3,760 research outputs found

    Optimal Dynamic Distributed MIS

    Full text link
    Finding a maximal independent set (MIS) in a graph is a cornerstone task in distributed computing. The local nature of an MIS allows for fast solutions in a static distributed setting, which are logarithmic in the number of nodes or in their degrees. The result trivially applies for the dynamic distributed model, in which edges or nodes may be inserted or deleted. In this paper, we take a different approach which exploits locality to the extreme, and show how to update an MIS in a dynamic distributed setting, either \emph{synchronous} or \emph{asynchronous}, with only \emph{a single adjustment} and in a single round, in expectation. These strong guarantees hold for the \emph{complete fully dynamic} setting: Insertions and deletions, of edges as well as nodes, gracefully and abruptly. This strongly separates the static and dynamic distributed models, as super-constant lower bounds exist for computing an MIS in the former. Our results are obtained by a novel analysis of the surprisingly simple solution of carefully simulating the greedy \emph{sequential} MIS algorithm with a random ordering of the nodes. As such, our algorithm has a direct application as a 33-approximation algorithm for correlation clustering. This adds to the important toolbox of distributed graph decompositions, which are widely used as crucial building blocks in distributed computing. Finally, our algorithm enjoys a useful \emph{history-independence} property, meaning the output is independent of the history of topology changes that constructed that graph. This means the output cannot be chosen, or even biased, by the adversary in case its goal is to prevent us from optimizing some objective function.Comment: 19 pages including appendix and reference

    k-Inflation

    Get PDF
    It is shown that a large class of higher-order (i.e. non-quadratic) scalar kinetic terms can, without the help of potential terms, drive an inflationary evolution starting from rather generic initial conditions. In many models, this kinetically driven inflation (or "k-inflation" for short) rolls slowly from a high-curvature initial phase, down to a low-curvature phase and can exit inflation to end up being radiation-dominated, in a naturally graceful manner. We hope that this novel inflation mechanism might be useful in suggesting new ways of reconciling the string dilaton with inflation.Comment: LaTeX, 20 pages including 3 figures. Submitted to Phys. Lett.

    Strings And Colorings Of Topological Coding Towards Asymmetric Topology Cryptography

    Full text link
    We, for anti-quantum computing, will discuss various number-based strings, such as number-based super-strings, parameterized strings, set-based strings, graph-based strings, integer-partitioned and integer-decomposed strings, Hanzi-based strings, as well as algebraic operations based on number-based strings. Moreover, we introduce number-based string-colorings, magic-constraint colorings, and vector-colorings and set-colorings related with strings. For the technique of encrypting the entire network at once, we propose graphic lattices related with number-based strings, Hanzi-graphic lattices, string groups, all-tree-graphic lattices. We study some topics of asymmetric topology cryptography, such as topological signatures, Key-pair graphs, Key-pair strings, one-encryption one-time and self-certification algorithms. Part of topological techniques and algorithms introduced here are closely related with NP-complete problems or NP-hard problems.Comment: Asymmetric topology encryption is a new topic of topological coding towards the certificateless public key cryptograph
    • …
    corecore