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Abstract

In this paper, we consider the problem of minimizing the sum of two convex functions subject

to linear linking constraints. The classical alternating direction type methods usually assume

that the two convex functions have relatively easy proximal mappings. However, many problems

arising from statistics, image processing and other fields have the structure that while one of

the two functions has easy proximal mapping, the other function is smoothly convex but does

not have an easy proximal mapping. Therefore, the classical alternating direction methods

cannot be applied. To deal with the difficulty, we propose in this paper an alternating direction

method based on extragradients. Under the assumption that the smooth function has a Lipschitz

continuous gradient, we prove that the proposed method returns an ϵ-optimal solution within

O(1/ϵ) iterations. We apply the proposed method to solve a new statistical model called fused

logistic regression. Our numerical experiments show that the proposed method performs very

well when solving the test problems. We also test the performance of the proposed method

through solving the lasso problem arising from statistics and compare the result with several

existing efficient solvers for this problem; the results are very encouraging indeed.
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1 Introduction

In this paper, we consider solving the following convex optimization problem:

minx∈Rn,y∈Rp f(x) + g(y)

s.t. Ax+By = b

x ∈ X , y ∈ Y,

(1.1)

where f and g are convex functions, A ∈ Rm×n, B ∈ Rm×p, b ∈ Rm, X and Y are convex sets and

the projections on them can be easily obtained. Problems in the form of (1.1) arise in different

applications in practice and we will show some examples later. A recent very popular way to solve

(1.1) is to apply the alternating direction method of multipliers (ADMM). A typical iteration of

ADMM for solving (1.1) can be described as
xk+1 := argminx∈X Lγ(x, y

k;λk)

yk+1 := argminy∈Y Lγ(x
k+1, y;λk)

λk+1 := λk − γ(Axk+1 +Byk+1 − b),

(1.2)

where the augmented Lagrangian function Lγ(x, y;λ) for (1.1) is defined as

Lγ(x, y;λ) := f(x) + g(y)− ⟨λ,Ax+By − b⟩+ γ

2
∥Ax+By − b∥2, (1.3)

where λ is the Lagrange multiplier associated with the linear constraint Ax + By = b and γ > 0

is a penalty parameter. The ADMM is closely related to some operator splitting methods such as

Douglas-Rachford operator splitting method [8] and Peaceman-Rachford operator splitting method

[36] for finding the zero of the sum of two maximal monotone operators. In particular, it was

shown by Gabay [14] that ADMM (1.2) is equivalent to applying the Douglas-Rachford operator

splitting method to the dual problem of (1.1). The ADMM and operator splitting methods were

then studied extensively in the literature and some generalized variants were proposed (see, e.g.,

[25, 12, 17, 9, 10]). The ADMM was revisited recently because it was found very efficient for solving

many sparse and low-rank optimization problems, such as compressed sensing [50], compressive

imaging [47, 18], robust PCA [43], sparse inverse covariance selection [53, 39], sparse PCA [27]

and semidefinite programming [48] etc. Moreover, the iteration complexity of ADMM (1.2) was

recently established by He and Yuan [21] and Monteiro and Svaiter [31], and some new analysis

for iteration complexity for obtaining ϵ-optimal solution measured by both objective error and

constraint violation was given in [24] and [7]. The recent survey paper by Boyd et al. [4] listed

many interesting applications of ADMM in statistical learning and distributed optimization.

Note that the efficiency of ADMM (1.2) actually depends on whether the two subproblems in

(1.2) can be solved efficiently or not. This requires that the following two problems can be solved

efficiently for given τ > 0, w, z ∈ Rm:

x := argminx∈X f(x) +
1

2τ
∥Ax− w∥2 (1.4)
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and

y := argminy∈Y g(y) +
1

2τ
∥By − z∥2. (1.5)

When X and Y are the whole spaces and A and B are identity matrices, (1.4) and (1.5) are known

as the proximal mappings of functions f and g, respectively. Thus, in this case, ADMM (1.2)

requires that the proximal mappings of f and g are easy to be obtained. In the cases that A and

B are not identity matrices, there are results on linearized ADMM (see, e.g., [50, 49, 54]) which

linearizes the quadratic penalty term in such a way that problems (1.4) and (1.5) still correspond

to the proximal mappings of functions f and g. The global convergence of the linearized ADMM

is guaranteed under certain conditions on a linearization step size parameter.

There are two interesting problems that are readily solved by ADMM (1.2) since the involved

functions have easy proximal mappings. One problem is the so-called robust principal component

pursuit (RPCP) problem:

min
X∈Rm×n,Y ∈Rm×n

∥X∥∗ + ρ∥Y ∥1, s.t., X + Y = M, (1.6)

where ρ > 0 is a weighting parameter, M ∈ Rm×n is a given matrix, ∥X∥∗ is the nuclear norm of

X, which is defined as the sum of singular values of X, and ∥Y ∥1 :=
∑

i,j |Yij | is the ℓ1 norm of Y .

Problem (1.6) was studied by Candès et al. [5] and Chandrasekaran et al. [6] as a convex relaxation

of the robust PCA problem. Note that the two involved functions, the nuclear norm ∥X∥∗ and the

ℓ1 norm ∥Y ∥1, have easy proximal mappings (see, e.g., [28] and [19]). The other problem is the

so-called sparse inverse covariance selection, which is also known as the graphical lasso problem

[52, 1, 13]. This problem, which estimates a sparse inverse covariance matrix from sample data,

can be formulated as

min
X∈Rn×n

− log det(X) + ⟨Σ̂, X⟩+ ρ∥X∥1, (1.7)

where the first convex function − log det(X) + ⟨Σ̂, X⟩ is the negative log-likelihood function for

given sample covariance matrix Σ̂, and the second convex function ρ∥X∥1 is used to promote the

sparsity of the resulting solution. Problem (1.7) is of the form of (1.1) because it can be rewritten

equivalently as

min
X∈Rn×n,Y ∈Rn×n

− log det(X) + ⟨Σ̂, X⟩+ ρ∥Y ∥1, s.t., X − Y = 0. (1.8)

Note that the involved function − log det(X) has an easy proximal mapping (see, e.g., [39] and

[53]).

However, there are many problems arising from statistics, machine learning and image processing

which do not have easy subproblems (1.4) and (1.5) even when A and B are identity matrices. One

such example is the so-called sparse logistic regression problem. For given training set {ai, bi}mi=1
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where a1, a2, . . . , am are the m samples and b1, . . . , bm with bi ∈ {−1,+1}, i = 1, . . . ,m are the

binary class labels. The likelihood function for these m samples is
∏m

i=1 Prob(bi | ai), where

Prob(b | a) := 1

1 + exp(−b(a⊤x+ c))
,

is the conditional probability of the label b condition on sample a, where x ∈ Rn is the weight

vector and c ∈ R is the intercept, and a⊤x + c = 0 defines a hyperplane in the feature space,

on which Prob(b | a) = 0.5. Besides, Prob(b | a) > 0.5 if a⊤x + c has the same sign as b, and

Prob(b | a) < 0.5 otherwise. The sparse logistic regression (see [26]) can be formulated as the

following convex optimization problem

min
x,c

ℓ(x, c) + α∥x∥1, (1.9)

where α > 0 is a weighting parameter, ℓ(x, c) denotes the average logistic loss function, which is

defined as

ℓ(x, c) := − 1

m

m∏
i=1

Prob(bi | ai) =
1

m

m∑
i=1

log(1 + exp(−bi(a
⊤
i x+ c))),

and the ℓ1 norm ∥x∥1 is imposed to promote the sparsity of the weight vector x. If one wants to

apply ADMM (1.2) to solve (1.9), one has to introduce a new variable y and rewrite (1.9) as

minx,c,y ℓ(x, c) + α∥y∥1,
s.t. x− y = 0.

(1.10)

When ADMM (1.2) is applied to solve (1.10), although the subproblem with respect to y is easily

solvable (an ℓ1 shrinkage operation), the subproblem with respect to (x, c) is difficult to solve

because the proximal mapping of the logistic loss function ℓ(x, c) is not easily computable.

Another example is the following fused logistic regression problem:

min
x,c

ℓ(x, c) + α∥x∥1 + β

n∑
j=2

|xj − xj−1|, (1.11)

or its constrained version:
minx,c ℓ(x, c) + α∥x∥1
s.t.

∑n
j=2 |xj − xj−1| ≤ ξ,

where α, β and ξ are positive parameters. These problems cannot be solved by ADMM (1.2), again

because of the difficulty in computing the proximal mapping of ℓ(x, c). We will discuss this example

in more details in Section 4.

But is it really crucial to compute the proximal mapping exactly in the ADMM scheme? After

all, ADMM can be viewed as an approximate dual gradient ascent method. As such, computing

the proximal mapping exactly is in some sense redundant, since on the dual side the iterates are
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updated based on the gradient ascent method. Without sacrificing the scale of approximation to

optimality, an update on the primal side based on the gradient information (or at least part of it),

by the principle of primal-dual symmetry, is entirely appropriate. Our subsequent analysis indeed

confirms this belief. Moreover, there are inexact versions of augmented Lagrangian method and

alternating direction method (see, e.g. [20, 11]), and our proposed method can be viewed as a

variant of the inexact version of ADMM.

Our contribution. In this paper, we propose a new alternating direction method for solving

(1.1). This new method requires only one of the functions in the objective to have an easy proximal

mapping, and the other involved function is merely required to be smooth. Note that the afore-

mentioned examples, namely sparse logistic regression (1.9) and fused logistic regression (1.11), are

both of this type. In each iteration, the proposed method involves only computing the proximal

mapping for one function and computing the gradient for the other function. Under the assumption

that the smooth function has a Lipschitz continuous gradient, we prove that the proposed method

finds an ϵ-optimal solution to (1.1) within O(1/ϵ) iterations.

The rest of this paper is organized as follows. In Section 2 we propose the extragradient-based

alternating direction method for solving problem (1.1). The iteration complexity of the proposed

method is analyzed in Section 3. In Section 4, we discuss the details of the fused logistic regression

problem and how to use our proposed method to solve it. Numerical experiments are conducted in

Section 5. Finally we draw some conclusions in Section 6.

2 An Alternating Direction Method Based on Extragradient

In this section, we consider solving (1.1) where f has an easy proximal mapping, while g is smooth

but does not have an easy proximal mapping. Note that in this case, ADMM (1.2) cannot be

applied to solve (1.1) as the solution for the second subproblem in (1.2) is not available.

Note that in ADMM (1.2), the updating formula for λ can be seen as a gradient step for λ with

respect to the augmented Lagrangian function. Now because minimizing the augmented Lagrangian

function with respect to y in (1.2) is not possible, we can also take a gradient step. However, our

analysis shown later indicates that we have to take a gradient step for the Lagrangian function

L(x, y;λ) := f(x) + g(y)− ⟨λ,Ax+By − b⟩ (2.1)

with respect to y. This leads to the following updating procedure for (xk, yk, λk):
xk+1 := argminx∈X Lγ(x, y

k;λk) + 1
2∥x− xk∥2H

yk+1 := [yk − γ∇yL(xk+1, yk;λk)]Y

λk+1 := λk − γ(Axk+1 +Byk+1 − b),

(2.2)
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where [y]Y denotes the projection of y onto Y. Note that we have added a proximal term 1
2∥x−xk∥2H

to the x-subproblem, where H is a pre-specified positive semidefinite matrix. In this paper, we

propose to take an extra gradient step for both y and λ, which results in the following extragradient-

based alternating direction method (EGADM) to solve Problem (1.1). Starting from any initial

point x0 ∈ X , y0 ∈ Y and λ0 ∈ Rm, a typical iteration of EGADM can be described as:

xk+1 := argminx∈X Lγ(x, y
k;λk) + 1

2∥x− xk∥2H
ȳk+1 := [yk − γ∇yL(xk+1, yk;λk)]Y

λ̄k+1 := λk − γ(Axk+1 +Byk − b)

yk+1 := [yk − γ∇yL(xk+1, ȳk+1; λ̄k+1)]Y

λk+1 := λk − γ(Axk+1 +Bȳk+1 − b).

(2.3)

Note that the first subproblem in (2.3) is to minimize the augmented Lagrangian function plus a

proximal term 1
2∥x− xk∥2H with respect to x, i.e.,

xk+1 := argminx∈X f(x)− ⟨λk, Ax+Byk − b⟩+ γ

2
∥Ax+Byk − b∥2 + 1

2
∥x− xk∥2H . (2.4)

In sparse and low-rank optimization problems, the proximal term 1
2∥x−xk∥2H is usually imposed to

cancel the effect of matrix A in the quadratic penalty term. One typical choice of H is H = 0 when

A is identity, and H = τI−γA⊤A when A is not identity, where τ > γλmax(A
⊤A) and λmax(A

⊤A)

denotes the largest eigenvalue of A⊤A. We assume that (2.4) is relatively easy to solve. Basically,

when A is an identity matrix, and f is a function arising from sparse optimization such as the ℓ1

norm, ℓ2 norm, nuclear norm and so on, then the subproblem (2.4) is usually easy to solve.

The EGADM (2.3) can be written equivalently in a more compact form. By defining

z :=

(
y

λ

)
, z̄ :=

(
ȳ

λ̄

)
, F (x, z) =

(
∇yL(x, y;λ)
−∇λL(x, y;λ)

)
,Z := Y × Rm,

we can rewrite (2.3) equivalently as
xk+1 := argminx∈XLγ(x, y

k;λk) + 1
2∥x− xk∥2H

z̄k+1 := [zk − γF (xk+1, zk)]Z

zk+1 := [zk − γF (xk+1, z̄k+1)]Z .

(2.5)

That is, in each iteration of EGADM, one minimizes the augmented Lagrangian function plus a

proximal term with respect to x, and then takes extragradient steps for both y and λ for the

Lagrangian function.

The idea of extragradient is not new. In fact, the extragradient method as we know it was originally

proposed by Korpelevich for variational inequalities and for solving saddle-point problems [22, 23].

Korpelevich proved the convergence of the extragradient method [22, 23]. For recent results on
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convergence of extragradient type methods, we refer to [35] and the references therein. The iteration

complexity of extragradient method was analyzed by Nemirovski in [33]. Recently, Monteiro and

Svaiter [29, 30, 31] studied the iteration complexity results of the hybrid proximal extragradient

method proposed by Solodov and Svaiter in [41] and its variants. More recently, Bonettini and

Ruggiero studied a generalized extragradient method for total variation based image restoration

problem [3].

3 Iteration Complexity

In this section, we analyze the iteration complexity of EGADM, i.e., (2.3). We show that under the

assumption that the smooth function g has a Lipschitz continuous gradient, EGADM (2.3) finds

an ϵ-optimal solution to Problem (1.1) in terms of both objective error and constraint violation

within O(1/ϵ) iterations.

For the linearly constrained convex minimization (1.1), the most natural way to define the ϵ-optimal

solution is in terms of the objective error and constraint violation as follows (see also [24, 7]).

Definition 3.1 We call (x̂, ŷ) ∈ X ×Y an ϵ-optimal solution to Problem (1.1) in terms of objective

error and constraint violation, if the following holds,

|f(x̂) + g(ŷ)− f(x∗)− g(y∗)| = O(ϵ), and ∥Ax̂+Bŷ − b∥ = O(ϵ) (3.1)

where (x∗, y∗) ∈ X ⋆ × Y⋆ is any optimal solution to (1.1).

Throughout this paper, we assume that the primal-dual optimal solution sets X ∗×Y∗×Λ∗ of (1.1)

is non-empty. Note that (x∗, y∗;λ∗) is an optimal solution to (1.1) if and only if x∗ ∈ X , y∗ ∈ Y,

and 
⟨x− x∗, ∂f(x∗)−A⊤λ∗⟩ ≥ 0, ∀x ∈ X ,

⟨y − y∗, ∂g(y∗)−B⊤λ∗⟩ ≥ 0, ∀y ∈ Y,

Ax∗ +By∗ = b,

(3.2)

where ∂f(x) and ∂g(y) denote subgradients of f and g.

Now we are ready to analyze the iteration complexity of EGADM (2.5), or equivalently, (2.3), for

an ϵ-optimal solution in the sense of Definition 3.1. We will prove the following lemma first.

Lemma 3.1 The sequence {xk+1, zk, z̄k} generated by (2.5) satisfies the following inequality:

⟨γF (xk+1, z̄k+1), z̄k+1 − zk+1⟩ − 1
2∥z

k − zk+1∥2

≤ γ2∥F (xk+1, z̄k+1)− F (xk+1, zk)∥2 − 1
2∥z̄

k+1 − zk∥2 − 1
2∥z̄

k+1 − zk+1∥2.
(3.3)
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Proof. Note that the optimality conditions of the two subproblems for z in (2.5) are given by

⟨zk − γF (xk+1, zk)− z̄k+1, z − z̄k+1⟩ ≤ 0, ∀z ∈ Z, (3.4)

and

⟨zk − γF (xk+1, z̄k+1)− zk+1, z − zk+1⟩ ≤ 0, ∀z ∈ Z. (3.5)

Letting z = zk+1 in (3.4) and z = z̄k+1 in (3.5), and then summing the two resulting inequalities,

we get

∥zk+1 − z̄k+1∥2 ≤ γ⟨F (xk+1, zk)− F (xk+1, z̄k+1), zk+1 − z̄k+1⟩, (3.6)

which implies

∥zk+1 − z̄k+1∥ ≤ γ∥F (xk+1, zk)− F (xk+1, z̄k+1)∥. (3.7)

Now we are able to prove (3.3). We have,

⟨γF (xk+1, z̄k+1), z̄k+1 − zk+1⟩ − 1
2∥z

k − zk+1∥2

= γ⟨F (xk+1, z̄k+1)− F (xk+1, zk), z̄k+1 − zk+1⟩
+γ⟨F (xk+1, zk), z̄k+1 − zk+1⟩ − 1

2∥z
k − zk+1∥2

≤ γ⟨F (xk+1, z̄k+1)− F (xk+1, zk), z̄k+1 − zk+1⟩
+⟨zk − z̄k+1, z̄k+1 − zk+1⟩ − 1

2∥z
k − zk+1∥2

= γ⟨F (xk+1, z̄k+1)− F (xk+1, zk), z̄k+1 − zk+1⟩
−1

2∥z
k∥2 + ⟨zk, z̄k+1⟩+ ⟨z̄k+1, zk+1 − z̄k+1⟩ − 1

2∥z
k+1∥2

≤ γ∥F (xk+1, z̄k+1)− F (xk+1, zk)∥ · ∥z̄k+1 − zk+1∥
+
(
−1

2∥z
k∥2 + ⟨zk, z̄k+1⟩ − 1

2∥z̄
k+1∥2

)
+
(
−1

2∥z̄
k+1∥2 + ⟨z̄k+1, zk+1⟩ − 1

2∥z
k+1∥2

)
≤ γ2∥F (xk+1, z̄k+1)− F (xk+1, zk)∥2 − 1

2∥z̄
k+1 − zk∥2 − 1

2∥z̄
k+1 − zk+1∥2,

(3.8)

where the first inequality is obtained by letting z = zk+1 in (3.4) and the last inequality follows

from (3.7). This completes the proof. �

We next prove the following lemma.

Lemma 3.2 Assume that ∇g(y) is Lipschitz continuous with Lipschitz constant Lg, i.e.,

∥∇g(y1)−∇g(y2)∥ ≤ Lg∥y1 − y2∥, ∀y1, y2 ∈ Y. (3.9)

By letting γ ≤ 1/(2L̂), where L̂ :=
(
max{2L2

g + λmax(B
⊤B), 2λmax(B

⊤B)}
) 1

2 , the following in-

equality holds,

⟨γF (xk+1, z̄k+1), z̄k+1 − zk+1⟩ − 1

2
∥zk − zk+1∥2 ≤ 0. (3.10)
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Proof. For any z1 ∈ Z and z2 ∈ Z, we have,

∥F (xk+1, z1)− F (xk+1, z2)∥2

=

∥∥∥∥∥
(

(∇g(y1)−B⊤λ1)− (∇g(y2)−B⊤λ2)

(Axk+1 +By1 − b)− (Axk+1 +By2 − b)

)∥∥∥∥∥
2

= ∥(∇g(y1)−∇g(y2))−B⊤(λ1 − λ2)∥2 + ∥B(y1 − y2)∥2

≤ 2∥∇g(y1)−∇g(y2)∥2 + 2∥B⊤(λ1 − λ2)∥2 + ∥B(y1 − y2)∥2

≤ 2L2
g∥y1 − y2∥2 + 2λmax(B

⊤B)∥λ1 − λ2∥2 + λmax(B
⊤B)∥y1 − y2∥2

≤ max{2L2
g + λmax(B

⊤B), 2λmax(B
⊤B)}

∥∥∥∥∥
(
y1 − y2

λ1 − λ2

)∥∥∥∥∥
2

= L̂2∥z1 − z2∥2,

where the second inequality is due to (3.9) and the last equality is from the definition of L̂. Thus,

we know that F (xk+1, z) is Lipschitz continuous with Lipschitz constant L̂. Since γ ≤ 1/(2L̂), we

have the following inequality,

γ2∥F (xk+1, z̄k+1)− F (xk+1, zk)∥2 − 1
2∥z̄

k+1 − zk∥2 − 1
2∥z̄

k+1 − zk+1∥2

≤ γ2∥F (xk+1, z̄k+1)− F (xk+1, zk)∥2 − 1
2∥z̄

k+1 − zk∥2

≤ (γ2L̂2 − 1
2)∥z̄

k+1 − zk∥2

≤ 0,

which combining with (3.3) yields (3.10). �

We further prove the following lemma.

Lemma 3.3 Under the same assumptions as in Lemma 3.2, the following holds:

1

2
∥z − zk+1∥2 − 1

2
∥z − zk∥2 ≤ ⟨γF (xk+1, z̄k+1), z − z̄k+1⟩. (3.11)

Proof. Adding

⟨γF (xk+1, z̄k+1), z − zk+1⟩ − 1

2
∥zk+1 − zk∥2

to both sides of (3.5), we get,

⟨zk − zk+1, z − zk+1⟩ − 1

2
∥zk+1 − zk∥2 ≤ ⟨γF (xk+1, z̄k+1), z − zk+1⟩ − 1

2
∥zk+1 − zk∥2. (3.12)

Notice that the left hand side of (3.12) is equal to 1
2∥z − zk+1∥2 − 1

2∥z − zk∥2. Thus we have,

1
2∥z − zk+1∥2 − 1

2∥z − zk∥2

≤ ⟨γF (xk+1, z̄k+1), z − zk+1⟩ − 1
2∥z

k+1 − zk∥2

= ⟨γF (xk+1, z̄k+1), z − z̄k+1⟩+ ⟨γF (xk+1, z̄k+1), z̄k+1 − zk+1⟩ − 1
2∥z

k+1 − zk∥2

≤ ⟨γF (xk+1, z̄k+1), z − z̄k+1⟩,

(3.13)
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where the last inequality is due to (3.10). �

We now give the O(1/ϵ) iteration complexity of (2.3) (or equivalently, (2.5)) for an ϵ-optimal

solution to Problem (1.1).

Theorem 3.4 Consider Algorithm EGADM (2.3), and its sequence of iterates. For any integer

N > 0, define

x̃N :=
1

N

N∑
k=0

xk+1, ỹN :=
1

N

N∑
k=0

ȳk+1, λ̃N :=
1

N

N∑
k=0

λ̄k+1.

Assume that ∇g(y) is Lipschitz continuous with Lipschitz constant Lg, and we choose γ ≤ 1/(2L̂),

where L̂ :=
(
max{2L2

g + λmax(B
⊤B), 2λmax(B

⊤B)}
) 1

2 . Moreover, we choose H := 0 if A is an

identity matrix, and H := τI − γA⊤A when A is not identity, where τ > γλmax(A
⊤A). For any

optimal solution (x∗, y∗, λ∗) ∈ X ⋆ × Y⋆ × Λ∗ to (1.1), it holds that

|f(x̃N ) + g(ỹN )− f(x∗)− g(y∗)| = O(1/N), and ∥Ax̃N +BỹN − b∥ = O(1/N). (3.14)

Note that (3.14) implies that when N = O(1/ϵ), {x̃N , ỹN , λ̃N} is an ϵ-optimal solution to Problem

(1.1) in the sense of Definition 3.1; i.e., the iteration complexity of (2.3) (or equivalently, (2.5)) for

an ϵ-optimal solution to Problem (1.1) is O(1/ϵ) in terms of both objective error and constraint

violation.

Proof. The optimality conditions of the subproblem for x in (2.3) are given by

⟨θk+1 −A⊤λk + γA⊤(Axk+1 +Byk − b) +H(xk+1 − xk), x− xk+1⟩ ≥ 0, ∀x ∈ X , (3.15)

where θk+1 ∈ ∂f(xk+1) denotes a subgradient of f at point xk+1. By using the updating formula

for λ̄k+1 in (2.3), i.e.,

λ̄k+1 := λk + γ∇λL(xk+1, yk;λk) = λk − γ(Axk+1 +Byk − b),

we obtain,

⟨θk+1 −A⊤λ̄k+1 +H(xk+1 − xk), x− xk+1⟩ ≥ 0, ∀x ∈ X . (3.16)

Combining (3.11) and (3.16), we have,

⟨x− xk+1

y − ȳk+1

λ− λ̄k+1

 ,

 θk+1 −A⊤λ̄k+1

∇g(ȳk+1)−B⊤λ̄k+1

Axk+1 +Bȳk+1 − b

⟩

≥ 1
2γ

(
∥z − zk+1∥2 − ∥z − zk∥2

)
+ ⟨H(xk − xk+1), x− xk+1⟩.

(3.17)
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Note that by using the convexity of functions f and g and letting x = x∗ and y = y∗, (3.17) implies

that the following holds for any λ ∈ Rm:

f(x∗) + g(y∗)− f(xk+1)− g(ȳk+1) +

 x∗ − xk+1

y∗ − ȳk+1

λ− λ̄k+1


⊤ −A⊤λ̄k+1

−B⊤λ̄k+1

Axk+1 +Bȳk+1 − b


+

(
1

2

∥∥∥x∗ − xk
∥∥∥2
H
+

1

2γ

∥∥∥y∗ − yk
∥∥∥2 + 1

2γ

∥∥∥λ− λk
∥∥∥2)

−
(
1

2

∥∥∥x∗ − xk+1
∥∥∥2
H
+

1

2γ

∥∥∥y∗ − yk+1
∥∥∥2 + 1

2γ

∥∥∥λ− λk+1
∥∥∥2)

≥ 0,

which further yields that

f(x∗) + g(y∗)− f(x̃N )− g(ỹN ) + λ⊤ (Ax̃N +BỹN − b
)

= f(x∗) + g(y∗)− f(x̃N )− g(ỹN ) +

 x∗ − x̃N

y∗ − ỹN

λ− λ̃N


⊤ −A⊤λ̃N

−B⊤λ̃N

Ax̃N +BỹN − b



≥ 1

N + 1

N∑
k=0

f(x∗) + g(y∗)− f(xk+1)− g(ȳk+1) +

 x∗ − xk+1

y∗ − ȳk+1

λ− λ̄k+1


⊤ −A⊤λ̄k+1

−B⊤λ̄k+1

Axk+1 +Bȳk+1 − b




≥ 1

N + 1

N∑
k=0

[(
1

2

∥∥∥x∗ − xk+1
∥∥∥2
H
+

1

2γ

∥∥∥y∗ − yk+1
∥∥∥2 + 1

2γ

∥∥∥λ− λk+1
∥∥∥2)

−
(
1

2

∥∥∥x∗ − xk
∥∥∥2
H
+

1

2γ

∥∥∥y∗ − yk
∥∥∥2 + 1

2γ

∥∥∥λ− λk
∥∥∥2)]

≥ − 1

2γ(N + 1)

∥∥λ− λ0
∥∥2 − 1

2γ(N + 1)

∥∥y∗ − y0
∥∥2 − 1

2(N + 1)

∥∥x∗ − x0
∥∥2
H
, (3.18)

where the first inequality is due to the convexity of f and g. Note that the optimality condition

(3.2) and convexity of f and g imply the following inequality

0 ≥ f(x∗) + g(y∗)− f(x̃N )− g(ỹN ) + ⟨λ∗, Ax̃N +BỹN − b⟩. (3.19)

Now, define ρ := ∥λ∗∥+ 1. By using Cauchy-Schwarz inequality in (3.19), we obtain

0 ≤ f(x̃N ) + g(ỹN )− f(x∗)− g(y∗) + ρ
∥∥Ax̃N +BỹN − b

∥∥ . (3.20)

By setting λ = −ρ(Ax̃N + BỹN − b)/∥Ax̃N + BỹN − b∥ in (3.18), and noting that ∥λ∥ = ρ, we

obtain

f(x̃N ) + g(ỹN )− f(x∗)− g(y∗) + ρ
∥∥Ax̃N +BỹN − b

∥∥
≤ ρ2+∥λ0∥2

γ(N+1) + 1
2γ(N+1)

∥∥y∗ − y0
∥∥2 + 1

2(N+1)

∥∥x∗ − x0
∥∥2
H
. (3.21)
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We now define the function

v(ξ) = min{f(x) + g(y)|Ax+By − b = ξ, x ∈ X , y ∈ Y}.

It is easy to verify that v is convex, v(0) = f(x∗) + g(y∗), and λ∗ ∈ ∂v(0). Therefore, from the

convexity of v, it holds that

v(ξ) ≥ v(0) + ⟨λ∗, ξ⟩ ≥ f(x∗) + g(y∗)− ∥λ∗∥∥ξ∥. (3.22)

Let ξ̄ = Ax̃N + BỹN − b, we have f(x̃N ) + g(ỹN ) ≥ v(ξ̄). Therefore, combining (3.20), (3.21) and

(3.22), we get

−∥λ∗∥∥ξ̄∥ ≤ f(x̃N ) + g(ỹN )− f(x∗)− g(y∗)

≤ ρ2 + ∥λ0∥2

γ(N + 1)
+

1

2γ(N + 1)

∥∥y∗ − y0
∥∥2 + 1

2(N + 1)

∥∥x∗ − x0
∥∥2
H
− ρ∥ξ̄∥,

which by defining

C :=
ρ2 + ∥λ0∥2

γ
+

∥y∗ − y0∥2

2γ
+

1

2
∥x∗ − x0∥2H

yields,

∥Ax̃N +BỹN − b∥ = ∥ξ̄∥ ≤ C

N + 1
, (3.23)

and

−∥λ∗∥C
N + 1

≤ f(x̃N ) + g(ỹN )− f(x∗)− g(y∗) ≤ C

N + 1
. (3.24)

Combining (3.23) and (3.24) completes the proof. �

Remark 1 We note that there is another line of research on studying dual smoothing methods for

solving (1.1). This approach is studied in [32, 46]. The dual smoothing method in [32] smoothes

the Lagrangian dual function using Nesterov’s smoothing technique in [34], and then applies the

accelerated gradient method [34] to solve the smoothed dual problem. The accelerated gradient

method can return an ϵ-optimal solution to (1.1) in O(1/ϵ) iterations. It should be noted that

the smoothing technique used in [32] requires the feasible sets X and Y to be bounded, while this

assumption is not needed in our EGADM method. On the other hand, the dual smoothing method

in [32] does not assume any smoothness assumptions on f and g, while our EGADM requires g

to be differentiable. In [46], the authors propose to smooth the Lagrangian dual function using

self-concordant barrier functions, and then apply a path-following gradient method to minimize the

smoothed dual function. It is noted that this method also requires the feasible sets X and Y to be

bounded, and the O(1/ϵ) complexity result is only measured by the dual objective value error.
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4 Fused Logistic Regression

In this section we show how to apply Algorithm (2.3) to solve the fused logistic regression problem,

which is a convex problem. To introduce our fused logistic regression model, we need to introduce

fused lasso problem and logistic regression first. The sparse linear regression problem, known as

Lasso [44], was introduced to find sparse regression coefficients so that the resulting model is more

interpretable. The original Lasso model solves the following problem:

min
1

2
∥Ax− b∥2, s.t. ∥x∥1 ≤ s, (4.1)

where A = [a1, . . . , am]⊤ ∈ Rm×n gives the predictor variables, b = [b1, . . . , bm]⊤ ∈ Rm gives

the responses and the constraint ∥x∥1 ≤ s is imposed to promote the sparsity of the regression

coefficients x. The Lasso solution x gives more interpretability to the regression model since the

sparse solution x ensures that only a few features contribute to the prediction.

Fused lasso was introduced by Tibshirani et al. in [45] to model the situation in which there is

certain natural ordering in the features. Fused lasso adds a term to impose the sparsity of x in

the gradient space to model natural ordering in the features. The fused lasso problem can be

formulated as

min
1

2
∥Ax− b∥2 + α∥x∥1 + β

n∑
j=2

|xj − xj−1|. (4.2)

Because (4.2) can be transformed equivalently to a quadratic programming problem, Tibshirani

et al. proposed to solve (4.2) using a two-phase active set algorithm SQOPT of Gill et al. [16].

However, transforming (4.2) to a quadratic programming problem will increase the size of the

problem significantly, thus SQOPT can only solve (4.2) with small or medium sizes. Ye and Xie

[51] proposed to solve (4.2) using split Bregman algorithm, which can be shown to be equivalent

to an alternating direction method of multipliers. Note that (4.2) can be rewritten equivalently as

min 1
2∥Ax− b∥2 + α∥w∥1 + β∥y∥1

s.t. w = x

y = Lx,

(4.3)

where L is an (n − 1) × n dimensional matrix with all ones on the diagonal and negative ones on

the super-diagonal and zeros elsewhere. The ADMM can be applied to solve (4.3) with x being one

block variable and (w, y) being the other block (see [51] for more details).

As in [26], the sparse logistic regression problem (1.9) can be formulated as

min
x,c

ℓ(x, c), s.t. ∥x∥1 ≤ s. (4.4)
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It is now very meaningful to consider the fused logistic regression problem when there is certain

natural ordering in the features. This leads to the following optimization problem:

min
x∈Rn,c∈R

ℓ(x, c) + α∥x∥1 + β

n∑
j=2

|xj − xj−1|. (4.5)

Problem (4.5) can be rewritten equivalently as

minx∈Rn,w∈Rn−1,y∈Rn,c∈R α∥x∥1 + β∥w∥1 + ℓ(y, c)

s.t. x = y

w = Ly.

(4.6)

If we apply the ADMM to solve (4.6), we will end up with the following iterates:
(xk+1, wk+1) := argminx,w Lγ(x,w, y

k, ck;λk
1, λ

k
2)

(yk+1, ck+1) := argminy,c Lγ(x
k+1, wk+1, y, c;λk

1, λ
k
2)

λk+1
1 := λk

1 − γ(xk+1 − yk+1)

λk+1
2 := λk

2 − γ(wk+1 − Lyk+1),

(4.7)

where the augmented Lagrangian function Lγ(x,w, y;λ1, λ2) is defined as

Lγ(x,w, y, c;λ1, λ2) :=
1
m

∑m
i=1 log(1 + exp(−bi(a

⊤
i y + c)))

+α∥x∥1 + β∥w∥1 − ⟨λ1, x− y⟩ − ⟨λ2, w − Ly⟩+ γ
2∥x− y∥2 + γ

2∥w − Ly∥2.

However, note that although the subproblem for (x,w) is still easy, the subproblem for y is no longer

easy because of the logistic loss function ℓ(y, c). But, since ℓ(y, c) is differentiable with respect to

(y, c), we can apply our EGADM to solve (4.6). Noting that the subproblem for (x,w) corresponds

to two ℓ1 shrinkage operations. Moreover, the gradients of ℓ(y, c) with respect to y and c are easily

obtainable as

∇yℓ(y, c) = − 1

m
Â⊤(1− d), ∇cℓ(y, c) = − 1

m
b⊤(1− d), d = 1./(1 + exp(−Ây − cb)), (4.8)

where Â = [b1a1, b2a2, . . . , bmam]⊤ and 1./α denotes the component-wise division.

We are now ready to describe the details of EGADM for solving (4.6) in Algorithm 1, in which the

ℓ1 shrinkage operation is defined as:

Shrink(z, τ) := sign(z) ◦max{|z| − τ, 0}.

5 Numerical Experiments

In this section, we test the performance of our EGADM for solving the fused logistic regression

problem (4.5) and lasso problem. Our codes were written in MATLAB. All numerical experiments

were run in MATLAB 7.12.0 on a laptop with Intel Core I5 2.5 GHz CPU and 4GB of RAM.
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Algorithm 1 Extragradient-based ADM for the Fused Logistic Regression

Initialization: Â = [b1a1, b2a2, . . . , bmam]⊤

for k = 0, 1, . . . do

xk+1 := Shrink(yk + λk
1/γ, α/γ)

wk+1 := Shrink(Lyk + λk
2/γ, β/γ)

dk := 1./(1+exp(−Âyk−b◦ck)), ∇yℓ(y
k, ck) := − 1

mÂ⊤(1−dk), ∇cℓ(y
k, ck) := − 1

mb⊤(1−dk)

ȳk+1 := yk − γ(∇yℓ(y
k, ck) + λk

1 + L⊤λk
2)

c̄k+1 := ck − γ∇cℓ(y
k, ck)

λ̄k+1
1 := λk

1 − γ(xk+1 − yk), λ̄k+1
2 := λk

2 − γ(wk+1 − Lyk+1)

d̄k+1 := 1./(1 + exp(−Âȳk+1 − b ◦ c̄k+1))

∇yℓ(ȳ
k+1, c̄k+1) := − 1

mÂ⊤(1− d̄k+1), ∇cℓ(ȳ
k+1, c̄k+1) := − 1

mb⊤(1− d̄k+1)

yk+1 := yk − γ(∇yℓ(ȳ
k+1, c̄k+1) + λ̄k+1

1 + L⊤λ̄k+1
2 )

ck+1 := ck − γ∇cℓ(ȳ
k+1, c̄k+1)

λk+1
1 := λk

1 − γ(xk+1 − ȳk+1), λk+1
2 := λk

2 − γ(wk+1 − Lȳk+1)

end for

5.1 Numerical Results for Fused Logistic Regression

In this subsection, we report the results of our EGADM (Algorithm 1) for solving the fused logistic

regression problem (4.5).

First, we used a very simple example to show that when the features have natural ordering, the fused

logistic regression model (4.5) is much preferable than the sparse logistic regression model (4.4).

This simple example was created in the following manner. We created the regression coefficient

x̂ ∈ Rn for n = 1000 as

x̂j =



r1, j = 1, 2, . . . , 100

r2, j = 201, 202, . . . , 300

r3, j = 401, 402, . . . , 500

r4, j = 601, 602, . . . , 700

0, else,

(5.1)

where scalers r1, r2, r3, r4 were created randomly uniform in (0, 20). An example plot of x̂ is shown

in the left part of Figure 1. The entries of matrix A ∈ Rm×n with m = 500 and n = 1000 were

drawn from standard normal distribution N (0, 1). Vector b ∈ Rm was then created as the signs of

Ax̂ + ce, where c is a random number in (0, 1) and e is the m-dimensional vector of all ones. We

then applied our extragradient-based ADM (Algorithm 1) for solving the fused logistic regression

problem (4.5) and compared the result with the sparse logistic regression problem (4.4). The code

for solving (4.4), which is called Lassplore and proposed by Liu et al. in [26], was downloaded from

http://www.public.asu.edu/∼jye02/Software/lassplore/. Default settings of Lassplore were used.

15



0 200 400 600 800 1000
−5

0

5

10

15

20

25

30

0 100 200 300 400 500
−5

0

5

10

15

20

25

30

Figure 1: Left: The regression coefficient given in (5.1); Right: The regression coefficient given in

(5.2).

We chose α = 5 × 10−4 and β = 5 × 10−2 in (4.5). The regression result by EGADM (Algorithm

1) is plotted in Figure 2 (a). We tested different choices of s = 1, 5, 10 in (4.4) and the results are

plotted in Figure 2 (b), (c) and (d), respectively. From Figure 2 we see that, the fused logistic

regression model (4.5) can preserve the natural ordering very well. The sparse logistic regression

model (4.4) gives very sparse solution when s is small, and gives less sparse solution when s is large,

but none of the choices of s = 1, 5, 10 gives a solution that preserves the natural ordering.

To further show the capability of our EGADM for solving the fused logistic regression model (4.5),

especially for large-scale problems, we conducted the following tests. First, we created the regression

coefficient x̂ ∈ Rn for n ≥ 100 as

x̂j =



20, j = 1, 2, . . . , 20,

30, j = 41,

10, j = 71, . . . , 85,

20, j = 121, . . . , 125,

0, else.

(5.2)

Note that a similar test example was used in [51] for the fused lasso problem. An example plot of

x̂ of size n = 500 is shown in the right part of Figure 1. We then created matrix A and vector b

in the same way mentioned above. We applied our EGADM to solve the fused logistic regression

model (4.5) with the above mentioned inputs A and b. We report the iteration number, CPU time,

sparsity of x (denoted by ∥x∥0) and sparsity of the fused term Lx (denoted by ∥Lx∥0) in Table

1. From Table 1 we see that our EGADM can solve the fused logistic regression problem (4.5)

efficiently. It solved instances with size up to m = 2000, n = 20000 in just a few seconds.
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Figure 2: (a): The regression result by the fused logistic regression model (4.5); (b), (c), (d): The

regression result by the sparse logistic regression model (4.4) with s = 1, 5, 10, respectively.
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Table 1: Numerical Results for Fused Logistic Regression

m n iter cpu ∥x∥0 ∥Lx∥0
100 500 104 0.0 37 40

100 1000 112 0.1 41 46

100 2000 105 0.2 71 88

1000 2000 69 0.6 25 21

1000 5000 79 1.6 25 26

1000 10000 53 2.0 25 25

2000 5000 94 3.5 40 36

2000 10000 238 17.1 40 6

2000 20000 84 11.5 40 42

5.2 Numerical Results for Lasso Problem

To understand how our new method compares to other well established methods when all are

applicable, in this subsection, we experiment our EGADM in comparison with ISTA [2] and ADMM

for solving the following unconstrained version of the lasso problem (4.1):

min τ∥x∥1 +
1

2
∥Ax− b∥2, (5.3)

where τ > 0 is a given weighting parameter. This problem can be naturally solved by ISTA [2]. A

typical iteration of ISTA for solving (5.3) can be described as:

xk+1 := argminx γτ∥x∥1 +
1

2
∥x− (xk − γA⊤(Axk − b))∥2, (5.4)

where γ > 0 is the step size of the gradient step. By applying a variable-splitting technique, (5.3)

can be equivalently written as

min τ∥x∥1 +
1

2
∥Ay − b∥2, s.t., x− y = 0, (5.5)

which can be solved by both EGADM and ADMM. A typical iteration of EGADM for solving (5.5)

is 

xk+1 := argminx τ∥x∥1 − ⟨λk, x− yk⟩+ γ
2∥x− yk∥2

ȳk+1 := yk − γ(A⊤(Ayk − b) + λk)

λ̄k+1 := λk − γ(xk+1 − yk)

yk+1 := yk − γ(A⊤(Aȳk+1 − b) + λ̄k+1)

λk+1 := λk − γ(xk+1 − ȳk+1),

(5.6)
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and a typical iteration of ADMM for solving (5.5) is
xk+1 := argminx τ∥x∥1 − ⟨λk, x− yk⟩+ γ

2∥x− yk∥2

yk+1 := argminy
1
2∥Ay − b∥2 − ⟨λk, xk+1 − y⟩+ γ

2∥x
k+1 − y∥2

λk+1 := λk − γ(xk+1 − yk+1).

(5.7)

The main computational efforts in these three algorithms are as follows. In each iteration of ISTA,

an ℓ1 shrinkage operation and two matrix vector multiplications are needed; in each iteration of

EGADM, an ℓ1 shrinkage operation and four matrix vector multiplications are needed; while in

each iteration of ADMM, an ℓ1 shrinkage operation and solving one linear system are required.

Note that the lasso problem is suitable for ADMM because the y-subproblem is still easy to solve.

We use this problem as an example to illustrate the relation among ISTA, EGADM and ADMM. In

fact, even if the y-subproblem is not easy to solve, an inexact version of ADMM can still be applied.

For instance, instead of solving the y-subproblem in (5.7) directly by solving a linear system, we

can run gradient descent method for M iterations to get an approximate solution to it. Therefore,

in our experiments for solving the lasso problem (5.3), we implemented the following comparison to

compare the performance of ISTA, EGADM and ADMM. In our numerical experiments, we always

set τ = 0.1 for simplicity. The instances for different (m,n) were created randomly in the following

way. We first generated matrix A ∈ Rm×n randomly according to normal distribution. We then

normalized A such that the largest singular value of A is 1. This normalization was implemented

so that the step size γ can be selected easily. A sparse x was then created such that the number

of nonzero components was equal to n/10, and their positions were selected uniformly randomly.

We then set b = Ax. We first ran ISTA with γ = 1 for 100 iterations, and recorded the resulting

objective function value of (5.3) (denoted by fI). We then ran EGADM and ADMM with different

γ until the objective function value was smaller than fI , or the maximum number of iteration

(set as 1000) was achieved. Moreover, we also ran the inexact version ADMM described above for

different M to see the comparison result. The results are reported in Tables 2 and 3. In particular,

ADMM-5 and ADMM-10 indicate that we respectively ran the gradient descent method for 5 and

10 iterations to get an approximate solution to the y-subproblem in (5.7); mvm denotes the total

number of matrix vector multiplications. In Tables 2 and 3, we reported the results for different

γ. Note that we used the same γ for ISTA, EGADM and ADMM. Moreover, the same γ was also

used as the step size for the gradient descent method for solving the y-subproblems in ADMM-5

and ADMM-10.

From Tables 2 and 3 we have the following observations. When γ = 1.0 and m < n, the number of

iterations of EGADM, ADMM, ADMM-5 and ADMM-10 are similar with ISTA, while ADMM is

more costly because it needs to solve an n× n linear system in each iteration. When γ = 1.0 and

m > n, ADMM is better than other solvers, because now the linear system is in a relatively small

size. Moreover, EGADM also performs well when m > n. It needs less iteration number than ISTA

(except one instance). However, ADMM-5 and ADMM-10 do not perform well, because the step
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size γ is too large. When γ is modest, i.e., γ = 0.8 and γ = 0.5, ADMM, ADMM-5 and ADMM-10

usually perform better than ISTA in terms of number of iterations. EGADM is comparable to

ISTA in these two cases in the sense that EGADM needs more iterations than ISTA when m < n

and less iterations when m > n. When γ = 0.1, ADMM-5, ADMM-10 and EGADM are worse than

ISTA, but we emphasize here that ISTA always uses a large step size γ = 1.

Based on these comparison results, we may conclude as follows. First, ADMM is usually better

than ISTA and EGADM when the two subproblems can be easily solved. Second, ADMM is not

very sensitive to the selection of the penalty parameter γ, while ISTA and EGADM depends on it

because these two methods are more like gradient method and need to choose step size properly.

In the case that one subproblem is not easy to solve in ADMM, running gradient descent method

for several iterations to get an approximate solution to the subproblem usually works. However,

choosing the step size γ is very crucial to the performance. Furthermore, we emphasize again that

ISTA only works for problems without linear constraints, and ADMMworks when both subproblems

can be solved easily. In contrast, EGADM provides something in the middle: it works when linear

constraints are present and one subproblem is not easy to solve.

Remark 2 We remark here that as shown in many references, the current state-of-the-art algo-

rithm for solving the lasso problem (5.3), is the randomized coordinate descent method (see, e,g,

[37, 38, 40]). In our numerical comparison conducted in this subsection, we only compared our

EGADM with ISTA and ADMM. We did not compare with the randomized coordinate descent

method because EGADM, ISTA and ADMM are all batch type methods and we want to focus the

comparison among the efficient batch methods for lasso problem. Moreover, stochastic ADMM as

studied in [42] can solve the dual problem of (1.1). It is suitable for solving problems where f is the

empirical loss function in machine learning or data fitting problems. For example, it can be applied

to solve the lasso problem (5.3) or the so-called graph lasso problem. However, the method in [42]

assumes that the proximal mappings of both f and g are easily computable. As a result, it is not

suitable for solving the fused logistic regression problem (4.5).

Remark 3 Since our proposed EGADM method is a variant of ADMM, it is capable of solving

problems at least as large as that can be handled by ADMM. Moreover, the main computational

effort in each iteration of EGADM is computing the proximal mapping of function f and computing

the gradient of function g. EGADM is efficient as long as these computations can be done relatively

easily. From Tables 1, 2 and 3 we see that EGADM is efficient for at least medium-sized problems.

For even larger problems, we may implement some parallel or randomized versions of EGADM

which will be left as future research topics.
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6 Concluding Remarks

In this paper, we proposed a new alternating direction method based on extragradient for solving

convex minimization problems with the objective function being the sum of two convex functions.

The proposed method applies to the situation where only one of the involved functions has easy

proximal mapping, while the other function is only known to be smooth. Under the assumption

that the smooth function has a Lipschitz continuous gradient, we proved that the proposed method

finds an ϵ-optimal solution within O(1/ϵ) iterations. We used the lasso problem to illustrate the

performance of the proposed method and compared its performance with some existing solvers for

this problem. We also proposed a new statistical model, namely fused logistic regression, that can

preserve the natural ordering of the features in logistic regression. Preliminary numerical results

showed that this new model is preferable than the sparse logistic regression model when there exists

natural ordering in the features. The numerical results also showed that our extragradient-based

ADM can solve large-scale fused logistic regression model efficiently.

It is noted that we only considered problems with two block variables in this paper. If there

are N -block variables with N ≥ 3, the proposed extragradient-based ADM is still applicable. In

particular, if the first N−1 functions have easy proximal mappings and the last one does not but is

smooth, we can apply the multi-block ADMM to solve this problem, but replacing the minimization

for the augmented Lagrangian function with respect to the last block variable by an extragradient

step. However, the convergence properties of this algorithm are currently not known, and this will

be a topic for the future research. One simplification of EGADM is GADM; that is, replacing the

extra-gradient steps by a single gradient step. The method was proposed in an earlier version of

this paper, whose numerical performance was found to be comparable with EGADM; however, the

convergence status of GADM was unknown to us. Very recently, [15] resolved the issue and proved

that the iteration complexity of GADM remains O(1/ϵ).
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Table 2: Numerical Results for Lasso problem

ISTA ADMM ADMM-5 ADMM-10 EGADM

(m,n) iter cpu iter cpu iter mvm cpu iter mvm cpu iter mvm cpu

γ = 1.0

(100,1000) 100 0.1 101 5.2 102 510 0.1 1000 10000 0.7 102 408 0.0

(100,2000) 100 0.3 101 30.7 103 515 0.1 604 6040 0.9 102 408 0.1

(100,5000) 100 0.8 102 435.9 105 525 0.6 220 2200 2.2 102 408 0.2

(100,8000) 100 1.3 102 1642.8 106 530 3.7 321 3210 5.9 102 408 0.5

(1000,100) 100 0.1 53 0.0 1000 5000 0.3 1000 10000 0.6 108 432 0.0

(1000,200) 100 0.3 88 0.1 1000 5000 0.5 1000 10000 1.0 165 660 0.0

(2000,200) 100 0.6 55 0.1 1000 5000 2.5 1000 10000 4.3 99 396 0.1

(5000,100) 100 0.7 35 0.0 1000 5000 4.6 1000 10000 8.2 40 160 0.1

(5000,200) 100 1.5 43 0.1 1000 5000 10.4 1000 10000 19.6 66 264 0.3

(8000,100) 100 1.3 45 0.1 1000 5000 8.5 1000 10000 16.2 46 184 0.2

(8000,200) 100 2.3 46 0.2 1000 5000 16.4 1000 10000 31.2 62 248 0.5

γ = 0.8

(100,1000) 100 0.1 81 3.9 82 410 0.0 81 810 0.1 127 508 0.0

(100,2000) 100 0.3 81 23.1 82 410 0.1 81 810 0.1 127 508 0.1

(100,5000) 100 0.8 81 320.3 82 410 0.5 82 820 0.7 127 508 0.3

(100,8000) 100 1.2 81 1295.8 82 410 0.8 82 820 1.4 127 508 0.6

(1000,100) 100 0.1 42 0.0 44 220 0.0 42 420 0.0 57 228 0.0

(1000,200) 100 0.3 62 0.1 53 265 0.0 55 550 0.1 79 316 0.0

(2000,200) 100 0.6 1000 1.4 44 220 0.1 1000 10000 4.5 65 260 0.1

(5000,100) 100 0.7 31 0.0 30 150 0.1 30 300 0.2 36 144 0.1

(5000,200) 100 1.4 34 0.1 33 165 0.4 34 340 0.7 45 180 0.2

(8000,100) 100 1.2 32 0.1 30 150 0.3 36 360 0.6 52 208 0.2

(8000,200) 100 2.4 35 0.1 34 170 0.6 31 310 1.0 45 180 0.4
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Table 3: Numerical Results for Lasso problem

ISTA ADMM ADMM-5 ADMM-10 EGADM

(m,n) iter cpu iter cpu iter mvm cpu iter mvm cpu iter mvm cpu

γ = 0.5

(100,1000) 100 0.1 51 2.4 67 335 0.0 54 540 0.0 202 808 0.0

(100,2000) 100 0.3 51 14.6 67 335 0.1 54 540 0.1 202 808 0.1

(100,5000) 100 0.7 51 206.9 67 335 0.4 54 540 0.5 202 808 0.5

(100,8000) 100 1.2 51 793.9 67 335 0.7 54 540 0.9 202 808 0.9

(1000,100) 100 0.1 36 0.0 36 180 0.0 36 360 0.0 95 380 0.0

(1000,200) 100 0.3 46 0.1 42 210 0.0 58 580 0.1 128 512 0.0

(2000,200) 100 0.6 1000 1.3 52 260 0.1 41 410 0.2 126 504 0.2

(5000,100) 100 0.7 33 0.0 31 155 0.1 31 310 0.3 65 260 0.1

(5000,200) 100 1.4 33 0.1 34 170 0.4 35 350 0.7 75 300 0.4

(8000,100) 100 1.2 35 0.1 37 185 0.3 49 490 0.8 71 284 0.3

(8000,200) 100 2.2 34 0.1 37 185 0.6 33 330 1.0 72 288 0.5

γ = 0.1

(100,1000) 100 0.1 12 0.5 206 1030 0.1 106 1060 0.1 1000 4000 0.2

(100,2000) 100 0.3 12 3.6 206 1030 0.2 106 1060 0.1 1000 4000 0.4

(100,5000) 100 0.7 12 46.1 206 1030 1.1 106 1060 1.0 1000 4000 2.5

(100,8000) 100 1.2 12 192.3 206 1030 2.1 106 1060 1.9 1000 4000 4.4

(1000,100) 100 0.1 122 0.0 145 725 0.0 109 1090 0.1 592 2368 0.1

(1000,200) 100 0.3 114 0.1 207 1035 0.1 127 1270 0.1 935 3740 0.2

(2000,200) 100 0.6 118 0.2 173 865 0.5 137 1370 0.6 660 2640 0.8

(5000,100) 100 0.8 108 0.1 112 560 0.6 118 1180 1.0 363 1452 0.8

(5000,200) 100 1.4 107 0.2 121 605 1.3 115 1150 2.3 480 1920 2.4

(8000,100) 100 1.2 117 0.1 138 690 1.2 144 1440 2.3 360 1440 1.4

(8000,200) 100 2.4 110 0.3 128 640 2.1 133 1330 4.3 425 1700 3.2

27


