4,650 research outputs found

    Deep Discrete Hashing with Self-supervised Pairwise Labels

    Full text link
    Hashing methods have been widely used for applications of large-scale image retrieval and classification. Non-deep hashing methods using handcrafted features have been significantly outperformed by deep hashing methods due to their better feature representation and end-to-end learning framework. However, the most striking successes in deep hashing have mostly involved discriminative models, which require labels. In this paper, we propose a novel unsupervised deep hashing method, named Deep Discrete Hashing (DDH), for large-scale image retrieval and classification. In the proposed framework, we address two main problems: 1) how to directly learn discrete binary codes? 2) how to equip the binary representation with the ability of accurate image retrieval and classification in an unsupervised way? We resolve these problems by introducing an intermediate variable and a loss function steering the learning process, which is based on the neighborhood structure in the original space. Experimental results on standard datasets (CIFAR-10, NUS-WIDE, and Oxford-17) demonstrate that our DDH significantly outperforms existing hashing methods by large margin in terms of~mAP for image retrieval and object recognition. Code is available at \url{https://github.com/htconquer/ddh}

    Zero-Shot Hashing via Transferring Supervised Knowledge

    Full text link
    Hashing has shown its efficiency and effectiveness in facilitating large-scale multimedia applications. Supervised knowledge e.g. semantic labels or pair-wise relationship) associated to data is capable of significantly improving the quality of hash codes and hash functions. However, confronted with the rapid growth of newly-emerging concepts and multimedia data on the Web, existing supervised hashing approaches may easily suffer from the scarcity and validity of supervised information due to the expensive cost of manual labelling. In this paper, we propose a novel hashing scheme, termed \emph{zero-shot hashing} (ZSH), which compresses images of "unseen" categories to binary codes with hash functions learned from limited training data of "seen" categories. Specifically, we project independent data labels i.e. 0/1-form label vectors) into semantic embedding space, where semantic relationships among all the labels can be precisely characterized and thus seen supervised knowledge can be transferred to unseen classes. Moreover, in order to cope with the semantic shift problem, we rotate the embedded space to more suitably align the embedded semantics with the low-level visual feature space, thereby alleviating the influence of semantic gap. In the meantime, to exert positive effects on learning high-quality hash functions, we further propose to preserve local structural property and discrete nature in binary codes. Besides, we develop an efficient alternating algorithm to solve the ZSH model. Extensive experiments conducted on various real-life datasets show the superior zero-shot image retrieval performance of ZSH as compared to several state-of-the-art hashing methods.Comment: 11 page

    Towards Optimal Discrete Online Hashing with Balanced Similarity

    Full text link
    When facing large-scale image datasets, online hashing serves as a promising solution for online retrieval and prediction tasks. It encodes the online streaming data into compact binary codes, and simultaneously updates the hash functions to renew codes of the existing dataset. To this end, the existing methods update hash functions solely based on the new data batch, without investigating the correlation between such new data and the existing dataset. In addition, existing works update the hash functions using a relaxation process in its corresponding approximated continuous space. And it remains as an open problem to directly apply discrete optimizations in online hashing. In this paper, we propose a novel supervised online hashing method, termed Balanced Similarity for Online Discrete Hashing (BSODH), to solve the above problems in a unified framework. BSODH employs a well-designed hashing algorithm to preserve the similarity between the streaming data and the existing dataset via an asymmetric graph regularization. We further identify the "data-imbalance" problem brought by the constructed asymmetric graph, which restricts the application of discrete optimization in our problem. Therefore, a novel balanced similarity is further proposed, which uses two equilibrium factors to balance the similar and dissimilar weights and eventually enables the usage of discrete optimizations. Extensive experiments conducted on three widely-used benchmarks demonstrate the advantages of the proposed method over the state-of-the-art methods.Comment: 8 pages, 11 figures, conferenc
    corecore