28 research outputs found

    The Road From Classical to Quantum Codes: A Hashing Bound Approaching Design Procedure

    Full text link
    Powerful Quantum Error Correction Codes (QECCs) are required for stabilizing and protecting fragile qubits against the undesirable effects of quantum decoherence. Similar to classical codes, hashing bound approaching QECCs may be designed by exploiting a concatenated code structure, which invokes iterative decoding. Therefore, in this paper we provide an extensive step-by-step tutorial for designing EXtrinsic Information Transfer (EXIT) chart aided concatenated quantum codes based on the underlying quantum-to-classical isomorphism. These design lessons are then exemplified in the context of our proposed Quantum Irregular Convolutional Code (QIRCC), which constitutes the outer component of a concatenated quantum code. The proposed QIRCC can be dynamically adapted to match any given inner code using EXIT charts, hence achieving a performance close to the hashing bound. It is demonstrated that our QIRCC-based optimized design is capable of operating within 0.4 dB of the noise limit

    Quantum turbo decoding for quantum channels exhibiting memory

    Get PDF
    Inspired by the success of classical turbo codes, quantum turbo codes (QTCs) have also been conceived for near-hashing-bound transmission of quantum information over memoryless quantum channels. However, in real physical situations, the memoryless channel assumption may not be well justified, since the channel often exhibits memory of previous error events. Here, we investigate the performance of QTCs over depolarizing channels exhibiting memory and we show that they suffer from a performance degradation at low depolarizing probability values. In order to circumvent the performance degradation issue, we conceive a new coding scheme termed quantum turbo coding scheme exploiting error-correlation (QTC-EEC) that is capable of utilizing the error-correlation while performing the iterative decoding at the receiver. The proposed QTC-EEC can achieve convergence threshold at a higher depolarizing probability for channels with a higher value of correlation parameter and achieve performance near to the capacity. Finally, we propose a joint decoding and estimation scheme for our QTC-EEC relying on the correlation estimation (QTC-EEC-E) designed for more realistic quantum systems with unknown correlation parameter. Simulation results reveal that the proposed QTC-EEC-E can achieve the same performance as that of the ideal system of known correlation parameter and hence demonstrate the accurate estimation of the proposed QTC-EEC-E

    Model checking quantum protocols

    Get PDF
    This thesis describes model checking techniques for protocols arising in quantum information theory and quantum cryptography. We discuss the theory and implementation of a practical model checker, QMC, for quantum protocols. In our framework, we assume that the quantum operations performed in a protocol are restricted to those within the stabilizer formalism; while this particular set of operations is not universal for quantum computation, it allows us to develop models of several useful protocols as well as of systems involving both classical and quantum information processing. We detail the syntax, semantics and type system of QMC’s modelling language, the logic QCTL which is used for verification, and the verification algorithms that have been implemented in the tool. We demonstrate our techniques with applications to a number of case studies

    How Can Optical Communications Shape the Future of Deep Space Communications? A Survey

    Full text link
    With a large number of deep space (DS) missions anticipated by the end of this decade, reliable and high capacity DS communications systems are needed more than ever. Nevertheless, existing DS communications technologies are far from meeting such a goal. Improving current DS communications systems does not only require system engineering leadership but also, very crucially, an investigation of potential emerging technologies that overcome the unique challenges of ultra-long DS communications links. To the best of our knowledge, there has not been any comprehensive surveys of DS communications technologies over the last decade. Free space optical (FSO) technology is an emerging DS technology, proven to acquire lower communications systems size, weight, and power (SWaP) and achieve a very high capacity compared to its counterpart radio frequency (RF) technology, the current used DS technology. In this survey, we discuss the pros and cons of deep space optical communications (DSOC). Furthermore, we review the modulation, coding, and detection, receiver, and protocols schemes and technologies for DSOC. We provide, for the very first time, thoughtful discussions about implementing orbital angular momentum (OAM) and quantum communications (QC) for DS. We elaborate on how these technologies among other field advances, including interplanetary network, and RF/FSO systems improve reliability, capacity, and security and address related implementation challenges and potential solutions. This paper provides a holistic survey in DSOC technologies gathering 200+ fragmented literature and including novel perspectives aiming to setting the stage for more developments in the field.Comment: 17 pages, 8 Figure

    Model checking quantum protocols

    Get PDF
    This thesis describes model checking techniques for protocols arising in quantum information theory and quantum cryptography. We discuss the theory and implementation of a practical model checker, QMC, for quantum protocols. In our framework, we assume that the quantum operations performed in a protocol are restricted to those within the stabilizer formalism; while this particular set of operations is not universal for quantum computation, it allows us to develop models of several useful protocols as well as of systems involving both classical and quantum information processing. We detail the syntax, semantics and type system of QMC’s modelling language, the logic QCTL which is used for verification, and the verification algorithms that have been implemented in the tool. We demonstrate our techniques with applications to a number of case studies.EThOS - Electronic Theses Online ServiceUniversity of Warwick. Dept. of Computer ScienceEngineering and Physical Sciences Research Council (Great Britain) (EPSRC) (GR/S34090/01, EP/E006833/2, GR/S86037/01)Sixth Framework Programme (European Commission) (SFP)Fundação para a Ciência ea Tecnologia (FCT) (POCI/MAT/55796/2004)Conselho de Reitores das Universidades Portuguesas (CRUP)GBUnited Kingdo
    corecore