580 research outputs found

    Super-Linear Convergence of Dual Augmented-Lagrangian Algorithm for Sparsity Regularized Estimation

    Full text link
    We analyze the convergence behaviour of a recently proposed algorithm for regularized estimation called Dual Augmented Lagrangian (DAL). Our analysis is based on a new interpretation of DAL as a proximal minimization algorithm. We theoretically show under some conditions that DAL converges super-linearly in a non-asymptotic and global sense. Due to a special modelling of sparse estimation problems in the context of machine learning, the assumptions we make are milder and more natural than those made in conventional analysis of augmented Lagrangian algorithms. In addition, the new interpretation enables us to generalize DAL to wide varieties of sparse estimation problems. We experimentally confirm our analysis in a large scale 1\ell_1-regularized logistic regression problem and extensively compare the efficiency of DAL algorithm to previously proposed algorithms on both synthetic and benchmark datasets.Comment: 51 pages, 9 figure

    On the monotone and primal-dual active set schemes for p\ell^p-type problems, p(0,1]p \in (0,1]

    Full text link
    Nonsmooth nonconvex optimization problems involving the p\ell^p quasi-norm, p(0,1]p \in (0, 1], of a linear map are considered. A monotonically convergent scheme for a regularized version of the original problem is developed and necessary optimality conditions for the original problem in the form of a complementary system amenable for computation are given. Then an algorithm for solving the above mentioned necessary optimality conditions is proposed. It is based on a combination of the monotone scheme and a primal-dual active set strategy. The performance of the two algorithms is studied by means of a series of numerical tests in different cases, including optimal control problems, fracture mechanics and microscopy image reconstruction

    First order algorithms in variational image processing

    Get PDF
    Variational methods in imaging are nowadays developing towards a quite universal and flexible tool, allowing for highly successful approaches on tasks like denoising, deblurring, inpainting, segmentation, super-resolution, disparity, and optical flow estimation. The overall structure of such approaches is of the form D(Ku)+αR(u)minu{\cal D}(Ku) + \alpha {\cal R} (u) \rightarrow \min_u ; where the functional D{\cal D} is a data fidelity term also depending on some input data ff and measuring the deviation of KuKu from such and R{\cal R} is a regularization functional. Moreover KK is a (often linear) forward operator modeling the dependence of data on an underlying image, and α\alpha is a positive regularization parameter. While D{\cal D} is often smooth and (strictly) convex, the current practice almost exclusively uses nonsmooth regularization functionals. The majority of successful techniques is using nonsmooth and convex functionals like the total variation and generalizations thereof or 1\ell_1-norms of coefficients arising from scalar products with some frame system. The efficient solution of such variational problems in imaging demands for appropriate algorithms. Taking into account the specific structure as a sum of two very different terms to be minimized, splitting algorithms are a quite canonical choice. Consequently this field has revived the interest in techniques like operator splittings or augmented Lagrangians. Here we shall provide an overview of methods currently developed and recent results as well as some computational studies providing a comparison of different methods and also illustrating their success in applications.Comment: 60 pages, 33 figure

    An Extragradient-Based Alternating Direction Method for Convex Minimization

    Get PDF
    In this paper, we consider the problem of minimizing the sum of two convex functions subject to linear linking constraints. The classical alternating direction type methods usually assume that the two convex functions have relatively easy proximal mappings. However, many problems arising from statistics, image processing and other fields have the structure that while one of the two functions has easy proximal mapping, the other function is smoothly convex but does not have an easy proximal mapping. Therefore, the classical alternating direction methods cannot be applied. To deal with the difficulty, we propose in this paper an alternating direction method based on extragradients. Under the assumption that the smooth function has a Lipschitz continuous gradient, we prove that the proposed method returns an ϵ\epsilon-optimal solution within O(1/ϵ)O(1/\epsilon) iterations. We apply the proposed method to solve a new statistical model called fused logistic regression. Our numerical experiments show that the proposed method performs very well when solving the test problems. We also test the performance of the proposed method through solving the lasso problem arising from statistics and compare the result with several existing efficient solvers for this problem; the results are very encouraging indeed
    corecore