1,087 research outputs found

    Learning Local Feature Aggregation Functions with Backpropagation

    Full text link
    This paper introduces a family of local feature aggregation functions and a novel method to estimate their parameters, such that they generate optimal representations for classification (or any task that can be expressed as a cost function minimization problem). To achieve that, we compose the local feature aggregation function with the classifier cost function and we backpropagate the gradient of this cost function in order to update the local feature aggregation function parameters. Experiments on synthetic datasets indicate that our method discovers parameters that model the class-relevant information in addition to the local feature space. Further experiments on a variety of motion and visual descriptors, both on image and video datasets, show that our method outperforms other state-of-the-art local feature aggregation functions, such as Bag of Words, Fisher Vectors and VLAD, by a large margin.Comment: In Proceedings of the 25th European Signal Processing Conference (EUSIPCO 2017

    Feature and Region Selection for Visual Learning

    Full text link
    Visual learning problems such as object classification and action recognition are typically approached using extensions of the popular bag-of-words (BoW) model. Despite its great success, it is unclear what visual features the BoW model is learning: Which regions in the image or video are used to discriminate among classes? Which are the most discriminative visual words? Answering these questions is fundamental for understanding existing BoW models and inspiring better models for visual recognition. To answer these questions, this paper presents a method for feature selection and region selection in the visual BoW model. This allows for an intermediate visualization of the features and regions that are important for visual learning. The main idea is to assign latent weights to the features or regions, and jointly optimize these latent variables with the parameters of a classifier (e.g., support vector machine). There are four main benefits of our approach: (1) Our approach accommodates non-linear additive kernels such as the popular χ2\chi^2 and intersection kernel; (2) our approach is able to handle both regions in images and spatio-temporal regions in videos in a unified way; (3) the feature selection problem is convex, and both problems can be solved using a scalable reduced gradient method; (4) we point out strong connections with multiple kernel learning and multiple instance learning approaches. Experimental results in the PASCAL VOC 2007, MSR Action Dataset II and YouTube illustrate the benefits of our approach

    Compositional Model based Fisher Vector Coding for Image Classification

    Full text link
    Deriving from the gradient vector of a generative model of local features, Fisher vector coding (FVC) has been identified as an effective coding method for image classification. Most, if not all, FVC implementations employ the Gaussian mixture model (GMM) to depict the generation process of local features. However, the representative power of the GMM could be limited because it essentially assumes that local features can be characterized by a fixed number of feature prototypes and the number of prototypes is usually small in FVC. To handle this limitation, in this paper we break the convention which assumes that a local feature is drawn from one of few Gaussian distributions. Instead, we adopt a compositional mechanism which assumes that a local feature is drawn from a Gaussian distribution whose mean vector is composed as the linear combination of multiple key components and the combination weight is a latent random variable. In this way, we can greatly enhance the representative power of the generative model of FVC. To implement our idea, we designed two particular generative models with such a compositional mechanism.Comment: Fixed typos. 16 pages. Appearing in IEEE T. Pattern Analysis and Machine Intelligence (TPAMI

    Composite Correlation Quantization for Efficient Multimodal Retrieval

    Full text link
    Efficient similarity retrieval from large-scale multimodal database is pervasive in modern search engines and social networks. To support queries across content modalities, the system should enable cross-modal correlation and computation-efficient indexing. While hashing methods have shown great potential in achieving this goal, current attempts generally fail to learn isomorphic hash codes in a seamless scheme, that is, they embed multiple modalities in a continuous isomorphic space and separately threshold embeddings into binary codes, which incurs substantial loss of retrieval accuracy. In this paper, we approach seamless multimodal hashing by proposing a novel Composite Correlation Quantization (CCQ) model. Specifically, CCQ jointly finds correlation-maximal mappings that transform different modalities into isomorphic latent space, and learns composite quantizers that convert the isomorphic latent features into compact binary codes. An optimization framework is devised to preserve both intra-modal similarity and inter-modal correlation through minimizing both reconstruction and quantization errors, which can be trained from both paired and partially paired data in linear time. A comprehensive set of experiments clearly show the superior effectiveness and efficiency of CCQ against the state of the art hashing methods for both unimodal and cross-modal retrieval
    • …
    corecore