
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, MMM YYYY 1

A Scalable Approach for Content-Based Image
Retrieval in Peer-to-Peer Networks

Lelin Zhang, Student Member, IEEE, Zhiyong Wang, Member, IEEE, Tao Mei, Senior Member, IEEE,
and David Dagan Feng, Fellow, IEEE

Abstract—Peer-to-peer networking offers a scalable solution for sharing multimedia data across the network. With a large amount of
visual data distributed among different nodes, it is an important but challenging issue to perform content-based retrieval in peer-to-peer
networks. While most of the existing methods focus on indexing high dimensional visual features and have limitations of scalability, in
this paper we propose a scalable approach for content-based image retrieval in peer-to-peer networks by employing the
bag-of-visual-words model. Compared with centralized environments, the key challenge is to efficiently obtain a global codebook, as
images are distributed across the whole peer-to-peer network. In addition, a peer-to-peer network often evolves dynamically, which
makes a static codebook less effective for retrieval tasks. Therefore, we propose a dynamic codebook updating method by optimizing
the mutual information between the resultant codebook and relevance information, and the workload balance among nodes that
manage different codewords. In order to further improve retrieval performance and reduce network cost, indexing pruning techniques
are developed. Our comprehensive experimental results indicate that the proposed approach is scalable in evolving and distributed
peer-to-peer networks, while achieving improved retrieval accuracy.

Index Terms—Bag-of-visual-words, content-based image retrieval, peer-to-peer, information maximization, workload balance

F

1 INTRODUCTION

P EER-TO-PEER (P2P) networks, which are formed by
equally privileged nodes connecting to each other in

a self-organizing way, have been one of the most impor-
tant architectures for data sharing. Popular P2P file-sharing
networks such as eDonkey1 count millions of users [1] and
tens of millions of files. Unlike webpages which mainly
consist of textual documents such as news, blog articles or
forum posts, multimedia files play a dominant role in most
P2P networks [2]. The ever-growing amount of multimedia
data and computational power on P2P networks exposes
both the need and potential for large scale multimedia
retrieval applications such as content-based image sharing,
and copyright infringement detection.

While P2P networks are well known for their efficiency,
scalability and robustness on file sharing, providing ex-
tended search functionality such as content-based image
retrieval (CBIR) faces the following challenges: 1) in con-
trast to centralized environments, data in P2P networks is
distributed among different nodes, thus a CBIR algorithm
needs to index and search for images in a distributed
manner; 2) unlike distributed servers/clouds, nodes in P2P
networks have limited network bandwidth and computa-
tional power, thus the algorithm should keep the network
cost low and the workload among nodes balanced; and 3)
as P2P networks are under constant churn, where nodes
join/leave and files publish to/remove from the network,

• L. Zhang, Z. Wang, and D. Feng are with the School of Informa-
tion Technologies, The University of Sydney, NSW 2006, Australia.
E-mail: lzha1533@uni.sydney.edu.au; zhiyong.wang@sydney.edu.au; da-
gan.feng@sydney.edu.au.

• T. Mei is with Microsoft Research, Beijing 100080, China. E-mail:
tmei@microsoft.com.

Manuscript received MMM DD, YYYY; revised MMM DD, YYYY.
1. www.emule-project.net

the index needs to be updated dynamically to adapt to such
changes.

To support content indexing and avoid message flood-
ing, structured overlay networks such as Distributed Hash
Tables (DHTs) [3], [4] are often implemented on top of a
physical network. By organizing the nodes in a structured
way, messages can be efficiently routed between any pair
of nodes, and the index integrity can be maintained dur-
ing network churn. For the CBIR functionality, most of
the existing systems adopt a global feature approach: an
image is represented as a high-dimensional feature vector
(e.g., color histogram), and the similarity between files is
measured using the distance between two feature vectors
[5], [6], [7]. Usually, the feature vectors are indexed by
a distributed high-dimensional index or Locality Sensitive
Hashing (LSH) over the DHT overlay. However, due to the
limitation known as “curse of dimensionality”, the majority
of these solutions have high network costs or serious work-
load balance issue among nodes when the dimensionality of
feature vectors is high.

On the other hand, the bag-of-visual-words (BoVW)
model has been successfully utilized for large scale image
retrieval [8]. In the BoVW model, each image is represented
with a bag of local features, which mimics the bag-of-
words (BoW) model where each document is a collection of
unordered words.2 Generally, to employ the BoVW model,
the following three steps are required [9], [10]: Firstly, a
number of local regions (through image segmentation or
uniform image partitioning) or keypoints (through keypoint

2. As the BoVW model is an analogy to the BoW model, from
the retrieval point of view, “term”, “visual word” and “codeword”;
“codebook” and “vocabulary”; “document”, “file” and “image” are
analogous concepts. For the convenience of our discussion, if no
confusion is caused, we use them interchangeably.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TKDE.2015.2505284

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Sydney eScholarship

https://core.ac.uk/display/212697974?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, MMM YYYY

detection algorithms such as Hessian-Affine detector [11])
will be identified from an image and each region or keypoint
will be represented with a high dimensional descriptor. In
our experiments, the widely used Scale-Invariant Feature
Transform (SIFT) descriptor [12] is employed.

Secondly, since the features extracted are in a continuous
space, a codebook is generated to quantize the feature
vectors into discrete codewords, thus an image can be
interpreted as a set of feature codewords. One of the most
commonly used quantization schemes is nearest-neighbor
quantization (e.g., k-means [9], [10]), where each feature
vector is represented by its nearest codeword centroid, and
the codebook forms a Voronoi partitioning of the feature
space.

Lastly, similar to the BoW model, statistical distributions
of the codewords in a given image is utilized to represent
the image. In this paper we utilize the well-studied tf-
idf weighting scheme and cosine distance as the similarity
measurement.

To implement these steps in P2P networks, each node
firstly performs feature extraction and quantization locally.
Therefore, the key challenges lie in the steps performed
in a distributed way: the codebook generation/updating
and retrieval. As discussed earlier, the algorithms need
to have a low and even network cost on all nodes, and
adapt to data dynamics. Table 1 shows the estimated per-
node computation and network cost of different steps in
our experimental system, assuming an average bandwidth
and a typical DHT implementation. As shown in the table,
the efficiency of a retrieval system mainly depends on the
network cost between nodes, rather than the computation
cost within a node. Therefore it is essential to minimize the
network cost and keep the workload balanced during both
codebook updating and retrieval.

For data dynamics, the data in a P2P network is un-
der constant churn. The codebook in such an environment
needs to be updated periodically, rather than kept static.
At the same time, during the retrieval process, relevance
information can be accumulated explicitly by users pro-
viding feedback about their query results; or implicitly
from the downloading behavior after a query, which can
be utilized to improve retrieval performance [15]. With
various dynamic data, updating the codebook incrementally
and continuously to maintain optimal performance is very
challenging.

To address the above challenges, in this paper, we
present a novel method to dynamically generate and up-
date a global codebook, which considers both the discrim-
inability and workload balance. While processing queries,
each node collects the relevance information and workload
data. With the relevance information, we maximize the
information provided by the codebook about the retrieval
results, thus minimizing the information loss incurred by
quantization. With workload data, we aim to achieve a
fair workload among nodes, thus avoiding overloading or
underloading nodes. Based on these two criteria, the code-
book partitioning is updated routinely by splitting/merging
codewords, thus allowing the codebook to grow/shrink in
accordance to the data distribution. To minimize the cost
of codebook updating, the decision whether a codeword
should be split/merged is taken by its managing node

individually. Finally, the updates are synchronized across
the network at the end of each iteration. As a result, the
discriminability and workload balance is optimized contin-
uously with the churn of the P2P network.

For the retrieval process, we are able to leverage the
existing research on P2P-based text retrieval systems [16],
[17], [18], [19], as the BoVW model is an analogy to the BoW
model. Specifically, we build two logical indices over DHT: a
file index and a codeword index. The file index manages file
publishing and removing, while codeword index serves as
an inverted index for feature posting lookup. To reduce the
query network cost, we applied index pruning techniques
to discard postings that are not likely to contribute to top
retrieval results.

Overall, the key contributions of our work are:

• It is the first study to investigate scalable CBIR with
the BoVW model in P2P networks.

• A novel objective function for codebook optimization
in a P2P environment is proposed, which considers
both the relevance information and the workload
balance simultaneously.

• A distributed codebook updating algorithm based on
splitting/merging of individual codewords is pro-
posed, which optimizes the objective function with
low updating cost.

The rest of this paper is organized as follows. Section 2
introduces the related work. Section 3 provides an overview
of our network structure. Section 4 discusses our proposed
codebook generation and updating algorithms. Section 5
discusses the retrieval process. Section 6 presents the exper-
imental results and discussions. Finally, Section 7 concludes
this paper.

2 RELATED WORK

2.1 CBIR Feature Representation and Indexing
As mentioned earlier, in order to support CBIR in P2P net-
works, structured overlay networks are often implemented
on top of a physical network. A popular class of overlay net-
works is Distributed Hash Table (DHT) [3], [4], which builds
a hash table globally and stores the entries among the nodes
with corresponding hash ID. With the overlay network, each
node needs to be able to represent the files with features,
and store/retrieve the features to/from the global structure
efficiently. Achieving this is very challenging, as we need to
align the feature representation and indexing method with
the underlying overlay. Generally, existing approaches can
be divided into the following two streams.

2.1.1 Global Feature Model
The global feature model represents each image with one
high-dimensional feature vector, and measures the similar-
ity between images with the distance between their feature
vectors. This model is adopted by many existing P2P CBIR
systems [5], [6], [20], [21], [22], [23], [24]. To store and re-
trieve the feature vectors efficiently, generally two categories
of methods can be applied: distributed high-dimensional
indexing and Locality-Sensitive Hashing (LSH).

The high-dimensional indexing based approaches store
the feature vectors in a data structure, usually a tree or

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TKDE.2015.2505284

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

ZHANG et al.: A SCALABLE APPROACH FOR CONTENT-BASED IMAGE RETRIEVAL IN PEER-TO-PEER NETWORKS 3

TABLE 1
Estimated Per-Node Computation and Network Cost Estimation of Different BoVW Steps

Dataset Feature
Extraction

Quantiza-
tion

Retrieval Codebook Updating
CPU DHT Avg. Traffic Index Transfer CPU Avg. Traffic

UKBench 0.188 s 1.168 s 0.037 s
≈ 1 s

2.975 – 16.175 KB 0.984 – 27.804 s
< 2 s

1.456 – 80.913 KB
Holidays

0.554 s
2.818 s 0.048 s 0.476 – 3.507 KB 0.117 – 17.663 s 1.280 – 35.641 KB

Holidays + Flickr100K 11.220 s 0.376 s 5.519 – 40.660 KB 1.612 – 243.301 s 69.511 – 337.926 KB
*Ranged values indicate the best/worst values obtained with different methods and settings we evaluated. Feature Extraction: The average
time to extract the SIFT features of an image. Quantization: The average time to quantize the SIFT features into codewords. Retrieval-CPU:
The average time to compute the similarities of a query image. Retrieval-DHT: The delay of index lookup in a DHT network [13]. Retrieval-
Avg. Traffic: The average network traffic of all the nodes involved in a query, assuming a cost of 20 bytes per posting. Retrieval-Index
Transfer: The average time to transfer all the postings to the query node, assuming a bandwidth of 3.3 Mbps between nodes (2013 Q2 global
average [14]). Codebook Updating-CPU: the average time to update the codeword on each node. Codebook Updating-Avg. Traffic: The
average network traffic of all codeword nodes to update the codebook, assuming a cost of 160 bytes per descriptor.

a graph, to achieve effective search space pruning during
retrieval. In structured P2P networks, the high-dimensional
index is defined in a distributed way over the P2P overlay,
where each node manages a part of the index. For example,
in M-Chord [20], data structures based on distances to
reference points are built to facilitate metric-based similar-
ity search in Chord [3] networks. In [6], a novel naming
mechanism and a tree summarization strategy are employed
to build a tree structure over a DHT overlay. However,
even in a centralized environment, the performance of high-
dimensional indexing suffers from the well-known “curse of
dimensionality”. That is, as the dimensionality of a feature
space increases, the performance of the index decreases
rapidly, and a search needs to traverse a larger part of the
index [25], [26], [27]. In P2P networks, the situation becomes
worse by the fact that the index structure is distributed, as
we need to take into consideration the cost of data transfer
between nodes.

On the other hand, the Locality-Sensitive Hashing (LSH)
based approaches use special hash functions that output the
same value for similar objects. In P2P networks, these hash
functions are usually combined with the hash table interface
of DHTs [21], [22], [23], [24], thus similar feature vectors are
stored on the same/neighboring nodes to enable efficient
similarity searches. To improve the locality of the hash
functions, most works compromise the even distribution of
hash buckets [28], [29], which translates to an imbalanced
workload among nodes in a P2P network. Some works [23],
[28], [29] do tackle this issue by learning more independent
hash functions, but all of them perform one-time learning
without considering the changes of data distribution that
is common in P2P networks due to network churn. Even
when one can update the hash functions with changing
data, implementing it over the DHTs is very challenging. As
the data is stored among nodes of corresponding hash ID,
a one-bit change of the hash function output will result in
large portion of (if not all) data being assigned to a different
node, causing heavy network traffic.

We note that the BoVW histogram, which will be dis-
cussed later, can also be considered and processed as a
high-dimensional global feature. However, as the BoVW
histogram can have a dimensionality of thousands or even
millions [30], it is beyond the capacity of existing high-
dimensional indexing techniques. While LSH can handle
higher dimensionality, it requires longer hash codes to main-

tain the efficiency [28], causing high network cost when
implemented over a DHT.

2.1.2 BoVW Model

The bag-of-visual-words (BoVW) model represents each im-
age with a bag of quantized codewords derived from local
features, and measures the similarity between images with
the BoVW histogram analogous to a bag-of-words (BoW)
model of text retrieval [10]. The retrieval process is typically
supported by an inverted index. Though we are not aware
of any BoVW based P2P CBIR systems, many existing P2P
text retrieval systems build a distributed inverted index in a
highly efficient manner over DHT, using term ID as key and
document ID as value [16], [17], [18], [19].

Generally, there are two strategies to distribute index
tuples: document partition (or local indexing), and term
partition (or global indexing), both are well exploited in
the literature [31], [32], [33]. With document partition, each
node manages an index for a subset of documents. A
query will be sent to all index nodes, and be answered
by combining the lists of candidate documents returned
from them. With term partition, each node manages an
index for a subset of terms. A query will only be sent to
the nodes managing corresponding terms, and answered by
combining the inverted list returned from them. Therefore,
document partition typically has a higher network cost than
term partition, especially when the index has a good term
sparsity [32]. This is not a very big issue in shared-memory
or distributed servers, but does pose a challenge in P2P
networks, as the nodes in P2P networks are loosely coupled
and have much lower bandwidth. As a result, term partition
is a more popular choice in P2P networks [16], [17], [18], [19].

To further reduce the network cost and tackle the issue of
workload balance with term partition, different techniques
have been proposed. For BoVW based CBIR in P2P net-
works, our previous work [34] proposes a codebook re-
sampling mechanism to split the overloaded codewords and
merge the underloaded codewords to maintain a balanced
workload among different codewords. However, it does not
take the relevance information into account. In addition,
the split/merge is based on random re-sampling, which is
heuristic.

Besides P2P networks, a BoVW based CBIR system in
distributed servers is proposed in [33], which seems most
relevant to our work. It builds an inverted index among

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TKDE.2015.2505284

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

4 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, MMM YYYY

distributed servers with term partition. Learning processes
are used to first filter the terms to reduce network cost,
then distribute the terms into different servers to improve
workload balance. Although the objectives are similar, their
method is not directly applicable in P2P networks, as their
learning method is designed to be an off-line process, which
can not deal with data under constant churn. It will incur
high network cost if their learning method is performed
in an on-line manner to keep up with changing data, as
it requires co-occurrence information among all the terms
to be collected and analyzed. Our proposed method achieve
this in a very different way: we keep the term distribution
unchanged, but update the codebook (the way each term is
defined) to maintain the performance when data is changed.
In this way, nodes managing different terms can adjust the
workload individually with a much lower network cost.

2.2 BoVW Codebook Generation

Unlike the BoW model, which has a natural vocabulary,
the visual words of the BoVW model are obtained by
quantizing the features using the codebook. Unsupervised
methods such as k-means and sparse coding [35] aim to
minimize the distortion between the original features and
the quantized codewords. On the other hand, in [36], a
supervised learning process is used to generate a discrim-
inative codebook, where the loss of information provided
by the codebook about the training samples is minimized.
In [37], the codebook compactness, along with the discrim-
inability is optimized. Alternatively, LSH methods [28] are
also exploited for quantization. However, to the best of
our knowledge, none of the existing methods is designed
for P2P environments. Besides assigning features to code-
words, alternative feature encoding approaches have been
proposed. For example, VLAD [38] and Fisher Vector [39]
represent features with the deviation from the codewords
(or a generative model in Fisher Vector), which showed
improved performance on many retrieval and classification
datasets. Most of the methods need to process the entire data
collection in a centralized manner, which is infeasible in P2P
networks. In addition, the specific issues for a distributed
codebook such as network cost, workload balance and data
churn are not well investigated.

Besides the quantization method, the performance of a
codebook is also affected by its size. It is reported by many
papers that a sophisticated method can be easily outper-
formed by a larger codebook [8], [30], [36], as more code-
words generally leads to finer-grain quantization. How-
ever, while a larger codebook yields better performance,
it requires more computational resources. In centralized
servers or clusters, the size of the codebook is usually
predetermined, as available computational resources are
fixed. However, in P2P networks, the available resources is
under constant change, as peers join/leave the network. A
predetermined codebook size is unlikely to produce optimal
performance.

Therefore, our proposed codebook learning method
takes both codebook discriminability and workload balance
into consideration. The discriminability is measured by the
mutual information provided by the codebook about user
feedback, which is partially inspired by [36]. However, since

𝒉𝒌 𝒘𝒌

 0.8

 0.7, 0.1

…

…

𝒉𝒇 𝒐𝒇

A, C, D, E

B, E, F

…

…

File Lookup
(Owner Info)

File
Publishing

(Owner Info)

File
Publishing
 (Features)

CBIR Search
(Features)

Codebook
Generation/

Updating

Nodes
Joining/
Leaving

Redundancy
and Fail

Recovery

File Index Codeword Index

DHT

A
B

C
D

E

F

Fig. 1. Illustration of the network overlay structure. The proposed system
builds a file index and a codeword index over the DHT overlay. The
file index consists of file IDs (hf) and its corresponding owners (of),
while the codeword index consists of codeword IDs (hk) and its corre-
sponding postings (wk). For example, in the codeword index, the second
codeword has two postings: the bike image with a feature posting of
0.7, and the face image 0.1. The entries are distributed to the nodes of
the network according to their keys, which are depicted by the dashed
arrows from file/codeword index to DHT.

our target application is CBIR and [36] targets classification,
the objective function we derived is significantly different.
The workload balance is measured by the difference be-
tween the current and “ideal” workload for each codeword.
To make our codebook adaptive to dynamic P2P environ-
ments, the codebook partitioning is optimized by split-
ting/merging codewords, thereby allowing the codebook
to grow/shrink in accordance to the data distribution and
available resources. In summary, our algorithm is tailored
to deal with distributed and highly dynamic P2P environ-
ments.

3 DESIGN OVERVIEW

As discussed in Section 2.1, to facilitate the BoVW retrieval
process, our system builds inverted indices over the hash
table interface of DHT. Before any further discussion, we
briefly review DHT. DHT is a class of structured P2P over-
lay networks that provides GET(k) and PUT(k, v) opera-
tions similar to a hash table, where k, v are the key and
value of a table entry, respectively. While different DHT
implementations organize node connections with different
topologies, most of them guarantee that a message from
any node can reach the corresponding node in O(log n)
hops, where n is the number of nodes. Additionally, DHT
handles most issues in node management, including redun-
dancy and failure recovery mechanisms in cases of nodes
joining/leaving/failing, and caching and content mirroring
for hot spots. Therefore, DHT forms an infrastructure that
can be used to build more complex applications.

In order to support various operations of our CBIR sys-
tem, we build a file index and a codeword index over DHT,

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TKDE.2015.2505284

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

ZHANG et al.: A SCALABLE APPROACH FOR CONTENT-BASED IMAGE RETRIEVAL IN PEER-TO-PEER NETWORKS 5

B, D

B, E, F
 0.6, 0.3

 0.4, 0.3

 0.5, 0.2

A, C, D, E
 0.8

 0.7, 0.1

A
B

C

D
E

F

?

❶ ❷ 0.6
0.7
0.2

0.58
0.51
0.06

❶

❶

❷

Fig. 2. Illustration of the CBIR process of a query over the DHT overlay
network. The network has six nodes (A,B, . . . , F), and three images
(face, yellow bike, and violin). The entries of the file index (marked
with gray background) and codeword index (marked with white back-
ground) are stored distributedly among different nodes. A CBIR query
is answered by first extracting the BoVW representation of the query
image locally (list 1 of node C), looking up corresponding postings (solid
arrows), computing the similarities and produce the rank list (list 2 of
node c), and finally looking up the owners of the relevant image (dashed
arrow).

as illustrated in Fig. 1. The file index stores (hf , of) entries
with file ID hf as key, and the file ownership information of
as value. The codeword index, which stores the postings of
each codeword, is added to support the storage and retrieval
of BoVW features. It is essentially an inverted index which
stores (hk, wk) entries with codeword ID hk as DHT key,
and the corresponding postings wk as value. Each entry is
distributed to a node of the network according to its key.
For simplicity we refer to a node responsible for an index
entry of file f as file node pf , and the node responsible for
an index entry of codeword k as codeword node pk. The
separation of the file and codeword indices is logical, since
a node may be responsible for any number of file index
entries and/or feature index entries.

All the operations of the CBIR system are translated
into lookup or modification of the entries of the file and/or
codeword index, which are implemented by GET and PUT
operations over the DHT overlay. Details of the operations
are listed in the following subsections. Note that node join-
ing/leaving operations are handled by the underlying DHT
network and therefore not listed here, and we only need to
handle the resultant file publishing/removing operations.

3.1 File Index
3.1.1 File Lookup
Looking up the owners of an exact file is performed with
a DHT lookup operation: given a file ID hf , a list of nodes
that has a copy of the file is returned by GET(hf).

3.1.2 File Publishing/Removing
Publishing a new file is performed by a DHT store oper-
ation: the file ID hf and the list of owner nodes of are
stored by PUT(hf , of). For performance and fault tolerance
considerations, such information needs to be reposted peri-
odically, otherwise it would be removed from the owner list
of . Therefore, removing an entry is achieved by stopping
reposting.

3.2 Codeword Index
3.2.1 CBIR Search
The CBIR search is essentially an inverted index lookup in
the codeword index. As illustrated in Fig. 2, a user on node
C submits a CBIR query with an example image (red bike),
which will be answered in three steps: Firstly, the BoVW
codewords will be extracted on node C locally. Secondly,
the codewords will be looked up in the codeword index
with GET(k), where k is the codeword ID (solid arrows). The
postings with their corresponding file IDs will be returned
by the respective nodes (E and A), which will be used as
similarity measurement to produce the ranked results for
the user. Finally, the owner information of relevant images
can be obtained by the file lookup process described before.

3.2.2 File Publishing/Removing
When a new file is added, besides publishing an entry to the
file index with PUT(hf , of), the file owner will also extract
and quantize the features to form codewords, then put them
to the corresponding entries in the codeword index with
PUT(hk, wk). When a file is removed from the file index
(with no owner), the corresponding codeword postings will
be removed from the codeword index.

3.2.3 Codebook Updating
As to be discussed in Section 4, the global BoVW code-
book is updated via splitting and merging codewords.
The SPLIT/MERGE operations are essentially publish-
ing/removing entries of the codeword index. For a code-
word k stored on node pk, the SPLIT and MERGE operations
are implemented as follows:

SPLIT: To split the codeword k into n codewords, pk
randomly selects n−1 neighboring nodes as new codeword
nodes and sends the centroid coordinates to them. Once all
the new centroids register themselves as codeword nodes,
the descriptor associations of selected nearby partitions will
be updated respectively similar to the file posting process.

MERGE: To merge the codeword k, pk de-registers itself
as a codeword node, thus removing k from the global
codebook similar to the file removing process. After that,
pk will transfer the descriptors that associate with k to their
corresponding new codeword nodes.

3.3 Complexity Analysis
3.3.1 Query Cost
Assume that a P2P network consists of n nodes sharing
a total of N images, a codebook K of initial size |K| is
utilized for BoVW based retrieval, and each image has an
average of c codewords. Our system completes a query in
the following steps: 1) feature extraction; 2) quantization;
3a) sending posting lookup message; 3b) receiving postings;
and 4) aggregating postings and producing the rank list.
We only discuss steps 2–4 as feature extraction time is not
affected by our system configuration.

Step 2: When a user submits a query image, the local
features are extracted and quantized into c codewords. For
the exact nearest neighbor quantization we used in the
experiment, the quantization takes O(c|K|) time.

Step 3a: To lookup the postings, c lookup messages are
sent in parallel to the corresponding nodes. The bandwidth

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TKDE.2015.2505284

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

6 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, MMM YYYY

for sending the lookup messages is O(c), and it takes
O(log n) hops to arrive at the corresponding codeword
nodes, thanks to the underlying DHT overlay.

Step 3b: Once the lookup message is received, the code-
word nodes will directly send the postings back to the query
node, since the source of the query is known. Therefore,
the time for this step is determined by the total number of
postings returned to the query node, which is O(cs), where
s = cN/|K| is the average number of postings stored in the
index for each codeword.

Step 4: The aggregation needs to process all the postings,
so the complexity is the same as step 3b (O(cs)).

Therefore, the total retrieval time complexity is O(c|K|+
c+log n+c2N/|K|). The number of codewords per image c
is bounded by the number of local features per image, which
can be seen as a constant, and the total number of images N
is linearly correlated to the total number of nodes n. Hence
the time complexity is reduced to O(|K|+ log n+ n/|K|).

In our system, we let the codebook size |K| grow as
more nodes join the network, therefore n/|K| is a constant
and the time complexity becomes O(|K| + log n), which is
very scalable as the network grows. The bottleneck term |K|
lies on the quantization step, which can be further improved
if we use approximate nearest neighbor instead.

Also note that the retrieval scope—the number of nodes
visited during a query, has the complexity of O(c log n). As
c is bounded, this is reduced to O(log n), which is also
scalable as the network grows. Therefore, our proposed
retrieval approach is scalable in terms of both query cost
and scope.

3.3.2 Codebook Updating Cost
For codebook generation and update, each iteration consists
of three steps: 1) determine the update operation (split,
merge or no change) for each codeword; 2) for split and
merge, transfer the postings to/from neighbor nodes; and 3)
synchronize the new set of codewords across the network.

Step 1: For each codeword, all the postings need to be
scanned once for all the candidate update operations and
the best one needs to be chosen. Therefore the cost isO(sm),
where s = cN/|K| as before, and m is the number of can-
didate update operations. As we usually have a maximum
limit of split sub-partitioning for each iteration, m can be
regarded as a constant. Therefore the cost is reduced to
O(cN/|K|).

Step 2: For the split and merge of one codeword, the
cost to transfer the postings is O(s) = O(cN/|K|). For the
whole network, the cost is O(ps) = O(pcN/|K|), where p is
the codebook change ratio (the split/merge codewords vs.
total number of codewords).

Step 3: The cost of synchronizing the new codebook is
simply O(p|K|), since each node needs to obtain one copy
of the updated codewords.

Therefore, the codebook update complexity is
O(cN/|K| + pcN/|K| + p|K|). Applying the same
treatment for c and N as the query complexity, we get
O(n/|K| + pn/|K| + p|K|). Similarly, when the codebook
size |K| grows with the network size n, the cost is reduced
to O(p|K|), which is scalable to the network growth.
Therefore, it is important to maintain a dynamic codebook
in P2P environments. Moreover, withO(p|K|) complexity, it

SPLIT: …

MERGE:

UNCHANGED:

𝐸𝑘: 0.12

𝐸𝑘:𝟎.𝟒𝟒 0.32 0.09

𝐸𝑘: 0.26

𝑘1:

𝑘2:

Initial After 1st
Iteration

After nth
Iteration

𝑘3:

𝑘4:

𝑘1

𝑘3

𝑘4

𝑘2

Fig. 3. Illustration of the codebook updating process. Descriptors
(dots) relevant to different queries are marked with different colors.
Within one iteration, each codeword decides whether it should be
split/merged/unchanged based on the resultant objective function val-
ues (Ek as to be discussed in Section 4.2, Eq. (11)). In the first iteration,
k1 decides to split into 2 partitions, while k2 decides to merge. The
results are broadcast throughout the network to form a new global code-
book. The iterative updating process gradually optimizes the codeword
partitioning to form an improved codebook.

is very essential for a codebook update method to minimize
the codebook change ratio p. As our experimental result
shows, the proposed method has lower codebook change
ratio than other methods.

4 CODEBOOK GENERATION AND UPDATING

As illustrated in Fig. 3, our codebook updating algorithm
runs iteratively. During an updating iteration, each code-
word node pk decides whether its codeword k should be
split/merged/unchanged based on the relevance informa-
tion collected from past queries, and the current work-
load. After each iteration, the centroid coordinates and the
codeword statistics needed for similarity measurement (e.g.,
document frequencies) will be broadcasted throughout the
network, so that all the nodes in the network can have the
same codebook. The iterative process runs continuously in
order to maintain an updated codebook during data churn.
The frequency of update iterations is determined by the
degree of churn. As shown by the experiments in Section 6.3,
a very low update frequency (once a few hour) is enough to
maintain the performance.

The rest of this section is organized as follows: Sections
4.1 and 4.2 present the two parts of our objective function:
mutual information and workload balance, and the two
parts are combined in Section 4.3. Section 4.4 introduces the
decision-making process of codeword optimization.

4.1 Codebook Information Maximization
In terms of information maximization, we aim to find
a partitioning of the feature space such that parti-
tions/codewords are correlated to the collected relevance
information.

To achieve this, we model the BoVW based CBIR process
with information theory: given the two sets of descriptors
Q and X—extracted from query image and candidate im-
ages respectively, the objective is to find out the subset of
descriptors in X that comes from the images related to Q.
In other words, given Q, for each descriptor x ∈ X , one
needs to determine the relevance of x, or whether x comes
from a relevant image. Denote the relevance information as
Y , the amount of information provided by the descriptors
can be represented by the conditional mutual information

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TKDE.2015.2505284

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

ZHANG et al.: A SCALABLE APPROACH FOR CONTENT-BASED IMAGE RETRIEVAL IN PEER-TO-PEER NETWORKS 7

of X and Y under all Q ∈ Q: I(X;Y |Q). Note that we
use a codebook K to quantize the descriptors, and use the
resultant codewords to perform the retrieval, the amount of
information provided by the codewords can be denoted as
I(K;Y |Q).

Naturally, an optimal codebook is the one that minimizes
the information loss incurred by the quantization process:

arg min
K

I(X;Y |Q)− I(K;Y |Q). (1)

Since the distribution of X and Y are both fixed when Q is
given, I(X;Y |Q) is fixed. Minimizing Eq. (1) is equivalent
to:

arg max
K

I(K;Y |Q). (2)

That is, we seek a quantization method that provides max-
imum amount of information about the relevance informa-
tion over all queries.

With our quantizer codebook K which partitions the
feature space into k codewords, we express the mutual
information by the Kullback-Leibler divergence [40]:

I(K;Y |Q)

=
∑
Q∈Q

P (Q){DKL[P (K,Y |Q)‖P (K|Q)P (Y |Q))]}

=
∑
Q∈Q

∑
k∈K

∑
y∈Y

P (Q)P (k|Q)P (y|Q, k) log
P (y|Q, k)

P (y|Q)
. (3)

The relevant information Y consists of two parts: the
descriptors from a relevant (y = r) or irrelevant (y = r̄)
image. However, most information retrieval algorithms only
consider the relevant part of Y , because the inclusion of
the irrelevant part leads to a somewhat odd prediction that
the presence of a query term is against retrieval [41]. In the
experiment, we follow this convention and let Y = {r}.

The probabilities of Eq. (3) can be derived empirically
from index statistics and relevance information.

P (Q), the probability of query Q, is simply:

P̂ (Q) =
1

|Q|
. (4)

P (k|Q), the probability of a retrieved descriptor comes
from partition k under query Q, is given by:

P̂ (k|Q) = max
q∈Q

wk,q

∑
x∈X wk,x∑

x∈X
∑

k∈K wk,x
, (5)

where wk,d is the assignment weight of a descriptor d to
partition k, for the hard-assignment codebook we used,
wk,d = {1 if d is quantized as codeword k, 0 otherwise}.
The left part—the maximum query assignment weight in
k, considers whether the codeword k will be retrieved by
a query descriptor q ∈ Q. For hard-assignment codebook,
maxq∈Q wk,q = 1 as long as at least one query descriptor
q is quantized as k, therefore codeword k will be retrieved.
The right part—the ratio of total weight between k and all
partitions, considers if codeword k is to be retrieved, the
likelihood of a candidate descriptor d belonging to k.

P (y|Q, k), the probability of getting a relevant (y = r)
or irrelevant (y = r̄) descriptor in partition k given query
Q, is given by the portion of relevant/irrelevant descrip-
tors within partition k. Likewise, P (y|Q), the probability

Training data available:
 Query A
Training data unavailable:
 Query B
 Query C
 Query D

(a) Mutual information only (b) Mutual information and
workload balance

Fig. 4. Illustration of the bias towards partial training data. Assume we
only have relevance information for query A, if we only consider mutual
information of available training data, the resultant partitioning will be
similar to (a), which divides the area of query A with small partitions, but
leaves the rest areas (queries B, C and D) coarsely partitioned. If we
consider both mutual information and workload balance, the resultant
partitioning will be similar to (b), which is likely to get better results for
queries B, C and D due to its finer-grain partition in these areas.

of getting a relevant/irrelevant descriptor in all partitions
given queryQ, is given by the portion of relevant/irrelevant
descriptors in all partitions. Without loss of generality, we
consider the case of y = r:

P̂ (r|Q, k) =

∑
x∈X P̂ (r|x,Q)wk,x∑

x∈X wk,x
,

P̂ (r|Q) =

∑
x∈X

∑
k∈K P̂ (r|x,Q)wk,x∑

x∈X
∑

k∈K wk,x
,

(6)

where P̂ (r|x,Q), the relevance of x and Q, is given by:

P̂ (r|x,Q) =

1 if x is relevant to Q;
0 if x is irrelevant to Q;
Pu if relevance is unknown.

(7)

Normally we have Pu = Nr/N , where Nr is the average
number of relevant images given a query, and N is the total
number of images in the dataset.

4.2 Workload Balance
For workload balance, we aim to partition the feature space
evenly and accommodate the computational capacity of
each nodes, so that no nodes would be overloaded or
underloaded.

While achieving good discriminability is important, a
codebook used in P2P networks must also produce fair
workload for each node. Unfortunately, in real world sce-
narios where relevance information is incomplete, the in-
formation maximization process often produces imbalanced
partitions, as it has strong bias towards available training
data. As illustrated in Fig. 4, the resultant codebook tends
to use more fine-grained partitions to represent the areas
where relevance information is available, but leaves the rest
of the areas coarsely partitioned. This not only compromises
the retrieval performance of unknown queries, but also
produces imbalanced workload: the nodes managing large
partitions will be overloaded and the small partitions will
be underloaded.

To rectify this problem, for each k we define a workload
factor to measure the difference between the current work-
load sk and the target workload Sk as:

F (k) = W0 − | log
sk
Sk
|, (8)

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TKDE.2015.2505284

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

8 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, MMM YYYY

where W0 is an offset constant. The function peaks at
sk = Sk, and penalizes the case of overload (sk > Sk) and
underload (sk < Sk). There are two reasons to measure the
difference by logarithmic function: 1) we use split/merge
operations to adjust the partitioning, and the sizes of the
partitions before and after split/merge exhibit exponential
relation; 2) it aligns well with the logarithmic form of mutual
information, making the combination of the two criteria
simpler.

In many applications, instead of defining target load
Sk, it’s easier to define the lower bound Sm and upper
bound SM for a fair workload, where F (k) ≥ 0 when
sk ∈ [Sm, SM]. In this case Sk can be derived as the
geometric mean of Sm and SM , which yields:

F (k) =
1

2
log

SM

Sm
− 2| log

sk
SmSM

|. (9)

The average workload difference for all codewords in all
queries is given by:

F (K) =
∑
k∈K

sk
N
F (k). (10)

4.3 Combining Information Maximization and Workload
Balance
We take both the mutual information and the workload
balance into account in the objective function as:

EK = I(K;Y |Q) + αF (K), (11)

where α is the relative weighting parameter.
For the simplicity of our discussion, we define IK =

I(K;Y |Q), FK = F (K), and Ek, Ik, Fk as the respective
portion of EK , IK , FK for the partition/sub-partitions of
codeword k.

The optimal value of α is application dependent. How-
ever, in the case that the relevance information is incom-
plete, we have α < Nf/N , where Nf/N is the portion of
the images that bear relevance information. This is because
for those images without relevance information, one has to
assume a relevance of Pu, as in Eq. (7), thus they make no
contribution to IK . Setting α < Nf/N will balance out this
portion of unknown information.

4.4 Codeword Optimization Algorithm
We optimize EK by finding a suitable partition granularity
and good centroid positions. The learning algorithm ad-
justs the partitioning by splitting/merging the partitions
iteratively. Since the codeword index and relevance infor-
mation is managed by codeword nodes pk, the decision to
split/merge a codeword k is made by pk individually based
on its own data.

Generally, for a partition k, one of three cases applies:

1) SPLIT: The size of k is large enough for sub-
partitioning, and it is possible to get a good sub-
partitioning based on available data. In this case, a
SPLIT operation is performed: the new centroids of
the sub-partitions of k are published to the code-
book, thus splitting k into a few smaller partitions.

2) MERGE: The current partition performs badly (has
low Ek), but the size of k is not large enough for a

good sub-partitioning. In this case, a MERGE opera-
tion is performed: k is removed from the codebook,
and its data is taken over by its neighbors.

3) UNCHANGED: The current partition performs well,
and one cannot get a better partitioning with either
SPLIT or MERGE. In this case, k remains unchanged.

We first try to SPLIT k to see if a sub-partitioning
increases Ek. To get a discriminative yet compact sub-
partitioning, we first generate an over-complete set of n
candidate centroids Cn, then select the subset from Cn

which maximizes Ek. The selection process is similar to
feature selection [42], and generally there are two greedy
selection schemes: backward elimination and forward se-
lection. Starting from Cn, the backward elimination tries to
remove one centroid at a time from the current candidate
set Ci. Every centroid in Ci is considered for removal, and
the configuration with maximum value of Ek is selected
as Ci−1. Finally, from the sets C1, C2, . . . , Cn, the set with
maximum value of Ek is selected as the final partitioning.
The forward selection follows a similar process, except it
starts from C1 = {ck} (the centroid of k), and tries to add
one centroid at a time to construct C1, C2, . . . , Cn. In the
experiments we adopt the backward elimination scheme, as
it yields slightly better results in our preliminary experi-
ments. If the centroid selection process finds a better sub-
partitioning than k itself, the SPLIT operation is performed.

If SPLIT fails to yield a higher Ek, the next step is to
determine if we want to MERGE k, or keep it unchanged.
This is done by setting a threshold θE . A codeword partition
k is considered to be inefficient if it has Ek < θE , and
a MERGE operation is performed. In most cases, the size
of a merged partition is small, as it has little or no room
for a good sub-partitioning by the SPLIT operation tried
before. Therefore, the merging cost is minimized. On the
other hand, a partition k is considered to be efficient enough
if it has Ek ≥ θE , and will be kept unchanged.

The threshold θE defines a standard for an “efficient”
codeword. In our experiments we set θE = 0, that is, a
codeword should provide enough mutual information to
justify the extra or idle workload.

5 BOVW BASED RETRIEVAL PROCESS

As mentioned in Section 3.2, when the codebook is ready,
for a given query, the retrieval process essentially consists of
three steps: extracting visual features and obtaining BoVW
based representation for the query, retrieving the postings
via DHT lookup, and measuring the similarity between the
query and candidate images.

In large scale BoW based retrieval systems, index prun-
ing has been used to reduce the retrieval cost. Its basic idea
is to identify and discard the postings which are not likely
to contribute to top results. Most existing index pruning
techniques discard terms based on tf-idf postings [43]. In
the experiments, two threshold based pruning techniques
similar to [34] are implemented:

Reducing the query terms: we apply a threshold θQ on
the posting wQ,k of query image Q, so that only the terms
satisfying wQ,k > θQ will be sent.

Reducing the answer terms: we apply a threshold θA on
the similarity scores of the candidate postings, so that only

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TKDE.2015.2505284

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

ZHANG et al.: A SCALABLE APPROACH FOR CONTENT-BASED IMAGE RETRIEVAL IN PEER-TO-PEER NETWORKS 9

the postings satisfying wQ,kwA,k > θA will be sent, where
wA,k is the posting of a candidate image A.

6 EVALUATION

6.1 Experimental Settings
The experiments are conducted on two publicly available
datasets:

UKBench [30]: A benchmark dataset for object recog-
nition. It contains 10,200 images with 4 images per object
in different conditions. In our experiments, an image is
considered relevant to the query image if both of them come
from the same object. The SIFT descriptors as in [44] are
used as local descriptors.

Holidays [45]: A benchmark dataset for image retrieval.
It contains 1,491 images with 500 queries and 991 corre-
sponding relevant images. The number of relevant images
for each query varies from 1 to 11. The SIFT descriptors
coming with the dataset are used as local descriptors.

Additional datasets are used to facilitate the experi-
ments:

Flickr100K [45]: For the distractors for large scale exper-
iments, we use the first 100,000 images from the Flickr1M,
where images are downloaded from Flickr.

Flickr60K [45]: For the source of initial codebook, we use
an independent dataset Flickr60K, which contains 67,714
images downloaded from Flickr.

We compare the proposed P2P codebook learning
method (PCL) with codebook re-sampling (RS) [34] and k-
means (KM) clustering under different settings. For PCL, we
use the ground truth relevance information from the top 10
results for training.

The codebook re-sampling (RS) updates the codebook
using split/merge operations similar to the proposed
method. However, the decisions to split/merge are based
on the size of codeword:{

SPLIT(k) if |k| > θM ;
MERGE(k) if |k| < θm,

(12)

where θM and θm are the workload thresholds for split and
merge operations, respectively.

The k-means clustering (KM) updates the codebook by
moving the codeword centroids to the cluster means. In
the experiments, we implement a distributed version of
k-means algorithm. During an iteration, each codeword
computes the new centroid from the mean of its descriptors.
The new centroids are synchronized across the network to
form the codebook for the next iteration.

In order to achieve fair comparisons, we try to set the
parameters of different methods to produce codebooks with
sizes k ≈ 20, 000, which is a typical number in reported
BoVW based CBIR systems [8], [30]. For large scale Holidays
+ Flickr100K, the codebook sizes are set to k ≈ 100, 000. In
other words, we aim at a target workload of Sk = |X|/k,
where |X| is the total number of descriptors of all candidate
images. For PCL, we set the workload lower and upper
bounds as Sm = SM = Sk for Eq. (9) when relevance
information is available, and Sm = 0.5Sk, SM = 2Sk when
relevance information is missing. For re-sampling, we set
the workload thresholds as θM = 1.5Sk and θm = 0.5Sk.
For k-means, the codebook size is fixed on k.

As discussed in Section 3, both the CBIR search and
codebook generation/updating take place on the codeword
index. Therefore, we evaluate the proposed system with a
multi-threaded program that simulates the codeword index,
where the updating process of each codeword node is
executed in an individual thread. Although as shown earlier
in Table 1, the computation cost is small for individual
codeword nodes (e.g., an update iteration takes less than
2 seconds), simulating a large number of codeword nodes
still takes considerable amount of CPU time and memory.
For the large scale experiment (Holidays + Flickr100K, with
100,000 codeword nodes), it takes more than 1,000 hours of
running time, and 380GB of memory.

In correspondence to the challenges in P2P environments
discussed in Section 1, we evaluate the following 4 proper-
ties of the codebooks in the experiment:

Retrieval accuracy: We follow the recommended evalu-
ation protocols of the datasets to measure the retrieval accu-
racy. For both datasets, we report the Mean Average Preci-
sion (MAP), which is the average area under the precision-
recall curve for all the queries; and R-Precision (RP), which
is the average precision of top R results, where R is the
number of relevant images. For the UKBench dataset, we
also report the Kentucky Score (KS) (the average number of
positive images in top 4 results, which is essentially RP * 4)
used by the dataset authors.

Workload balance: The workload balance is measured
by the Gini coefficient [46] among sizes of codewords, where
a coefficient of 0 expresses perfect workload balance (all
codewords have the same number of descriptors), and a
coefficient of 1 expresses maximum workload imbalance
(one codeword has all the descriptors).

Updating cost: Based on the discussion in Section 3.3, we
measure the updating cost by the codebook change ratio p =
NC/|K|, where NC is the number of codewords changed
(either split, merged, or moved) in this iteration, and |K| is
the codebook size (total number of codewords).

Query cost: The query cost is measured by the average
number of retrieved postings for all the queries. The number
determines the data volume that a query node will receive
upon a query, which contributes most to the retrieval time.

We compare the performance of different codebooks in
3 scenarios: static environment, dynamic environment, and
retrieval with index pruning. The detailed settings for differ-
ent scenarios are discussed in their corresponding sections.

6.2 Static Environment

6.2.1 Standard Data

We first compare the performance of the proposed PCL
method with RS and KM under a static environment, where
data do not change. The experiments are conducted using
the whole dataset of UKBench and Holidays. To enforce
data independence upon initialization, we use the codebook
with 20,000 codewords obtained from Flickr60K as the initial
codebook. The codebook is then updated with PCL, RS, and
KM methods for 10 iterations.

For the UKBench dataset, we report the performance of
3 different settings for PCL: relevance information of top
10 results with α = {0.0001, 0.0002}, and no relevance

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TKDE.2015.2505284

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

10 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, MMM YYYY

0 1 2 3 4 5 6 7 8 9 10
2.80

2.85

2.90

2.95

3.00

3.05

3.10

3.15

3.20

Iterations

K
en

tu
ck

y
S

co
re

 (
K

S
)

PCL−0.0001
PCL−0.0002
PCL−NR
KM
RS

(a) Retrieval accuracy
0 1 2 3 4 5 6 7 8 9 10

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Iterations

G
in

i C
oe

ffi
ci

en
t

PCL−0.0001
PCL−0.0002
PCL−NR
KM
RS

(b) Workload balance
1 2 3 4 5 6 7 8 9 10

0

10

20

30

40

50

60

70

80

90

100

Iterations

C
od

eb
oo

k
C

ha
ng

e
R

at
io

 (
%

)

PCL−0.0001
PCL−0.0002
PCL−NR
KM
RS

(c) Updating cost
0 1 2 3 4 5 6 7 8 9 10

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

Iterations

P
os

tin
gs

 R
et

re
iv

ed
 (×

10
5)

PCL−0.0001
PCL−0.0002
PCL−NR
KM
RS

(d) Query cost
UKBench dataset

0 1 2 3 4 5 6 7 8 9 10
0.46

0.48

0.50

0.52

0.54

0.56

0.58

Iterations

M
ea

n
A

ve
ra

ge
 P

re
ci

si
on

 (
M

A
P

)

PCL−0.0005
PCL−0.001
PCL−NR
KM
RS

(e) Retrieval accuracy
0 1 2 3 4 5 6 7 8 9 10

0.15

0.20

0.25

0.30

0.35

0.40

Iterations

G
in

i C
oe

ffi
ci

en
t

PCL−0.0005
PCL−0.001
PCL−NR
KM
RS

(f) Workload balance
1 2 3 4 5 6 7 8 9 10

0

10

20

30

40

50

60

70

80

90

100

Iterations

C
od

eb
oo

k
C

ha
ng

e
R

at
io

 (
%

)

PCL−0.0005
PCL−0.001
PCL−NR
KM
RS

(g) Updating cost
0 1 2 3 4 5 6 7 8 9 10

3.2

3.4

3.6

3.8

4.0

4.2

Iterations

P
os

tin
gs

 R
et

re
iv

ed
 (×

10
5)

PCL−0.0005
PCL−0.001
PCL−NR
KM
RS

(h) Query cost
Holidays dataset

0 1 2 3 4 8 6 7 8 9 10
0.36

0.38

0.40

0.42

0.44

0.46

0.48

Iterations

M
ea

n
A

ve
ra

ge
 P

re
ci

si
on

 (
M

A
P

)

PCL
KM
RS

(i) Retrieval accuracy
0 1 2 3 4 5 6 7 8 9 10

0.26

0.28

0.30

0.32

0.34

0.36

0.38

0.40

Iterations

G
in

i C
oe

ffi
ci

en
t

PCL
KM
RS

(j) Workload balance
1 2 3 4 5 6 7 8 9 10

0

10

20

30

40

50

60

70

80

90

100

Iterations

C
od

eb
oo

k
C

ha
ng

e
R

at
io

 (
%

)

PCL
KM
RS

(k) Updating cost
0 1 2 3 4 5 6 7 8 9 10

4.6

4.8

5.0

5.2

5.4

5.6

5.8

6.0

Iterations

P
os

tin
gs

 R
et

re
iv

ed
 (×

10
6)

PCL
KM
RS

(l) Query cost
Holidays + Flickr100K dataset

Fig. 5. Performance of the proposed PCL method (with different α values) compared with re-sampling (RS) and k-means (KM) on the UKBench
((a) – (d)), Holidays ((e) – (h)), and Holidays + Flickr100K ((i) – (l)) datasets in a static environment.

information (NR). For the Holidays dataset, the 3 different
settings for PCL are α = {0.0005, 0.001}, and NR.

The results are summarized in Fig. 5 (a) – (h) and
Table 2 (a), (b). In terms of retrieval accuracy, all methods
achieved significant improvement in the learning process.
With relevance information, PCL consistently offers best
accuracy, and KM generally performs slightly better than
PCL-NR and RS.

On workload balance, all methods produce Gini coeffi-
cients < 0.43, which is a strong indicator of a fair workload
[23]. PCL generally performs better than or comparable
to KM, with the Gini coefficients falling in the range of
[0.17, 0.33] at the 10th iteration. RS has a more imbalanced
workload, where the Gini coefficients end up as around 0.4
for both datasets.

For the updating cost, PCL incurs minimal change after
the first few iterations. The codebooks produced by PCL
are very stable at the 10th iteration (except PCL-0.001 for
Holidays), with change ratios < 10%. Following is the RS
with change ratio stable at around 20%. In contrast, the
change ratio of KM remains at the 100% level, i.e., all
codeword centroids are moved in each iteration. Generally,
KM converges much slower than PCL and RS, and the
resultant high updating cost makes it unfavorable for P2P
environments.

For the query cost, both PCL (except PCL-0.001 for
Holidays) and KM produce similar query costs, reducing

the cost by 44.4% – 48.5% for UKBench, and 7.1% – 8.5%
for Holidays during the updating process. In contrast, RS
produces higher query cost, yielding a cost reduction of
31.0% for UKBench, and an increase of 0.9% for Holidays.

Comparing the results of PCL, we can see that the
relative weighting value α is correlated to all performance
perspectives. A larger α value puts more emphasis on work-
load balance, therefore the workload is more balanced, but
the updating cost may be higher as we try to balance the par-
titions vigorously. On the other hand, a smaller α value puts
more emphasis on relevance, therefore the retrieval accuracy
is higher. In addition, the query cost is usually smaller, since
the codewords are more discriminative. Generally, in order
to obtain best retrieval accuracy and efficiency, we should
aim at a small α value, as long as the workload imbalance
problem remains manageable.

The performance on two datasets exhibit different char-
acteristics. Most notably, the initial workload is much more
balanced on Holidays than UKBench (Gini coefficient 0.349
vs. 0.702), leaving a smaller margin of improvement for
the codebook updating algorithms. This indicates that the
initial Flickr60K codebook is a better fit for the Holidays
dataset, which is not surprising, considered they are both
collected from Flickr. As the hot spots are smoothed out as
the workload becomes more balanced, a greater query cost
reduction is achieved on UKBench.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TKDE.2015.2505284

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

ZHANG et al.: A SCALABLE APPROACH FOR CONTENT-BASED IMAGE RETRIEVAL IN PEER-TO-PEER NETWORKS 11

TABLE 2
Comparison of Initial and Final Performance between PCL (with
Different α Values), RS and KM on the UKBench and Holidays

Datasets in a Static Environment

(a) UKBench Dataset
Method MAP KS (RP) Gini Change % # of Postings

Initial 0.750 2.844 (0.711) 0.702 n/a 573,453

PCL-0.0001 0.816 3.127 (0.782) 0.326 3.02% (-48.5%) 295,382
PCL-0.0002 0.815 3.120 (0.780) 0.222 3.29% (-44.4%) 318,562

PCL-NR 0.811 3.096 (0.774) 0.216 1.80% (-47.8%) 299,216
KM 0.814 3.100 (0.775) 0.298 100.00% (-44.7%) 316,989
RS 0.793 3.031 (0.758) 0.423 22.50% (-31.0%) 395,825

(b) Holidays Dataset
Method MAP RP Gini Change % # of Postings

Initial 0.470 0.429 0.349 n/a 364,305

PCL-0.0005 0.545 0.512 0.258 8.35% (-8.5%) 333,348
PCL-0.001 0.526 0.492 0.179 16.48% (-1.0%) 360,789
PCL-NR 0.492 0.455 0.216 3.59% (-7.7%) 336,102

KM 0.505 0.466 0.262 99.58% (-7.1%) 338,529
RS 0.502 0.466 0.392 20.28% (+0.9%) 367,545

(c) Holidays + Flickr100K Dataset
Method MAP RP Gini Change % # of Postings

Initial 0.362 0.335 0.397 n/a 5,018,077

PCL 0.462 0.446 0.267 33.11% (-1.9%) 4,921,649
KM 0.367 0.336 0.275 100.00% (-7.1%) 4,663,822
RS 0.369 0.330 0.365 20.22% (-1.7%) 4,930,297

6.2.2 Large Scale Data
To evaluate the performance with large scale noisy data,
we combined the Holidays dataset with the distractors
of Flickr100K to form a dataset of 101,491 images. We
used a codebook with 100,000 codewords obtained from
Flickr60K as the initial codebook, and update the codebook
with different methods for 10 iterations. For PCL, we set
α = 0.00001.

The results are summarized in Fig. 5 (i) – (l) and Table 2
(c). In terms of retrieval accuracy, the proposed PCL method
beats KM and RS by a much larger margin compared to
results of smaller scale data. This shows the importance of
utilizing relevance information when the dataset becomes
bigger and noisier. At the same time, PCL also achieved best
workload balance and comparable query cost. The increased
codebook updating cost is caused by the vigorous setting
of α value to optimize workload balance, which can be
reduced by reducing the α value.

6.3 Dynamic Environment
To evaluate the performance of the proposed PCL method
under network churn, we perform experiments in an iter-
ative setting similar to the static environment. Instead of
keeping things unchanged in-between iterations, two types
of churns are simulated: data churn and node churn. For
data churn, we split the dataset into two halves, using one
half (the current set) for codebook updating and evaluation,
and the other half as reserve. We swap a random portion (p)
of data between the current and reserve set to simulate the
change of data. For node churn, we force a random portion

0 0.01 0.02 0.03 0.04 0.05
2.4

2.5

2.6

2.7

2.8

2.9

3.0

3.1

3.2

Pruning Threshold (θ
Q

)

K
en

tu
ck

y
S

co
re

 (
K

S
)

PCL
KM
RS

(a) Retrieval accuracy
0 0.01 0.02 0.03 0.04 0.05

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Pruning Threshold (θ
Q

)

P
os

tin
gs

 R
et

re
iv

ed
 (×

10
5)

PCL
KM
RS

(b) Query cost
UKBench dataset

0 0.01 0.02 0.03 0.04 0.05
0.35

0.40

0.45

0.50

0.55

0.60

0.65

Pruning Threshold (θ
Q

)

M
ea

n
A

ve
ra

ge
 P

re
ci

si
on

 (
M

A
P

)

PCL
KM
RS

(c) Retrieval accuracy
0 0.01 0.02 0.03 0.04 0.05

0

1.0

2.0

3.0

4.0

Pruning Threshold (θ
Q

)

P
os

tin
gs

 R
et

re
iv

ed
 (×

10
5)

PCL
KM
RS

(d) Query cost
Holidays dataset

Fig. 7. The impact of different index pruning settings on different term
weighting schemes on the UKBench ((a) and (b)) and Holidays ((c) and
(d)) datasets.

(p) of codewords to hand over its postings to neighbors to
simulate the drop out of codeword nodes. The churn level
p indicates the change rate between two update iterations.
In the experiments, we set p = {10%, 50%} to simulate P2P
networks with moderate and extreme churn levels. We use
the same 20K codebook obtained from Flickr60K as the ini-
tial codebook, and update the codebook with PCL, KM and
RS for 15 iterations. For PCL, the α value is experimentally
set at 0.0004 for both UKBench and Holidays datasets.

The results are summarized in Fig. 6 and Table 3. Overall,
PCL outperforms other methods in terms of workload bal-
ance, updating cost and query cost, and equally best with
(if not better than) KM on retrieval accuracy. While KM
achieved good retrieval accuracy, it has the highest updating
cost and worst workload balance. RS achieved reasonable
performance on 10% churn level, but failed to keep up with
the rapid changes on 50% churn level, as indicated by the
dramatic increase of updating cost and query cost.

Comparing the updating costs of PCL and RS in dif-
ferent environments, we can see a correlation between the
updating cost and churn level. Such an adaptive nature is
essential to minimize the updating cost in the ever-changing
P2P networks, as we only update the codewords when
necessary. For a real world scenario, it is estimated that
the daily node population change rate is about 10% to 15%
(in KAD network [1]). Therefore, a low iteration frequency
(once a few hour) is sufficient to maintain the performance.

6.4 Index Pruning

Based on the codebooks obtained after 10 updating itera-
tions in Section 6.2, we utilize the index pruning policies
mentioned in Section 5. The θQ is set to 11 values rang-
ing from 0 to 0.05, and their corresponding θA is set as
θA = θQ

2.
The results are summarized in Fig. 7. The results of both

datasets show a similar trend. As the pruning threshold

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TKDE.2015.2505284

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

12 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, MMM YYYY

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2.90

2.95

3.00

3.05

3.10

3.15

3.20

3.25

3.30

Iterations

K
en

tu
ck

y
S

co
re

 (
K

S
)

PCL−10%
KM−10%
RS−10%
PCL−50%
KM−50%
RS−50%

(a) Retrieval accuracy
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Iterations

G
in

i C
oe

ffi
ci

en
t

PCL−10%
KM−10%
RS−10%
PCL−50%
KM−50%
RS−50%

(b) Workload balance
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

10

20

30

40

50

60

70

80

90

100

Iterations

C
od

eb
oo

k
C

ha
ng

e
R

at
io

 (
%

)

PCL−10%
KM−10%
RS−10%
PCL−50%
KM−50%
RS−50%

(c) Updating cost
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Iterations

P
os

tin
gs

 R
et

re
iv

ed
 (×

10
5)

PCL−10%
KM−10%
RS−10%
PCL−50%
KM−50%
RS−50%

(d) Query cost
UKBench dataset

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.40

0.45

0.50

0.55

0.60

Iterations

M
ea

n
A

ve
ra

ge
 P

re
ci

si
on

 (
M

A
P

)

PCL−10%
KM−10%
RS−10%
PCL−50%
KM−50%
RS−50%

(e) Retrieval accuracy
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Iterations

G
in

i C
oe

ffi
ci

en
t

PCL−10%
KM−10%
RS−10%
PCL−50%
KM−50%
RS−50%

(f) Workload balance
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

10

20

30

40

50

60

70

80

90

100

Iterations

C
od

eb
oo

k
C

ha
ng

e
R

at
io

 (
%

)

PCL−10%
KM−10%
RS−10%
PCL−50%
KM−50%
RS−50%

(g) Updating cost
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1.5

2.0

2.5

3.0

3.5

4.0

Iterations

P
os

tin
gs

 R
et

re
iv

ed
 (×

10
5)

PCL−10%
KM−10%
RS−10%
PCL−50%
KM−50%
RS−50%

(h) Query cost
Holidays dataset

Fig. 6. Performance of the proposed PCL method compared with k-means (KM) and re-sampling (RS) on the UKBench ((a) – (d)) and Holidays ((e)
– (h)) datasets in dynamic environments with different churn levels (10% and 50%).

TABLE 3
Comparison of Initial and Final Performance between PCL and RS on the UKBench and Holidays Datasets in Dynamic Environments with

Different Churn Levels

(a) UKBench Dataset
Churn Level: 10%

Method MAP KS (RP) Gini Change % # of Postings

Initial 0.776 2.949 (0.738) 0.703 n/a 287,122

PCL 0.831 3.180 (0.795) 0.207 15.95% (-41.3%) 168,594
KM 0.845 3.239 (0.810) 0.582 97.48% (-34.1%) 189,322
RS 0.815 3.115 (0.779) 0.468 27.56% (-9.4%) 260,166

Churn Level: 50%
Method MAP KS (RP) Gini Change % # of Postings

Initial 0.775 2.950 (0.738) 0.703 n/a 289,575

PCL 0.834 3.186 (0.797) 0.286 67.73% (-47.6%) 151,675
KM 0.828 3.170 (0.793) 0.804 99.68% (+5.6%) 305,923
RS 0.800 3.041 (0.760) 0.430 98.88% (+48.7%) 430,641

(b) Holidays Dataset
Churn Level: 10%

Method MAP RP Gini Change % # of Postings

Initial 0.498 0.456 0.349 n/a 179,137

PCL 0.575 0.542 0.362 15.36% (+1.1%) 181,174
KM 0.550 0.505 0.603 95.63% (+23.6%) 221,347
RS 0.491 0.461 0.665 61.59% (+73.0%) 309,951

Churn Level: 50%
Method MAP RP Gini Change % # of Postings

Initial 0.529 0.497 0.349 n/a 207,526

PCL 0.560 0.521 0.320 44.47% (-20.0%) 166,109
KM 0.536 0.493 0.792 99.50% (+30.8%) 271,531
RS 0.465 0.424 0.391 99.83% (+76.5%) 366,365

increases, the retrieval accuracy is first increased as the noise
is filtered out, then decreased as the key information is
affected by pruning. At θQ = 0.02 for the UKBench dataset,
and θQ = 0.015 for the Holidays dataset, the retrieval
accuracy reaches its peak, and the query cost reduction is
about 70%. At θQ = 0.04, the retrieval accuracy is still com-
parable to the initial Flickr60K codebook without codebook
updating and index pruning, but the query cost is reduced
by more than 95%.

6.5 Discussions

To implement a scalable retrieval system in P2P networks,
we have to balance between various perspectives rather
than focus on retrieval accuracy only. Our experimental
results show that the proposed design fulfills this goal
completely. The workload balance, as indicated by the Gini
coefficient, is much better than the one reported in [23]

(0.18–0.33 vs. 0.40–0.57), although they use different exper-
imental datasets. The retrieval accuracy is comparable to
many of the state-of-the-art quantization methods [47] (for
the Holidays dataset, 0.545–0.619 vs. 0.526–0.653). While we
are not aware of any literature that investigates the updating
and query cost in a similar setting, the cost of our proposed
method is low enough to implement a scalable system.

Finally, while there exist various techniques to improve
different perspectives of the BoVW process, such as Ham-
ming embedding (HE) and weak geometrical consistency
(WGC) [8], in general, implementing them in P2P net-
works is not straightforward. Moreover, unlike codeword
partitioning, it is not clear how the workload partitioning
and query network cost is affected by these techniques.
Therefore, we focus on optimizing codeword partitioning
in this paper and leave them as future work.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TKDE.2015.2505284

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

ZHANG et al.: A SCALABLE APPROACH FOR CONTENT-BASED IMAGE RETRIEVAL IN PEER-TO-PEER NETWORKS 13

7 CONCLUSION AND FUTURE WORK

In this paper we present a bag-of-visual-words (BoVW)
model based approach for content based image retrieval
(CBIR) in peer-to-peer (P2P) networks. In order to overcome
the difficulty in generating and maintaining a global code-
book when the BoVW model is deployed in P2P networks,
we formulate the problem of updating an existing codebook
as optimizing the retrieval accuracy and workload balance.
As a result, the proposed approach is scalable to the number
of images shared within a P2P network and the evolving
nature of P2P networks. In order to further improve the
retrieval performance of the proposed approach and reduce
network cost, indexing pruning techniques are applied. We
conduct comprehensive experiments to evaluate various
aspects of the proposed approach while demonstrating its
promising performance.

In the future, we will investigate DHT specific optimiza-
tions for cost reduction, more advanced matching refine-
ment and multi-modal fusion techniques in P2P networks,
and extensions of this approach to other distributed archi-
tectures. In particular, for the CAN network [4], we can
embed the index into the CAN overlay. That is, we make
the CAN address space corresponding to our feature space,
and replace the CAN zones with codeword partitions. Such
an embedding will eliminate the overhead of an additional
DHT layer, as we can implement the SPLIT/MERGE opera-
tions as a CAN zone split/takeover, instead of adding and
removing entries on DHT.

ACKNOWLEDGMENTS

This work was partially supported by ARC (Australian
Research Council) grants, the NCI (National Computational
Infrastructure) National Facility at the Australian National
University, and HPC (High Performance Computing) ser-
vice at The University of Sydney.

REFERENCES

[1] M. Steiner, T. En-Najjary, and E. W. Biersack, “Long term study
of peer behavior in the KAD DHT,” IEEE/ACM Transactions on
Networking, vol. 17, no. 5, pp. 1371–1384, Oct. 2009.

[2] H. Schulze and K. Mochalski, “Internet study 2008/2009,” Internet
Studies, ipoque, 2009.

[3] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakr-
ishnan, “Chord: A scalable peer-to-peer lookup service for inter-
net applications,” in ACM Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications, 2001, pp.
149–160.

[4] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker,
“A scalable content-addressable network,” in ACM Conference on
Applications, Technologies, Architectures, and Protocols for Computer
Communications, 2001, pp. 161–172.

[5] M. Mordacchini, L. Ricci, L. Ferrucci, M. Albano, and R. Baraglia,
“Hivory: Range queries on hierarchical voronoi overlays,” in IEEE
International Conference on Peer-to-Peer Computing, Aug. 2010, pp.
1–10.

[6] Y. Tang, S. Zhou, and J. Xu, “LIGHT: A query-efficient yet low-
maintenance indexing scheme over DHTs,” IEEE Transactions on
Knowledge and Data Engineering, vol. 22, no. 1, pp. 59–75, Jan. 2010.

[7] L. Zhang, Z. Wang, and D. Feng, “Efficient high-dimensional
retrieval in structured P2P networks,” in IEEE International Con-
ference on Multimedia and Expo Workshops, Jul. 2010, pp. 1439–1444.

[8] H. Jégou, M. Douze, and C. Schmid, “Improving bag-of-features
for large scale image search,” International Journal of Computer
Vision, vol. 87, pp. 316–336, 2010.

[9] J. Sivic and A. Zisserman, “Video Google: A text retrieval approach
to object matching in videos,” in IEEE International Conference on
Computer Vision, vol. 2, 2003, pp. 1470–1477.

[10] J. Yang, Y.-G. Jiang, A. G. Hauptmann, and C.-W. Ngo, “Evaluating
bag-of-visual-words representations in scene classification,” in
ACM International Workshop on Multimedia Information Retrieval,
2007, pp. 197–206.

[11] K. Mikolajczyk and C. Schmid, “An affine invariant interest point
detector,” in European Conference on Computer Vision, 2002, pp. 128–
142.

[12] D. G. Lowe, “Object recognition from local scale-invariant fea-
tures,” in IEEE International Conference on Computer Vision, vol. 2,
1999, pp. 1150–1157.

[13] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz, “Handling churn
in a DHT,” in USENIX Annual Technical Conference. Boston, MA,
USA, 2004, pp. 127–140.

[14] D. Belson, “The state of the internet, 2nd quarter, 2013 report,”
Akamai, 2013.

[15] Y. Rui, T. S. Huang, M. Ortega, and S. Mehrotra, “Relevance feed-
back: A power tool for interactive content-based image retrieval,”
IEEE Transactions on Circuits and Systems for Video Technology, vol. 8,
no. 5, pp. 644–655, Sep. 1998.

[16] C. Tang, Z. Xu, and S. Dwarkadas, “Peer-to-peer information re-
trieval using self-organizing semantic overlay networks,” in ACM
Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communications, 2003, pp. 175–186.

[17] P. Reynolds and A. Vahdat, “Efficient peer-to-peer keyword
searching,” in ACM/IFIP/USENIX International Conference on Mid-
dleware, 2003, pp. 21–40.

[18] Q. Xu, H. T. Shen, Y. Dai, B. Cui, and X. Zhou, “Achieving
effective multi-term queries for fast DHT information retrieval,”
in International Conference on Web Information Systems Engineering
(WISE), 2008, pp. 20–35.

[19] H. Chen, J. Yan, H. Jin, Y. Liu, and L. M. Ni, “TSS: Efficient term set
search in large peer-to-peer textual collections,” IEEE Transactions
on Computers, vol. 59, no. 7, pp. 969–980, 2010.

[20] M. Batko, D. Novak, F. Falchi, and P. Zezula, “Scalability compari-
son of peer-to-peer similarity search structures,” Future Generation
Computer Systems, vol. 24, no. 8, pp. 834 – 848, 2008.

[21] M. Bawa, T. Condie, and P. Ganesan, “LSH forest: Self-tuning
indexes for similarity search,” in International Conference on World
Wide Web. New York, NY, USA: ACM, 2005, pp. 651–660.

[22] D. Li, J. Cao, X. Lu, and K. C. Chan, “Efficient range query pro-
cessing in peer-to-peer systems,” IEEE Transactions on Knowledge
and Data Engineering, vol. 21, no. 1, pp. 78–91, Jan. 2009.

[23] P. Haghani, S. Michel, and K. Aberer, “Distributed similarity
search in high dimensions using locality sensitive hashing,” in
International Conference on Extending Database Technology: Advances
in Database Technology. New York, NY, USA: ACM, 2009, pp. 744–
755.

[24] M. Zhou, H. T. Shen, X. Gong, W. Qian, and A. Zhou, “Person-
alized query evaluation in ring-based P2P networks,” Information
Sciences, vol. 220, no. 0, pp. 463–482, 2013.

[25] C. Böhm, S. Berchtold, and D. A. Keim, “Searching in high-
dimensional spaces: Index structures for improving the perfor-
mance of multimedia databases,” ACM Computing Surveys, vol. 33,
pp. 322–373, Sep. 2001.

[26] R. Weber, H.-J. Schek, and S. Blott, “A quantitative analysis
and performance study for similarity-search methods in high-
dimensional spaces,” in International Conference on Very Large Data
Bases. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 1998, pp. 194–205.

[27] Y. Liu, D. Zhang, G. Lu, and W.-Y. Ma, “A survey of content-based
image retrieval with high-level semantics,” Pattern Recognition,
vol. 40, no. 1, pp. 262–282, 2007.

[28] A. Joly and O. Buisson, “Random maximum margin hashing,” in
IEEE Conference on Computer Vision and Pattern Recognition, 2011,
pp. 873–880.

[29] M. R. Trad, A. Joly, and N. Boujemaa, “Distributed KNN-graph
approximation via hashing,” in ACM International Conference on
Multimedia Retrieval. New York, NY, USA: ACM, 2012, pp. 43:1–
43:8.

[30] D. Nistér and H. Stewénius, “Scalable recognition with a vocab-
ulary tree,” in IEEE Conference on Computer Vision and Pattern
Recognition, vol. 2, 2006, pp. 2161–2168.

[31] S. Büttcher and C. L. A. Clarke, “A document-centric approach
to static index pruning in text retrieval systems,” in ACM Interna-

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TKDE.2015.2505284

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

14 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, MMM YYYY

tional Conference on Information and Knowledge Management. New
York, NY, USA: ACM, 2006, pp. 182–189.

[32] A. Moffat, W. Webber, J. Zobel, and R. Baeza-Yates, “A pipelined
architecture for distributed text query evaluation,” Information
Retrieval, vol. 10, no. 3, pp. 205–231, 2007.

[33] R. Ji, L.-Y. Duan, J. Chen, L. Xie, H. Yao, and W. Gao, “Learning
to distribute vocabulary indexing for scalable visual search,” IEEE
Transactions on Multimedia, vol. 15, no. 1, pp. 153–166, 2013.

[34] L. Zhang, Z. Wang, and D. Feng, “Content-based image retrieval
in P2P networks with bag-of-features,” in IEEE International Con-
ference on Multimedia and Expo Workshops, Jul. 2012, pp. 133–138.

[35] J. Yang, K. Yu, Y. Gong, and T. Huang, “Linear spatial pyramid
matching using sparse coding for image classification,” in IEEE
Conference on Computer Vision and Pattern Recognition, Jun. 2009,
pp. 1794–1801.

[36] S. Lazebnik and R. Raginsky, “Supervised learning of quantizer
codebooks by information loss minimization,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 31, no. 7, pp. 1294–
1309, Jul. 2009.

[37] Q. Qiu, Z. Jiang, and R. Chellappa, “Sparse dictionary-based
representation and recognition of action attributes,” in IEEE In-
ternational Conference on Computer Vision, Nov. 2011, pp. 707–714.

[38] H. Jégou, F. Perronnin, M. Douze, J. Sánchez, P. Pérez, and
C. Schmid, “Aggregating local image descriptors into compact
codes,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 34, no. 9, pp. 1704–1716, Sep. 2012.

[39] F. Perronnin, J. Sánchez, and T. Mensink, “Improving the fisher
kernel for large-scale image classification,” in European Conference
on Computer Vision, K. Daniilidis, P. Maragos, and N. Paragios,
Eds., vol. 6314. Springer Berlin Heidelberg, 2010, pp. 143–156.

[40] S. Kullback, Information Theory and Statistics. Dover Publications,
1997.

[41] S. Robertson, “Understanding inverse document frequency: On
theoretical arguments for IDF,” Journal of Documentation, vol. 60,
pp. 503–520, 2004.

[42] I. Guyon and A. Elisseeff, “An introduction to variable and feature
selection,” Journal of Machine Learning Research, vol. 3, pp. 1157–
1182, Mar. 2003.

[43] A. Ntoulas and J. Cho, “Pruning policies for two-tiered inverted
index with correctness guarantee,” in International ACM SIGIR
Conference on Research and Development in Information Retrieval,
2007, pp. 191–198.

[44] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas,
F. Schaffalitzky, T. Kadir, and L. Gool, “A comparison of affine
region detectors,” International Journal of Computer Vision, vol. 65,
pp. 43–72, 2005.

[45] H. Jégou, M. Douze, and C. Schmid, “Hamming embedding
and weak geometric consistency for large scale image search,”
in European Conference on Computer Vision. Berlin, Heidelberg:
Springer-Verlag, 2008, pp. 304–317.

[46] A. K. Sen, On Economic Inequality. Clarendon Press, 1973.
[47] R. Arandjelović and A. Zisserman, “All about VLAD,” in IEEE

Conference on Computer Vision and Pattern Recognition, 2013, pp.
1578–1585.

Lelin Zhang (S12) received the B.Eng. degree
in computer science from South China Univer-
sity of Technology, Guangzhou, China, in 2007,
and the Master of Information Technology and
Information Technology Management degrees
from the University of Sydney, Sydney, Australia,
in 2009 and 2010, respectively. He is currently
pursuing the Ph.D. degree at the Biomedical &
Multimedia Information Technology (BMIT) Re-
search Group, School of Information Technolo-
gies, University of Sydney, Sydney, Australia. His

research interests include multimedia content analysis, information re-
trieval, computer vision, and distributed computing.

Zhiyong Wang (M05) received the B.Eng.
and M.Eng. degrees in electronic engineer-
ing from South China University of Technology,
Guangzhou, China, and the Ph.D. degree from
Hong Kong Polytechnic University, Hong Kong.
He is currently a Senior Lecturer with the School
of Information Technologies, University of Syd-
ney, Sydney, Australia, and Associate Director of
the Multimedia Laboratory, University of Sydney,
Sydney, Australia. His research interests focus
on multimedia computing, including multimedia

information processing, retrieval and management, Internet-based mul-
timedia data mining, human-centred multimedia computing, and pattern
recognition. He has published more than 70 scholarly research papers.

Tao Mei (M06-SM11) is a Lead Researcher with
Microsoft Research, Beijing, China. He received
the B.E. degree in automation and the Ph.D.
degree in pattern recognition and intelligent sys-
tems from the University of Science and Technol-
ogy of China, Hefei, China, in 2001 and 2006, re-
spectively. His current research interests include
multimedia information retrieval and computer
vision. He has authored or co-authored over 150
papers in journals and conferences, 10 book
chapters, and edited three books. He holds 11

U.S. granted patents and more than 20 in pending.
Dr. Mei was the recipient of several paper awards from prestigious

multimedia conferences and journals, including the IEEE TRANS. ON
MULTIMEDIA Prize Paper Award in 2013, the Best Paper Awards at
ACM Multimedia in 2007 and 2009, and the Best Student Paper Award
at the IEEE VCIP in 2012, etc. He is an Associate Editor of the IEEE
TRANS. ON MULTIMEDIA, ACM/Springer Multimedia Systems, Neuro-
computing, and a Guest Editor of five international journals. He is the
General Co-chair of ICIMCS 2013, the Program Co-chair of MMM 2013
and IEEE MMSP 2015. He is a Senior Member of the IEEE and the
ACM.

David Dagan Feng (F03) received the M.Eng.
degree in electrical engineering and computer
science (EECS) from Shanghai Jiao Tong Uni-
versity, Shanghai, China, in 1982, and the M.Sc.
degree in biocybernetics and the Ph.D. degree
in computer science from the University of Cal-
ifornia, Los Angeles (UCLA), Los Angeles, CA,
USA, in 1985 and 1988, respectively, where he
received the Crump Prize for Excellence in Med-
ical Engineering. He is Head of School of Infor-
mation Technologies, Director of the Biomedical

& Multimedia Information Technology Research Group, and Research
Director of the Institute of Biomedical Engineering and Technology at
the University of Sydney, Sydney, Australia. He has published over 700
scholarly research papers, pioneered several new research directions,
and made a number of landmark contributions in his field. More impor-
tantly, however, is that many of his research results have been translated
into solutions to real-life problems and have made tremendous improve-
ments to the quality of life for those concerned. He has served as Chair
of the International Federation of Automatic Control (IFAC) Technical
Committee on Biological and Medical Systems, has organized/chaired
over 100 major international conferences/symposia/workshops, and has
been invited to give over 100 keynote presentations in 23 countries
and regions. Prof. Feng is a Fellow of IEEE and Australian Academy
of Technological Sciences and Engineering.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TKDE.2015.2505284

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

