spaced
across that range. Velocity and acceleration coefficients are
computed using a five-window linear regression.

B. Acoustic models

HMMs �Rabiner and Juang, 1993� are the state-of-the-
art approach for continuous speech recognition tasks. HMMs
are statistical finite-state machines, where states represent
spectrally stationary portions of the vocalization and transi-
tions between states represent spectral transitions. This re-
sults in the ability to model spectral and temporal differences
between an example vocalization and a trained HMM, with
an implicit nonlinear time alignment.

In this work, each of the 19 ortolan bunting syllables is
modeled with a 15-state left-to-right HMM, as illustrated in
Fig. 3. Each state Sj is entered according to a transition prob-
ability aij from the previous state Si. An observation feature
vector ot at time t is generated from the current state Sj based
on a probability distribution bj�ot�, which in this work is a
diagonal covariance Gaussian model.

During the training process, the Baum–Welch algorithm
for expectation maximization �EM� �Baum et al., 1970;
Moon, 1996� is used to estimate the HMM parameters that
maximize the joint likelihood of all training observation se-
quences. For classification, the Viterbi algorithm �Forney,
1973� is used to find the model sequence having the highest
likelihood match to the sequence of test features.

C. Maximum likelihood linear regression adaptation

Once an HMM has been trained, the model parameters
can be adapted to tailor the model to more domain-specific
data. The key parameters for adaptation are the means and
variances corresponding to each state distribution bj�ot�. In
the MLLR adaptation approach, two linear transformation
matrices are estimated for each state, one for the mean vector
and one for the covariance matrix, under a maximum likeli-
hood criteria function �Leggetter and Woodland, 1995�. The
underlying principle is to provide a reestimation approach
that is consistent with maximizing the HMM likelihood
while keeping the number of free parameters under control,
thus requiring a smaller amount of adaptation data and al-

lowing for rapid adaptation. MLLR has been widely used to
obtain adapted models for both new speakers and new envi-
ronmental conditions �Huang et al., 2001�.

In order to maximize the use of adaptation data, the
required linear transformation matrices for each state are
grouped into broad acoustic/syllable classes so that the over-
all number of free parameters is significantly less than the
number of mean vectors. This is accomplished by building a
regression class tree to cluster states with similar distribu-
tions into regression classes, the members of which share the
same linear transformation.

The regression class tree is constructed so as to cluster
together components that are close acoustically, using the
original CI model set �independent of any new data�. A cen-
troid splitting algorithm using a Euclidean distance measure
is applied to construct the tree �Young et al., 2002�. The
terminal nodes or leaves of the tree specify the finest possible
resolution groupings for transformation, and are termed the
base �regression� classes. Each Gaussian component from the
CI model set belongs to one specific base class.

The amount and type of adaptation data that is available
determines exactly which transformations are applied to the
original model. This makes it possible to adapt all models,
even those for which there were no observations in the ad-
aptation data, because the regression tree representation al-
lows for adaptation to be done based on similar models that
are present in the data. When more adaptation data are avail-
able, a larger number of unique transformations are applied,
in accordance with the structure of the regression tree.

Specifically, the mean vector �i for each state can be
transformed using

�̂i = Acmi + bc = Wc�i, �1�

where mi is the original mean vector for state i, �i

= �1 mi
T�T is the extended mean vector incorporating a bias

vector bc, Ac is the transformation matrix for regression class
C, and Wc is the corresponding extended transformation ma-
trix �bc Ac�.

While the regression tree itself is built from the caller-
independent models, the number of regression classes C ac-
tually implemented for a particular set of adaptation data is
variable, depending on the data’s coverage of the classes. A
tiny amount of adaptation data would result in only a single
transformation matrix being used across all classes, or even
no adaptation at all.

FIG. 3. A 15-state left-to-right hidden Markov model
�HMM�. Each state emits an observable vector of 39
GFCCs that are characterized by a single Gaussian
model.

J. Acoust. Soc. Am., Vol. 123, No. 3, March 2008 Tao et al.: Adaptation in bunting vocalization classification 1585

 Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP:  134.48.159.28 On: Tue, 04 Feb 2014 16:40:40



The required transformation matrix Wc for adapting the
mean vector �i as indicated in Eq. �1� is obtained using the
EM technique. The resulting reestimation formula Wc is
given by

wq = ��
t

�
i�C

�t�i��i
−1xt�i

T�
q
��

i�C
��

t

�t�i��i
−1�

qq

��i�i
T�q�

q

−1
,

�2�

where wq is the qth row vector of Wc being estimated, �t�i� is
the occupancy likelihood of state i, �i and �i are the corre-
sponding diagonal covariance matrix and the extended mean
vectors, and xt is the adaptation data feature vector at time t.
The subscripts q and qq in this equation are used to indicate
the corresponding row and diagonal element of a matrix,
respectively, for compactness of representation.

The Gaussian covariance �i for state i is transformed
using

�̂i = ��i
1/2�THi�i

1/2, �3�

where the diagonal linear transformation matrix Hi is esti-
mated via

Hi =

�
j�C

�� j
−1/2�T��

t

�t�j��xt − � j��xt − � j�T�� j
−1/2

�
j�C

�
t

�t�j�
. �4�

Typically, transformation matrices converge in just a few
iterations. At each iteration, all matrices are initialized to the
identity transformation, and recognition likelihood statistics
are accumulated over the data using the current model.
Means alone or both means and variances are then updated
using Eqs. �2� and �4�. Typically the impact of variance ad-
aptation is much less significant than that of mean adapta-
tion. Transforming the variances can still be significant, how-
ever, because by nature variances in a CI system, which
come from many individuals, are higher than those of the
corresponding CD systems.

To implement the adaptation process, transformation
matrices are initialized to the identity matrix. Using the
original CI model and the prebuilt regression tree, state oc-
cupancies are calculated for all possible states, and the occu-
pation counts are grouped for each class in the tree and com-
pared to a threshold to determine exactly which
transformations are to be applied. Following this, several it-
erations of Eqs. �2� and �4� are run to estimate and apply the
mean and variance transformation matrices and create a new
adapted model.

MLLR adaptation can be used in various different
modes. Supervised adaptation refers to adaptation done using
data accompanied by expert transcriptions, so that the pro-
cess is applied to known model components. It is also pos-
sible to implement unsupervised adaptation, where before
each adaptation iteration a recognition pass is performed to
determine which models to adapt. Clearly, if the initial CI
models are not a good match to the new domain, unsuper-
vised adaptation could potentially fail to improve or even
degrade the overall system by adapting an incorrect selection
of models using the new data. It is also possible to apply

adaptation methods either statically, where the entire amount
of adaptation data is used together, or incrementally, where
adaptation is done repeatedly as the amount of adaptation
data increases.

D. Song-type recognition experiments

Song-type recognition experiments were implemented
on the ortolan bunting data set as previously described. The
goal of these experiments is to compare how well a CA
HMM system performs compared to a baseline CI system.
For reference, a fully CD system was also implemented.

The recognition models used for all experiments were
15 state single Gaussian HMMs with diagonal covariance
matrices. The feature vector used for classification, as de-
scribed previously, was a 39-element vector that included 12
GFCCs plus normalized log energy, accompanied by delta
and delta–delta coefficients. The software toolkit HTK ver-

(a)

(b)

(c)

FIG. 4. Vocalization recognition systems. �a� Caller-independent, with sepa-
rate individuals for the training and testing data. �b� Caller-dependent, with
training and testing data coming from the same group of individuals.
�c� Caller-adapted, with separate training and testing data, but with a portion
of the testing data pulled out and used for adaptation.

1586 J. Acoust. Soc. Am., Vol. 123, No. 3, March 2008 Tao et al.: Adaptation in bunting vocalization classification

 Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP:  134.48.159.28 On: Tue, 04 Feb 2014 16:40:40



sion 3.2 �Young et al., 2002� was used to implement the
HMMs, perform adaptation, and analyze classification per-
formance. There were 19 different HMMs trained for each
system, one for each syllable.

The following song-type recognition systems were
implemented for comparison:

CI: the baseline caller-independent models. The system
diagram for the CI system is shown in Fig. 4�a�. There was
no overlap between the training individuals and test indi-
viduals, with 75 and 30 individuals in the two data sets,
respectively.

CD: the caller-dependent models. The system diagram for
the CD system is shown in Fig. 4�b�. The training and
testing data were separate but came from the same indi-
viduals. The training data used for the CD experiments
was the same as the adaptation data used for the CA ex-
periments.

CA: the caller-adapted models. The system diagram for
the MLLR adaptation systems is shown in Fig. 4�c�. The
training and testing data were from separate individuals,
and the test data were further split into adaptation data and
final test data. Three different CA experiments were imple-
mented: supervised mean adaptation, supervised mean and
variance adaptation, and unsupervised mean adaptation.

In order to see how the amount of adaptation data af-
fected the results, each adaptation method was implemented
multiple times, using increasing amounts of adaptation data.
This was done in 10% increments, starting with 0% �no ad-
aptation, equivalent to the initial CI system�, then 10%, 20%,
and so on up to 100% �full adaptation set in use�.

IV. RESULTS

Overall results of the adaptation process can be seen in
Fig. 5. The baseline CI system has an 82.9% accuracy, while
the CD system has an 88.1% accuracy. Unsupervised adap-
tation of the means has a peak accuracy of 86.7% and a final

accuracy of 86.0% using the full data set. Supervised adap-
tation yields the highest accuracy, 94.3% overall, represent-
ing a net gain of 11.4 percentage points �66% reduction in
error� over CI and 6.2 percentage points �52% reduction in
error� over CD.

The supervised adaptation using means �m� and that us-
ing both means and variances �mv� show a different pattern
for lower amounts of data, but reach exactly the same accu-
racy, 94.3%, as the adaptation data increases. The supervised
methods significantly outperform both the CI and the CD
systems, reaching the performance level of the CI system at
about 20% data and that of the CD at about 30% data. The
unsupervised adaptation results, as expected, trail those of
the supervised system, but are still able to significantly out-
perform the baseline CI system.

A. Detailed recognition results across specific
individuals

Table II displays the comparison of CI, CD, and CA �full
adaptation set� for each individual in the test set, along with
the distributions of song types and syllables for each.

Note that in a few cases, 9 out of 30 individuals, the CD
system actually gives a lower accuracy than the original CI
system. In two of these cases, even the CA system still has a
lower accuracy than the CI system. Comparing the CD to the
CA systems, only one individual has an accuracy that is
lower in the adapted system.

B. Detailed recognition results as a function of song-
type frequency

In order to examine the recognition accuracy as a func-
tion of how often each song occurs �i.e., the amount of data
in the training and test sets for each song�, an additional
analysis is done by rank-ordering the songs according to fre-
quency of occurrence and plotting the accuracy.

The overall system recognition cumulative accuracies by
classified song types are shown in Fig. 6. The CI results drop
from 95.5% for the most common ab song down to 82.9%

Accuracy vs. Adaptation Data Size
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for the least frequent song type, sfb. It is interesting to note
that the impact of song-type frequency is less pronounced for
the CA systems as compared to the CI and CD systems, with
smoother accuracy curves across song type.

V. CONCLUSIONS

This work demonstrates the advantages of using an
acoustic model adaptation system in classifying ortolan
bunting vocalizations. There are two key advantages illus-
trated by these experiments. The first is that a caller-adapted
recognition system typically gives significant performance
improvement over either caller-independent or caller-
dependent systems. The second is that adaptation provides
for extremely efficient data utilization, which is very impor-
tant for bioacoustics tasks where data collection and labeling
is difficult.

The results given here suggest that the classification ac-
curacy of many systems could be improved using adaptation,
since individual vocal variation is typically one of the most
important factors affecting performance. In essence, caller
adaptation works like a flexible interpolation between an in-
dependent and a fully dependent system. An adapted system
starts from a baseline independent system, surpasses both

independent and dependent systems, and approaches an ideal
�well trained with unlimited size of individual identity la-
beled data� dependent system. As the amount of data in-
creases, the specificity of the adaptation is improved through
the creation of a larger regression tree.

Although a caller-dependent system with unlimited data
is theoretically ideal, it is often impractical because of the
large amount of data required for each individual to build
well trained models. The performance of such a system will
be low if the number of individual vocalizations used to train
the HMMs is limited, and recognition accuracy for any new
individuals who are not present in the training set will be
especially low. In contrast, an adaptation-based system over-
comes these limitations by taking advantage of existing well
trained CI models. With a moderate amount of labeled adap-
tation data, an adapted system generally achieves better per-
formance than a CI or even a CD system. Even in unsuper-
vised mode where no transcriptions at all are used, an
adapted system may still approach the accuracy of a caller-
dependent system as the size of adaptation data increases, as
illustrated in the experimental results in Fig. 5.

The underlying reason for the high accuracy of adapta-
tion systems is data utilization efficiency. Vocalization data

TABLE II. Vocalization recognition comparison among CI, CD, and CA for each new individual, with the
distributions of adapted songs, song types, and syllables of each individual bird. Overall accuracies with
variances are CI 82.9�16.4%, CD 88.1�10.1%, and CA 94.3�7.3%.

Caller
ID

Adapt
songs song types Syllables

CI
�%�

CD
�%�

CA
�%�

2044 30 ab, cb, c, a a, b, c 53.3 83.3 100
2049 30 huf, h, jufb, juf, hu b, f, h, j, u 60 90 100
347 30 ab, gb, hufb, ghuf a, b, f, g, h, u 63.3 93.3 96.7

2004 30 cb, eb, huf, h, jufb, hufb, c, cufb b, c, e, f, h, j, u 56.7 90 90
2046 8 cb, er c, b, e, r 66.7 83.3 100
2026 22 h, jufb, juf, hu, ju b, f, h, j, u 68.2 72.7 100
2029 30 cb, gb, guf, gufb, gcb, gluf b, c, f, g, l, u 46.7 70 76.7
385 30 h, ef, e e, f, h 83.3 96.7 100
502 30 ab, cb, cufb, cf, cfb, tb, sfb a, b, c, f, s, t, u 83.3 93.3 100

2022 30 huf, jufb, juf, j, ju b, f, h, j, u 80 90 96.7
2010 30 ab, eb, ef a, b, e, f 86.2 96.6 100
1303 40 cb, gb, guf, c, g, gh, gu, ch b, c, f, g, h, u 70 86.7 83.3
205 30 ab, p, pb a, b, p 73.3 60 83.3
165 30 cd, eb, cdb, suf, tb, sb, tuf c, d, e, f, s, t, u 90 83.3 96.7
384 30 eb, cufb, cuf b, c, e, f, u 93.3 93.3 100
430 30 ab, huf, h, hd, a a, b, d, f, h, u 93.3 93.3 100
176 60 eb, huf, guf, hufb, luf, gufb, lufb c, d, e, f, s, t, u 69 72.4 74.1

1201 30 gb, h, hb, gh, ghb, hgb b, g, h 83.3 80 86.7
2038 30 ab, cb, cd, cdb a, b, c, d 93.3 96.7 96.7

39 30 hd, gd h, g, d 100 100 100
106 30 ab, kb, a, k a, b, k 100 100 100
413 25 jufb, jb b, f, j, u 100 100 100

1030 30 cd, od c, d, o 93.3 83.3 93.3
1903 30 gb, nu, nuf, n b, f, g, n, u 100 90 100
2011 30 cb, ghuf, gh, ghu b, c, g, h, u 100 100 100
2021 30 gb, huf, h, hufb, ghuf, gh, ghufb, hu b, f, g, h, u 96.7 80 96.7
2025 13 h, gh, hr g, h, r 91.7 83.3 91.7
2030 30 ab, cb, kb, kab a, b, c, k 100 100 100
314 30 gb, h, jd, hr b, d, g, h, j, r 100 93.3 96.7
239 28 ab, kb, luf, mluf, mufl a, b, f, k, l, m, n 100 95.7 95.7

Total 886 60 song types 19 syllables 82.9 88.1 94.3
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collection is often difficult due to environmental constraints
and inconsistent vocal repertoire across individuals, and data
transcription or labeling is a time-consuming task requiring
great expertise, so it is expensive to develop large data sets.
Acoustic model adaptation is a natural solution to this prob-
lem, making the most effective use of the data regardless of
how much is available. A CA system is initialized by starting
from a CI system that is relative cheaper in effort required
for data labeling because it does not need individual identity,
then adapted using a much smaller amount of identity tran-
scribed adaptation data to customize the system to the new
individual vocal models. This enables a controlled trade-off
between data labeling effort and system performance. In
other words, maximum system performance is obtained with
the minimum effort on data labeling.

The acoustic model adaptation methods presented here
are applicable to a wide variety of species. Although each
species has different vocal characteristics, individual vocal
variability is nearly always present. Applying adaptation al-
lows us to achieve high performance in classifying animal
vocalizations with a small amount of available data.
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