14 research outputs found

    OplixNet: Towards Area-Efficient Optical Split-Complex Networks with Real-to-Complex Data Assignment and Knowledge Distillation

    Full text link
    Having the potential for high speed, high throughput, and low energy cost, optical neural networks (ONNs) have emerged as a promising candidate for accelerating deep learning tasks. In conventional ONNs, light amplitudes are modulated at the input and detected at the output. However, the light phases are still ignored in conventional structures, although they can also carry information for computing. To address this issue, in this paper, we propose a framework called OplixNet to compress the areas of ONNs by modulating input image data into the amplitudes and phase parts of light signals. The input and output parts of the ONNs are redesigned to make full use of both amplitude and phase information. Moreover, mutual learning across different ONN structures is introduced to maintain the accuracy. Experimental results demonstrate that the proposed framework significantly reduces the areas of ONNs with the accuracy within an acceptable range. For instance, 75.03% area is reduced with a 0.33% accuracy decrease on fully connected neural network (FCNN) and 74.88% area is reduced with a 2.38% accuracy decrease on ResNet-32.Comment: Accepted by Design Automation and Test in Europe (DATE) 202

    In-memory computing on a photonic platform

    Get PDF
    This is the final version. Available from the publisher via the DOI in this record.All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials. Additional data related to this paper may be requested from the authors or Oxford Research Archive for Data (https://ora.ox.ac.uk).Collocated data processing and storage are the norm in biological computing systems such as the mammalian brain. As our ability to create better hardware improves, new computational paradigms are being explored beyond von Neumann architectures. Integrated photonic circuits are an attractive solution for on-chip computing which can leverage the increased speed and bandwidth potential of the optical domain, and importantly, remove the need for electro-optical conversions. Here we show that we can combine integrated optics with collocated data storage and processing to enable all-photonic in-memory computations. By employing nonvolatile photonic elements based on the phase-change material, Ge2Sb2Te5, we achieve direct scalar and matrix-vector multiplication, featuring a novel single-shot Write/Erase and a drift-free process. The output pulse, carrying the information of the light-matter interaction, is the result of the computation. Our all-optical approach is novel, easy to fabricate and operate, and sets the stage for development of entirely photonic computers.Engineering and Physical Sciences Research Council (EPSRC)Deutsche Forschungsgemeinschaft (DFG)European Research Council (ERC

    Ultrafast neuromorphic photonic image processing with a VCSEL neuron

    Get PDF
    The ever-increasing demand for artificial intelligence (AI) systems is underlining a significant requirement for new, AI-optimised hardware. Neuromorphic (brain-like) processors are one highly-promising solution, with photonic-enabled realizations receiving increasing attention. Among these, approaches based upon vertical cavity surface emitting lasers (VCSELs) are attracting interest given their favourable attributes and mature technology. Here, we demonstrate a hardware-friendly neuromorphic photonic spike processor, using a single VCSEL, for all-optical image edge-feature detection. This exploits the ability of a VCSEL-based photonic neuron to integrate temporally-encoded pixel data at high speed; and fire fast (100 ps-long) optical spikes upon detecting desired image features. Furthermore, the photonic system is combined with a software-implemented spiking neural network yielding a full platform for complex image classification tasks. This work therefore highlights the potential of VCSEL-based platforms for novel, ultrafast, all-optical neuromorphic processors interfacing with current computation and communication systems for use in future light-enabled AI and computer vision functionalities
    corecore