164 research outputs found

    Beyond Gauss: Image-Set Matching on the Riemannian Manifold of PDFs

    Get PDF
    State-of-the-art image-set matching techniques typically implicitly model each image-set with a Gaussian distribution. Here, we propose to go beyond these representations and model image-sets as probability distribution functions (PDFs) using kernel density estimators. To compare and match image-sets, we exploit Csiszar f-divergences, which bear strong connections to the geodesic distance defined on the space of PDFs, i.e., the statistical manifold. Furthermore, we introduce valid positive definite kernels on the statistical manifolds, which let us make use of more powerful classification schemes to match image-sets. Finally, we introduce a supervised dimensionality reduction technique that learns a latent space where f-divergences reflect the class labels of the data. Our experiments on diverse problems, such as video-based face recognition and dynamic texture classification, evidence the benefits of our approach over the state-of-the-art image-set matching methods

    Efficient Clustering on Riemannian Manifolds: A Kernelised Random Projection Approach

    Get PDF
    Reformulating computer vision problems over Riemannian manifolds has demonstrated superior performance in various computer vision applications. This is because visual data often forms a special structure lying on a lower dimensional space embedded in a higher dimensional space. However, since these manifolds belong to non-Euclidean topological spaces, exploiting their structures is computationally expensive, especially when one considers the clustering analysis of massive amounts of data. To this end, we propose an efficient framework to address the clustering problem on Riemannian manifolds. This framework implements random projections for manifold points via kernel space, which can preserve the geometric structure of the original space, but is computationally efficient. Here, we introduce three methods that follow our framework. We then validate our framework on several computer vision applications by comparing against popular clustering methods on Riemannian manifolds. Experimental results demonstrate that our framework maintains the performance of the clustering whilst massively reducing computational complexity by over two orders of magnitude in some cases

    Image patch analysis of sunspots and active regions. II. Clustering via matrix factorization

    Full text link
    Separating active regions that are quiet from potentially eruptive ones is a key issue in Space Weather applications. Traditional classification schemes such as Mount Wilson and McIntosh have been effective in relating an active region large scale magnetic configuration to its ability to produce eruptive events. However, their qualitative nature prevents systematic studies of an active region's evolution for example. We introduce a new clustering of active regions that is based on the local geometry observed in Line of Sight magnetogram and continuum images. We use a reduced-dimension representation of an active region that is obtained by factoring the corresponding data matrix comprised of local image patches. Two factorizations can be compared via the definition of appropriate metrics on the resulting factors. The distances obtained from these metrics are then used to cluster the active regions. We find that these metrics result in natural clusterings of active regions. The clusterings are related to large scale descriptors of an active region such as its size, its local magnetic field distribution, and its complexity as measured by the Mount Wilson classification scheme. We also find that including data focused on the neutral line of an active region can result in an increased correspondence between our clustering results and other active region descriptors such as the Mount Wilson classifications and the RR value. We provide some recommendations for which metrics, matrix factorization techniques, and regions of interest to use to study active regions.Comment: Accepted for publication in the Journal of Space Weather and Space Climate (SWSC). 33 pages, 12 figure
    • …
    corecore