572 research outputs found

    Discriminative Training of Deep Fully-connected Continuous CRF with Task-specific Loss

    Full text link
    Recent works on deep conditional random fields (CRF) have set new records on many vision tasks involving structured predictions. Here we propose a fully-connected deep continuous CRF model for both discrete and continuous labelling problems. We exemplify the usefulness of the proposed model on multi-class semantic labelling (discrete) and the robust depth estimation (continuous) problems. In our framework, we model both the unary and the pairwise potential functions as deep convolutional neural networks (CNN), which are jointly learned in an end-to-end fashion. The proposed method possesses the main advantage of continuously-valued CRF, which is a closed-form solution for the Maximum a posteriori (MAP) inference. To better adapt to different tasks, instead of using the commonly employed maximum likelihood CRF parameter learning protocol, we propose task-specific loss functions for learning the CRF parameters. It enables direct optimization of the quality of the MAP estimates during the course of learning. Specifically, we optimize the multi-class classification loss for the semantic labelling task and the Turkey's biweight loss for the robust depth estimation problem. Experimental results on the semantic labelling and robust depth estimation tasks demonstrate that the proposed method compare favorably against both baseline and state-of-the-art methods. In particular, we show that although the proposed deep CRF model is continuously valued, with the equipment of task-specific loss, it achieves impressive results even on discrete labelling tasks

    Integrated Inference and Learning of Neural Factors in Structural Support Vector Machines

    Get PDF
    Tackling pattern recognition problems in areas such as computer vision, bioinformatics, speech or text recognition is often done best by taking into account task-specific statistical relations between output variables. In structured prediction, this internal structure is used to predict multiple outputs simultaneously, leading to more accurate and coherent predictions. Structural support vector machines (SSVMs) are nonprobabilistic models that optimize a joint input-output function through margin-based learning. Because SSVMs generally disregard the interplay between unary and interaction factors during the training phase, final parameters are suboptimal. Moreover, its factors are often restricted to linear combinations of input features, limiting its generalization power. To improve prediction accuracy, this paper proposes: (i) Joint inference and learning by integration of back-propagation and loss-augmented inference in SSVM subgradient descent; (ii) Extending SSVM factors to neural networks that form highly nonlinear functions of input features. Image segmentation benchmark results demonstrate improvements over conventional SSVM training methods in terms of accuracy, highlighting the feasibility of end-to-end SSVM training with neural factors

    Deep Convolutional Neural Fields for Depth Estimation from a Single Image

    Full text link
    We consider the problem of depth estimation from a single monocular image in this work. It is a challenging task as no reliable depth cues are available, e.g., stereo correspondences, motions, etc. Previous efforts have been focusing on exploiting geometric priors or additional sources of information, with all using hand-crafted features. Recently, there is mounting evidence that features from deep convolutional neural networks (CNN) are setting new records for various vision applications. On the other hand, considering the continuous characteristic of the depth values, depth estimations can be naturally formulated into a continuous conditional random field (CRF) learning problem. Therefore, we in this paper present a deep convolutional neural field model for estimating depths from a single image, aiming to jointly explore the capacity of deep CNN and continuous CRF. Specifically, we propose a deep structured learning scheme which learns the unary and pairwise potentials of continuous CRF in a unified deep CNN framework. The proposed method can be used for depth estimations of general scenes with no geometric priors nor any extra information injected. In our case, the integral of the partition function can be analytically calculated, thus we can exactly solve the log-likelihood optimization. Moreover, solving the MAP problem for predicting depths of a new image is highly efficient as closed-form solutions exist. We experimentally demonstrate that the proposed method outperforms state-of-the-art depth estimation methods on both indoor and outdoor scene datasets.Comment: fixed some typos. in CVPR15 proceeding
    corecore