15 research outputs found

    Compositional Model based Fisher Vector Coding for Image Classification

    Full text link
    Deriving from the gradient vector of a generative model of local features, Fisher vector coding (FVC) has been identified as an effective coding method for image classification. Most, if not all, FVC implementations employ the Gaussian mixture model (GMM) to depict the generation process of local features. However, the representative power of the GMM could be limited because it essentially assumes that local features can be characterized by a fixed number of feature prototypes and the number of prototypes is usually small in FVC. To handle this limitation, in this paper we break the convention which assumes that a local feature is drawn from one of few Gaussian distributions. Instead, we adopt a compositional mechanism which assumes that a local feature is drawn from a Gaussian distribution whose mean vector is composed as the linear combination of multiple key components and the combination weight is a latent random variable. In this way, we can greatly enhance the representative power of the generative model of FVC. To implement our idea, we designed two particular generative models with such a compositional mechanism.Comment: Fixed typos. 16 pages. Appearing in IEEE T. Pattern Analysis and Machine Intelligence (TPAMI

    Information-Distilling Quantizers

    Full text link
    Let XX and YY be dependent random variables. This paper considers the problem of designing a scalar quantizer for YY to maximize the mutual information between the quantizer's output and XX, and develops fundamental properties and bounds for this form of quantization, which is connected to the log-loss distortion criterion. The main focus is the regime of low I(X;Y)I(X;Y), where it is shown that, if XX is binary, a constant fraction of the mutual information can always be preserved using O(log(1/I(X;Y)))\mathcal{O}(\log(1/I(X;Y))) quantization levels, and there exist distributions for which this many quantization levels are necessary. Furthermore, for larger finite alphabets 2<X<2 < |\mathcal{X}| < \infty, it is established that an η\eta-fraction of the mutual information can be preserved using roughly (log(X/I(X;Y)))η(X1)(\log(| \mathcal{X} | /I(X;Y)))^{\eta\cdot(|\mathcal{X}| - 1)} quantization levels

    A Scalable Approach for Content-Based Image Retrieval in Peer-to-Peer Networks

    Get PDF
    corecore