53 research outputs found

    Low Power Superconducting Microwave Applications and Microwave Microscopy

    Get PDF
    We briefly review some non-accelerator high-frequency applications of superconductors. These include the use of high-Tc superconductors in front-end band-pass filters in cellular telephone base stations, the High Temperature Superconductor Space Experiment, and high-speed digital electronics. We also present an overview of our work on a novel form of near-field scanning microscopy at microwave frequencies. This form of microscopy can be used to investigate the microwave properties of metals and dielectrics on length scales as small as 1 mm. With this microscope we have demonstrated quantitative imaging of sheet resistance and topography at microwave frequencies. An examination of the local microwave response of the surface of a heat-treated bulk Nb sample is also presented.Comment: 11 pages, including 6 figures. Presented at the Eight Workshop on RF Superconductivity. To appear in Particle Accelerator

    Mathematical Contributions to the Dynamics of the Josephson Junctions: State of the Art and Open Problems

    Full text link
    Mathematical models related to some Josephson junctions are pointed out and attention is drawn to the solutions of certain initial boundary problems and to some of their estimates. In addition, results of rigorous analysis of the behaviour of these solutions when the time tends to infinity and when the small parameter tends to zero are cited. These analyses lead us to mention some of the open problems.Comment: 11 page

    Improving wafer-scale Josephson junction resistance variation in superconducting quantum coherent circuits

    Full text link
    Quantum bits, or qubits, are an example of coherent circuits envisioned for next-generation computers and detectors. A robust superconducting qubit with a coherent lifetime of OO(100 μ\mus) is the transmon: a Josephson junction functioning as a non-linear inductor shunted with a capacitor to form an anharmonic oscillator. In a complex device with many such transmons, precise control over each qubit frequency is often required, and thus variations of the junction area and tunnel barrier thickness must be sufficiently minimized to achieve optimal performance while avoiding spectral overlap between neighboring circuits. Simply transplanting our recipe optimized for single, stand-alone devices to wafer-scale (producing 64, 1x1 cm dies from a 150 mm wafer) initially resulted in global drifts in room-temperature tunneling resistance of ±\pm 30%. Inferring a critical current IcI_{\rm c} variation from this resistance distribution, we present an optimized process developed from a systematic 38 wafer study that results in << 3.5% relative standard deviation (RSD) in critical current (σIc/Ic\equiv \sigma_{I_{\rm c}}/\left\langle I_{\rm c} \right\rangle) for 3000 Josephson junctions (both single-junctions and asymmetric SQUIDs) across an area of 49 cm2^2. Looking within a 1x1 cm moving window across the substrate gives an estimate of the variation characteristic of a given qubit chip. Our best process, utilizing ultrasonically assisted development, uniform ashing, and dynamic oxidation has shown σIc/Ic\sigma_{I_{\rm c}}/\left\langle I_{\rm c} \right\rangle = 1.8% within 1x1 cm, on average, with a few 1x1 cm areas having σIc/Ic\sigma_{I_{\rm c}}/\left\langle I_{\rm c} \right\rangle << 1.0% (equivalent to σf/f\sigma_{f}/\left\langle f \right\rangle << 0.5%). Such stability would drastically improve the yield of multi-junction chips with strict critical current requirements.Comment: 10 pages, 4 figures. Revision includes supplementary materia

    On the transition from parabolicity to hyperbolicity for a nonlinear equation under Neumann boundary conditions

    Full text link
    An integro differential equation which is able to describe the evolution of a large class of dissipative models, is considered. By means of an equivalence, the focus shifts to the perturbed sine- Gordon equation that in superconductivity finds interesting applications in multiple engineering areas. The Neumann boundary problem is considered, and the behaviour of a viscous term, defined by a high order derivative with small diffusion coefficient , is investigated. The Green function, expressed by means of Fourier series, is considered, and an estimate is achieved. Furthermore, some classes of solutions of the hyperbolic equation are determined, proving that there exists at least one solution with bounded derivatives. Results obtained prove that diffusion effects are bounded and tend to zero when e tends to zero.Comment: Meccanica (2018). arXiv admin note: text overlap with arXiv:1602.0907

    Ultra-Low-Power Superconductor Logic

    Full text link
    We have developed a new superconducting digital technology, Reciprocal Quantum Logic, that uses AC power carried on a transmission line, which also serves as a clock. Using simple experiments we have demonstrated zero static power dissipation, thermally limited dynamic power dissipation, high clock stability, high operating margins and low BER. These features indicate that the technology is scalable to far more complex circuits at a significant level of integration. On the system level, Reciprocal Quantum Logic combines the high speed and low-power signal levels of Single-Flux- Quantum signals with the design methodology of CMOS, including low static power dissipation, low latency combinational logic, and efficient device count.Comment: 7 pages, 5 figure

    Single-charge devices with ultrasmall Nb/AlOx/Nb trilayer Josephson junctions

    Full text link
    Josephson junction transistors and 50-junction arrays with linear junction dimensions from 200 nm down to 70 nm were fabricated from standard Nb/AlOx/Nb trilayers. The fabrication process includes electron beam lithography, dry etching, anodization, and planarization by chemical-mechanical polishing. The samples were characterized at temperatures down to 25 mK. In general, all junctions are of high quality and their I-U characteristics show low leakage currents and high superconducting energy gap values of 1.35 meV. The characteristics of the transistors and arrays exhibit some features in the subgap area, associated with tunneling of Cooper pairs, quasiparticles and their combinations due to the redistribution of the bias voltage between the junctions. Total island capacitances of the transistor samples ranged from 1.5 fF to 4 fF, depending on the junction sizes. Devices made of junctions with linear dimensions below 100 nm by 100 nm demonstrate a remarkable single-electron behavior in both superconducting and normal state. We also investigated the area dependence of the junction capacitances for transistor and array samples.Comment: 19 pages incl. 2 tables and 11 figure
    corecore