1,983 research outputs found

    Semi-supervised learning towards automated segmentation of PET images with limited annotations: Application to lymphoma patients

    Full text link
    The time-consuming task of manual segmentation challenges routine systematic quantification of disease burden. Convolutional neural networks (CNNs) hold significant promise to reliably identify locations and boundaries of tumors from PET scans. We aimed to leverage the need for annotated data via semi-supervised approaches, with application to PET images of diffuse large B-cell lymphoma (DLBCL) and primary mediastinal large B-cell lymphoma (PMBCL). We analyzed 18F-FDG PET images of 292 patients with PMBCL (n=104) and DLBCL (n=188) (n=232 for training and validation, and n=60 for external testing). We employed FCM and MS losses for training a 3D U-Net with different levels of supervision: i) fully supervised methods with labeled FCM (LFCM) as well as Unified focal and Dice loss functions, ii) unsupervised methods with Robust FCM (RFCM) and Mumford-Shah (MS) loss functions, and iii) Semi-supervised methods based on FCM (RFCM+LFCM), as well as MS loss in combination with supervised Dice loss (MS+Dice). Unified loss function yielded higher Dice score (mean +/- standard deviation (SD)) (0.73 +/- 0.03; 95% CI, 0.67-0.8) compared to Dice loss (p-value<0.01). Semi-supervised (RFCM+alpha*LFCM) with alpha=0.3 showed the best performance, with a Dice score of 0.69 +/- 0.03 (95% CI, 0.45-0.77) outperforming (MS+alpha*Dice) for any supervision level (any alpha) (p<0.01). The best performer among (MS+alpha*Dice) semi-supervised approaches with alpha=0.2 showed a Dice score of 0.60 +/- 0.08 (95% CI, 0.44-0.76) compared to another supervision level in this semi-supervised approach (p<0.01). Semi-supervised learning via FCM loss (RFCM+alpha*LFCM) showed improved performance compared to supervised approaches. Considering the time-consuming nature of expert manual delineations and intra-observer variabilities, semi-supervised approaches have significant potential for automated segmentation workflows

    Learning Algorithms for Fat Quantification and Tumor Characterization

    Get PDF
    Obesity is one of the most prevalent health conditions. About 30% of the world\u27s and over 70% of the United States\u27 adult populations are either overweight or obese, causing an increased risk for cardiovascular diseases, diabetes, and certain types of cancer. Among all cancers, lung cancer is the leading cause of death, whereas pancreatic cancer has the poorest prognosis among all major cancers. Early diagnosis of these cancers can save lives. This dissertation contributes towards the development of computer-aided diagnosis tools in order to aid clinicians in establishing the quantitative relationship between obesity and cancers. With respect to obesity and metabolism, in the first part of the dissertation, we specifically focus on the segmentation and quantification of white and brown adipose tissue. For cancer diagnosis, we perform analysis on two important cases: lung cancer and Intraductal Papillary Mucinous Neoplasm (IPMN), a precursor to pancreatic cancer. This dissertation proposes an automatic body region detection method trained with only a single example. Then a new fat quantification approach is proposed which is based on geometric and appearance characteristics. For the segmentation of brown fat, a PET-guided CT co-segmentation method is presented. With different variants of Convolutional Neural Networks (CNN), supervised learning strategies are proposed for the automatic diagnosis of lung nodules and IPMN. In order to address the unavailability of a large number of labeled examples required for training, unsupervised learning approaches for cancer diagnosis without explicit labeling are proposed. We evaluate our proposed approaches (both supervised and unsupervised) on two different tumor diagnosis challenges: lung and pancreas with 1018 CT and 171 MRI scans respectively. The proposed segmentation, quantification and diagnosis approaches explore the important adiposity-cancer association and help pave the way towards improved diagnostic decision making in routine clinical practice

    Artificial Intelligence Techniques in Medical Imaging: A Systematic Review

    Get PDF
    This scientific review presents a comprehensive overview of medical imaging modalities and their diverse applications in artificial intelligence (AI)-based disease classification and segmentation. The paper begins by explaining the fundamental concepts of AI, machine learning (ML), and deep learning (DL). It provides a summary of their different types to establish a solid foundation for the subsequent analysis. The prmary focus of this study is to conduct a systematic review of research articles that examine disease classification and segmentation in different anatomical regions using AI methodologies. The analysis includes a thorough examination of the results reported in each article, extracting important insights and identifying emerging trends. Moreover, the paper critically discusses the challenges encountered during these studies, including issues related to data availability and quality, model generalization, and interpretability. The aim is to provide guidance for optimizing technique selection. The analysis highlights the prominence of hybrid approaches, which seamlessly integrate ML and DL techniques, in achieving effective and relevant results across various disease types. The promising potential of these hybrid models opens up new opportunities for future research in the field of medical diagnosis. Additionally, addressing the challenges posed by the limited availability of annotated medical images through the incorporation of medical image synthesis and transfer learning techniques is identified as a crucial focus for future research efforts

    3D Masked Autoencoders with Application to Anomaly Detection in Non-Contrast Enhanced Breast MRI

    Full text link
    Self-supervised models allow (pre-)training on unlabeled data and therefore have the potential to overcome the need for large annotated cohorts. One leading self-supervised model is the masked autoencoder (MAE) which was developed on natural imaging data. The MAE is masking out a high fraction of visual transformer (ViT) input patches, to then recover the uncorrupted images as a pretraining task. In this work, we extend MAE to perform anomaly detection on breast magnetic resonance imaging (MRI). This new model, coined masked autoencoder for medical imaging (MAEMI) is trained on two non-contrast enhanced MRI sequences, aiming at lesion detection without the need for intravenous injection of contrast media and temporal image acquisition. During training, only non-cancerous images are presented to the model, with the purpose of localizing anomalous tumor regions during test time. We use a public dataset for model development. Performance of the architecture is evaluated in reference to subtraction images created from dynamic contrast enhanced (DCE)-MRI

    Deep learning in medical imaging and radiation therapy

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/146980/1/mp13264_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146980/2/mp13264.pd

    Evaluation of cancer outcome assessment using MRI: A review of deep-learning methods

    Full text link
    Accurate evaluation of tumor response to treatment is critical to allow personalized treatment regimens according to the predicted response and to support clinical trials investigating new therapeutic agents by providing them with an accurate response indicator. Recent advances in medical imaging, computer hardware, and machine-learning algorithms have resulted in the increased use of these tools in the field of medicine as a whole and specifically in cancer imaging for detection and characterization of malignant lesions, prognosis, and assessment of treatment response. Among the currently available imaging techniques, magnetic resonance imaging (MRI) plays an important role in the evaluation of treatment assessment of many cancers, given its superior soft-tissue contrast and its ability to allow multiplanar imaging and functional evaluation. In recent years, deep learning (DL) has become an active area of research, paving the way for computer-assisted clinical and radiological decision support. DL can uncover associations between imaging features that cannot be visually identified by the naked eye and pertinent clinical outcomes. The aim of this review is to highlight the use of DL in the evaluation of tumor response assessed on MRI. In this review, we will first provide an overview of common DL architectures used in medical imaging research in general. Then, we will review the studies to date that have applied DL to magnetic resonance imaging for the task of treatment response assessment. Finally, we will discuss the challenges and opportunities of using DL within the clinical workflow

    A comparative study of different pre-trained deeplearning models and custom CNN for pancreatic tumor detection

    Get PDF
    Artificial Intelligence and its sub-branches like MachineLearning (ML) and Deep Learning (DL) applications have the potential to have positive effects that can directly affect human life. Medical imaging is briefly making the internal structure of the human body visible with various methods. With deep learning models, cancer detection, which is one of the most lethal diseases in the world, can be made possible with high accuracy. Pancreatic Tumor detection, which is one of the cancer types with the highest fatality rate, is one of the main targets of this project, together with the data set of computed tomography images,which is one of the medical imaging techniques and has an effective structure in Pancreatic Cancer imaging. In the field of image classification, which is a computer vision task, the transfer learning technique, which has gained popularity in recent years, has been applied quite frequently. Using pre-trained models werepreviously trained on a fairly large dataset and using them on medical images is common nowadays. The main objective of this article is to use this method, which is very popular inthe medical imaging field, in the detection of PDAC, one of the deadliest types of pancreatic cancer, and to investigate how it per-forms compared to the custom model created and trained from scratch. The pre-trained models which are used in this project areVGG-16 and ResNet, which are popular Convolutional Neutral Network models, for Pancreatic Tumor Detection task. With the use of these models, early diagnosis of pancreatic cancer, which progresses insidiously and therefore does not spread to neighboring tissues and organs when the treatment process is started, may be possible. Due to the abundance of medical images reviewed by medical professionals, which is one of the main causes for heavy workload of healthcare systems, this applicationcan assist radiologists and other specialists in Pancreatic Tumor detection by providing faster and more accurate method
    corecore