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Though human cognition appears to comprehend the continuum, human action by

and large takes place in discrete epochs. Discrete mathematics is that part of mathe-

matical sciences which deals with systematic treatment and understanding of discrete

structures and process encountered in our day-to-day life, which are inherently quite

complex in nature but seemingly understandable. Illustration of this character is abound

with excitement, occasionally even to a common man. The graph theory is one such

field of discrete mathematics which cuts across wide range of disciplines of human un-

derstanding not only in the areas of pure mathematics but also in variety of application

areas ranging from computer science to social sciences and in engineering to mention a

few.

The later part of last century has witnessed intense activity in graph theory. De-

velopment of computer science boost up the research work in the field. There are many

interesting fields of research in graph theory. Some of them are domination in graphs,

topological graph theory, fuzzy graph theory and labeling of discrete structures.

The labeling of graphs is one of the potential areas of research due to its vital

applications. The problems related to labeling of graphs challenges to our mind for their

eventual solutions. This field has became a field of multifaceted applications ranging

from neural network to bio-technology and to coding theory to mention a few.

Graph labeling were first introduced by A.Rosa during 1960. At present couple

of dozens labeling techniques as well as enormous amount of literature is available in

printed and electronic form on various graph labeling problems. The present work is

aimed to discuss some graph labeling problems. The content of the thesis is divided

into seven chapters.

The Chapter - 1 is of introductory nature.

The immediate Chapter - 2 is aimed to provide basic terminology and preliminar-

ies.

The Chapter - 3 is focused on cordial and 3-equitable labelings. We investigate

some new families of cordial and 3-equitable graphs. We also discuss embedding and

NP-complete problems for these two labelings.
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The next Chapter - 4 is targeted to discuss total product cordial labeling and prime

cordial labeling. Here we investigate several new results.

The graceful labeling is one of the popular and well explored labeling. Most of

the labeling problems found their origin with it. Several attempts to settle the Ringel-

Kotzig-Rosa tree conjecture provided the reason for many graph labeling problems.

Some labeling techniques having graceful theme are also introduced. The Fibonacci

graceful and super Fibonacci graceful are such labeling. In Chapter - 5 we prove that

trees are Fibonacci graceful graph while wheels and helms are not Fibonacci graceful

graphs. We also show that the joint sum of two fans and the graph obtained by switching

of a vertex in cycle Cn admit Fibonacci graceful labeling. Moreover we show that the

graph obtained by switching of a vertex in Cn is super Fibonacci graceful except for

n≥ 6. We also show that the graph obtained by switching of a vertex in Cn is not super

Fibonacci graceful graph for n≥ 6 but it can be embedded as an induced subgraph of a

super Fibonacci graceful graph.

The penultimate Chapter - 6 is focused on triangular sum labeling. We investigate

some results on triangular sum graph.

The discussion carried out in above two chapters is a nice combination of graph

theory and elementary number theory.

The last Chapter - 7 is intended to report the investigations concern to L(2,1)-

labeling and Radio labeling of graphs.

Some of the results reported here are also published in scholarly, peer reviewed

and indexed journals as well as presented in various conferences. The reprints of the

published papers are given as an annexure.

Throughout this work we pose some open problems and throw some light on future

scope of research which will provide motivation to any researcher.

The references and list of symbols are given alphabetically at the end.
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2.1 Introduction

This chapter is intended to provide all the fundamental terminology and notations

which are needed for the present work.

2.2 Basic Definitions

Definition 2.2.1. A graph G = (V (G),E(G)) consists of two sets, V (G) = {v1,v2, . . .}

called vertex set of G and E(G) = {e1,e2, . . .} called edge set of G. Sometimes we

denote vertex set of G as V (G) and edge set of G as E(G). Elements of V (G) and E(G)

are called vertices and edges respectively.

Definition 2.2.2. An edge of a graph that joins a vertex to itself is called a loop. A loop

is an edge e = vivi.

Definition 2.2.3. If two vertices of a graph are joined by more than one edge then these

edges are called multiple edges.

Definition 2.2.4. A graph which has neither loops nor parallel edges is called a simple

graph.

Definition 2.2.5. If two vertices of a graph are joined by an edge then these vertices are

called adjacent vertices.

Definition 2.2.6. Two vertices of a graph which are adjacent are said to be neighbours.

The set of all neighbours of a vertex v of G is called the neighbourhood set of v. It is

denoted by N(v) or N[v] and they are respectively known as open and closed neighbour-

hood set.

N(v) = {u ∈V (G)/u adjacent to v and u , v}

N[v] = N(v)∪{v}

Definition 2.2.7. If two or more edges of a graph have a common vertex then these

edges are called incident edges.
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Definition 2.2.8. Degree of a vertex v of any graph G is defined as the number of edges

incident on v, counting twice the number of loops. It is denoted by deg(v) or d(v).

Definition 2.2.9. The eccentricity of a vertex u, written e(u), is maxv∈V (G)d(u,v).

Definition 2.2.10. The middle graph M(G) of a graph G is the graph whose vertex set

is V (G)
⋃

E(G) and in which two vertices are adjacent if and only if either they are

adjacent edges of G or one is a vertex of G and the other is an edge incident with it.

Definition 2.2.11. The Crown (Cn
⊙

K1) is obtained by joining a pendant edge to each

vertex of Cn.

Definition 2.2.12. Tadpole T (n, l) is a graph in which path Pl is attached to any one

vertex of cycle Cn.

Definition 2.2.13. The shadow graph D2(G) of a connected graph G is constructed by

taking two copies of G say G′ and G′′. Join each vertex u′ in G′ to the neighbours of the

corresponding vertex u′′ in G′′.

Definition 2.2.14. The total graph T (G) of a graph G is the graph whose vertex set is

V (G)
⋃

E(G) and two vertices are adjacent whenever they are either adjacent or incident

in G.

Definition 2.2.15. A graph obtained by replacing each vertex of a star K1,n by a graph

G is called star of G denoted as G
′
. The central graph in G

′
we mean the graph which

replaces the apex vertex of K1,n.

Definition 2.2.16. A one point union C(k)
n of k copies of cycles is the graph obtained by

taking v as a common vertex such that any two cycles Ci
n and C j

n (i , j) are edge disjoint

and do not have any vertex in common except v.

Definition 2.2.17. A Friendship graph Fn is a one point union of n copies of cycle C3.

Definition 2.2.18. A vertex switching Gv of a graph G is the graph obtained by taking a

vertex v of G, removing all the edges incident to v and adding edges joining v to every

other vertex which are not adjacent to v in G.
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Definition 2.2.19. For a graph G the split graph is obtained by adding to each vertex v

a new vertex v
′
such that v

′
is adjacent to every vertex that is adjacent to v in G. We will

denote it as spl(G).

Definition 2.2.20. A shell Sn is the graph obtained by taking n− 3 concurrent chords

in cycle Cn. The vertex at which all the chords are concurrent is called the apex vertex.

The shell is also called fan fn−1.

i.e. Sn = fn−1 = Pn−1 +K1

Definition 2.2.21. The composition of two graph G1 and G2 denoted by G1[G2] has ver-

tex set V (G1[G2])=V (G1)×V (G2) and edge set E(G1[G2])= {(u1,v1),(u2,v2)/u1u2 ∈

E(G1) or u1 = u2 and v1v2 ∈ E(G2)}.

Definition 2.2.22. Duplication of a vertex vk by a new edge e = v
′
kv
′′
k in a graph G

produces a new graph G
′
such that N(v

′
k)∩N(v

′′
k) = vk.

Definition 2.2.23. Duplication of an edge e = uv by a new vertex w in a graph G pro-

duces a new graph G
′
such that N(w) = {u,v}.

Definition 2.2.24. Let graphs G1, G2, .....,Gn, n ≥ 2 be all copies of a fixed graph G.

Adding an edge between Gi to Gi+1 for i = 1,2, ....,n−1 is called the path union of G.

Definition 2.2.25. Consider two copies of a graph G and define a new graph known

as joint sum is the graph obtained by connecting a vertex of first copy with a vertex of

second copy.

Definition 2.2.26. A chord of a cycle Cn is an edge joining two non-adjacent vertices

of cycle Cn.

Definition 2.2.27. Two chords of a cycle are said to be twin chords if they form a

triangle with an edge of the cycle Cn.

Definition 2.2.28. Let G be a graph. A graph H is called a supersubdivision of G if H

is obtained from G by replacing every edge ei of G by a complete bipartite graph K2,mi

(for some mi and 1≤ i≤ q) in such a way that the ends of each ei are merged with the

two vertices of 2-vertices part of K2,mi after removing the edge ei from graph G.
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Definition 2.2.29. A petal graph is a connected graph G with 4(G) = 3,δ (G) = 2 in

which the set of vertices of degree three induces a 2-regular graph and the set of vertices

of degree two induces an empty graph. In a petal graph G if w is a vertex of G with

degree two, having neighbors v1,v2 then the path Pw = v1wv2 is called petal of G. We

name w the center of the petal and v1,v2 the basepoints. If d(v1,v2) = k, we say that the

size of the petal is k. If the size of each petal is k then it is called k-petal graph.

2.3 Concluding Remarks

This chapter provides basic definitions and terminology required for the advance-

ment of the topic. For all other standard terminology and notations we refer to Harrary[37],

West[82], Gross and Yellen[35], Clark and Helton[18].

The next chapter is focused on the cordial and 3-equitable labeling of graphs.
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3.1 Introduction

The discrete mathematics is that part of mathematics which deals with systematic

treatment and understanding of discrete structures and process and encountered in our

daily life, which are often inherently quite complex in nature but seemingly understand-

able. This character of discrete mathematics is abound with excitement, occasionally

even to a common man. The labeling of discrete structures is also a field which possess

the same characteristic. The problems arising from the study of a variety of labeling

schemes of the elements of a graph, or of any discrete structure is a potential area of

challenge as it cuts across wide range of disciplines of human understanding. Graph

labeling problems are actually not of recent origin. For instance, coloring the vertices

of a graph arose in connection with the four color theorem, which remained for a long

time known by the name four color conjecture, took more than 150 years for its solution

in 1976. In recent times, new contexts have emerged wherein the labeling of the vertices

or edges of a given graph by elements of certain subsets of the set of real numbers R.

In the late of 1960’s a problem in radio astronomy let to the assignment of the absolute

differences of pairs of numbers occurring on the positions of radio antennae to the links

of the lay-out plans of the antennae under constraints of the optimal lay-outs to scan

the visible regions of the celestial dome quickly made its way to formulate more terse

mathematical problems on graph labelings. The notion of β -valuation was introduced

by Alexander Rosa[59] in 1967. In 1972 S.W.Golomb[32] independently discovered β -

valuations and renamed them as graceful labeling. He also pointed out the importance

of studying graceful graphs in trying to settle the complex problem of decomposing the

complete graph by isomorphic copies of a given tree of the same order. The Ringle-

Kotzig-Rosa[58] conjecture and many illustrious works on graceful graph provided the

reason for different ways for labeling of graph structures.
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3.2 Graceful labeling

3.2.1 Graph labeling

If the vertices of the graph are assigned values subject to certain condition(s) is known

as graph labeling.

For detailed survey on graph labeling problems along with extensive bibliography we

refer to Gallian[25]. A systematic study on variety of applications of graph labeling is

carried out by Bloom and Golomb[9].

3.2.2 Graceful graph

A function f is called graceful labeling of a graph G if f : V (G)→ {0,1,2, . . . ,q} is

injective and the induced function f ∗ : E(G)→ {1,2, . . . ,q} defined as f ∗(e = uv) =

| f (u)− f (v)| is bijective.

A graph which admits graceful labeling is called graceful graph.

3.2.3 Illustration

In the following Figure 3.1 K3,3 and its graceful labeling is shown.

9

1

6

2

3

0

5

73

6
8 2

9 1

4

FIGURE 3.1: K3,3 and its graceful labeling
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3.2.4 Some common families of graceful graphs

• Truszczyński[68] studied unicyclic graphs and conjectured that All unicyclic graphs

except Cn, for n≡ 1,2(mod 4) are graceful. Because of the immense diversity of

unicyclic graphs a proof of above conjecture seems to be out of reach in the near

future.

• Delorme et al.[19] and Ma and Feng[55] proved that the cycle with one chord is

graceful.

• Ma and Feng[56] proved that all gear graph are graceful.

• Gracefulness of cycle with k consecutive chords is discussed by Koh et al.[48]

and Goh and Lim[31].

• Koh and Rogers[49] conjectured that cycle with triangle is graceful if and only if

n≡ 0,1(mod 4).

• Koh and Yap[48] defined and proved that a cycle with a Pk-chord are graceful

when k = 3.

• In 1987 Punnim and Pabhapote[57] proved that a cycle with a Pk-chord are grace-

ful for k ≥ 4.

• Golomb[32] proved that the complete graph Kn is not graceful for n≥ 5.

• Frucht[23], Hoede and Kuiper[40] proved that all wheels Wn are graceful.

• Frucht[23] proved that crown are graceful.

• Bu et al.[10] have shown that any cycle with a fixed number of pendant edges

adjoined to each vertex is graceful.

• Drake and Redl[20] enumerated the non graceful Eulerian graph with q≡ 1,2(mod 4)

edges.

• Kathiresan[45] has investigated the graceful labeling for subdivisions of ladders.

• Sethuraman and Selvaraju[63] have discussed gracefulness of arbitrary super sub-

divisions of cycles.
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• Chen et al.[16] proved that firecrackers are graceful and conjecture that banana

trees are graceful.

• Kang et al.[44] proved that web graph are graceful.

• Vaidya et al.[78] have discussed gracefulness of union of two path graphs with

grid graph and complete bipartite graph.

• Kaneria et al.[43] have discussed gracefulness of some classes of disconnected

graphs.

• The conjecture of Ringel-Kotzig-Rosa[58] states that "All the trees are graceful."

has been the focus of many research papers. Kotzig called the efforts to prove

gracefulness of trees a ‘disease’. Among all the trees known to be graceful are

caterpillars, paths, olive trees, banana trees etc.

• Bermond[8] conjectured that Lobsters are graceful (a lobster is a tree with the

property that the removal of the endpoints leaves a caterpillar).

3.3 Harmonious labeling

3.3.1 Harmonious graph

A function f is called harmonious labeling of a graph G if f :V (G)→{0,1,2, . . . ,q−1}

is injective and the induced function f ∗ : E(G)→{0,1,2, . . . ,q−1} defined as

f ∗(e = uv) = ( f (u)+ f (v))(mod q) is bijective.

A graph which admits harmonious labeling is called a harmonious graph.
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3.3.2 Illustration

In the following Figure 3.2 C5 and its harmonious labeling is shown.

0
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3

FIGURE 3.2: C5 and its harmonious labeling

3.3.3 Some Known Results

• Graham and Sloane[33] conjectured that Every tree is harmonious.

• Graham and Sloane[33] also proved that

� Km,n is harmonious if and only if m or n = 1.

� Wn is harmonious ∀n.

� Petersen graph is harmonious.

� Cycle Cn is harmonious if and only if n is odd.

� If a harmonious graph has even number of edges q and degree of every

vertex is divisible by 2α(α ≥ 1) then q is divisible by 2α+1.

� All ladders except L2 are harmonious.

� Friendship graph Fn is harmonious except n≡ 2(mod 4).

� Fan fn = Pn +K1 is harmonious.

� For n≥ 2 the graph gn(the graph obtained by joining all the vertices of Pn to

two additional vertices) is harmonious.

� C(n)
3 is harmonious if and only if n . 2(mod 4)
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• Aldred and Mckay[2] suggested an algorithm and use computer to show that all

trees with at most 26 vertices are harmonious.

• Golomb[32] proved that complete graph is harmonious if and only if n≤ 4.

• Gnanajothi[30] has shown that webs with odd cycles are harmonious.

• Seoud and Youssef[62] have shown that the one point union of a triangle and Cn

is harmonious if and only if n≡ 1(mod4)

• Figueroa et al.[22] have shown that if G is harmonious then the one point union

of an odd number of copies of G using the vertex labeled 0 as the shared point is

harmonious.

• In 1992 Jungreis and Reid[42] showed that the grids Pm×Pn are harmonious when

(m,n) , (2,2).

• Gallian et al.[26] proved that all prisms Cm×P2 with a single vertex deleted or

single edge deleted are harmonious.

• In 1989 Gallian[24] showed that all Möbius ladders except M3 are harmonious.

3.4 Cordial labeling - A weaker version of graceful and

harmonious labeling

In a seminal paper Cahit[11] introduced the concept of cordial labeling as a weaker

version of graceful and harmonious labeling.

3.4.1 Cordial graph

A function f : V (G)→ {0,1} is called binary vertex labeling of a graph G and f (v) is

called label of the vertex v of G under f . For an edge e = uv, the induced function f ∗ :

E(G)→ {0,1} is given by f ∗(e = uv) = | f (u)− f (v)|. Let v f (0), v f (1) be number of

vertices of G having labels 0 and 1 respectively under f and let e f (0), e f (1) be number
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of edges of G having labels 0 and 1 respectively under f ∗. A binary vertex labeling f

of a graph G is called cordial labeling if |v f (0)− v f (1)| ≤ 1 and |e f (0)− e f (1)| ≤ 1.

A graph which admits cordial labeling is called a cordial graph.

3.4.2 Illustration

In the following Figure 3.3 C(3)
3 and its cordial labeling is shown.

0 0

1 1

11

0

FIGURE 3.3: C(3)
3 and its cordial labeling

3.4.3 Some known results

• Lee and Liu[51], Du[21] proved that complete n-partite graph is cordial if and

only if at most three of its partite sets have odd cardinality.

• Seoud and Maqsoud[61] proved that if G is a graph with p vertices and q edges

and every vertex has odd degree then G is not cordial when p+q≡ 2(mod 4).

• Andar et al. in [3],[4],[5] and [6] proved that

� Multiple shells are cordial.

� t-ply graph Pt(u,v) is cordial except when it is Eulerian and the number of

edges is congruent to 2(mod4).

� Helms, closed helms and generalized helms are cordial.

• In [6], Andar et al. showed that a cordial labeling g of a graph G can be extended

to a cordial labeling of the graph obtained from G by attaching 2m pendant edges
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at each vertex of G. They also proved that a cordial labeling g of a graph G with

p vertices can be extended to a cordial labeling of the graph obtained from G

by attaching 2m+ 1 pendant edges at each vertex of G if and only if G does not

satisfy either of the following conditions:

1. G has an even number of edges and p≡ 2(mod 4).

2. G has an odd number of edges and either p≡ 1(mod 4) with

eg(1) = eg(0)+ i(G) or p≡ 3(mod 4) with eg(0) = eg(1)+ i(G),

where i(G) = min{|eg(0)− eg(1)|}

• Vaidya et al.[76, 77, 80] have discussed cordial labeling for some cycle related

graphs.

• Vaidya et al.[81] have discussed some new cordial graphs.

• Vaidya et al.[72] have discussed some shell related cordial graphs.

• Vaidya and Dani[73] and Vaidya et al.[71] have discussed the cordial labeling for

some star related graphs.

In the succeeding sections we will report the results investigated by us.

3.5 Cordial Labeling of middle graph of some graphs

Theorem 3.5.1. The middle graph M(G) of an Eulerian graph G is Eulerian and |E(M(G))|=
n

∑
i=1

d(vi)
2 +2e

2 .

Proof. Let G be an Eulerian graph. If v1, v2, v3 . . . , vn are vertices of G and e1, e2, e3

. . . , eq are edges of G then v1, v2, v3 . . . , vn, e1, e1, e2 . . . , eq are the vertices of M(G).

Then it is obvious that if d(vi) is even in G then it remains even in M(G).

Now it remains to show that d(ei) is even in M(G). For that if v
′
and v

′′
are the vertices

adjacent to any vertex ei then
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d(ei) = d(v
′
)+d(v

′′
)

= even as both d(v
′
) and d(v

′′
) are even for 1≤ i≤ q.

Therefore M(G) is an Eulerian graph.

It is also obvious that the d(vi) number of edges are incident with each vertex vi of G

which forms a complete graph Kd(vi) in M(G).

Now if the total number of edges in M(G) be denoted as |E(M(G))| then

|E(M(G))|= d(v1)+d(v2)+d(v3)+......+d(vn)+|E(Kd(v1))|+|E(Kd(v2))|+|E(Kd(v3))|+

........+ |E(Kd(vn))|

= d(v1)+d(v2)+d(v3)+......+d(vn)+
d(v1)(d(v1)−1)

2 + d(v2)(d(v2)−1)
2 +...........+ d(vn)(d(vn)−1)

2

=d(v1)
2

2 + d(v2)
2

2 + .....+ d(vn)
2

2 + d(v1)
2 + d(v2)

2 + .........+ d(vn)
2

=

n

∑
i=1

d(vi)
2 +

n

∑
i=1

d(vi)

2

But
n

∑
i=1

d(vi) = 2e, Hence |E(M(G))|=

n

∑
i=1

d(vi)
2 +2e

2 . �

Corollary 3.5.2. The middle graph M(G) of any graph G is not cordial when |E(M(G))|=
n

∑
i=1

d(vi)
2 +2e

2 ≡ 2(mod 4).

Proof. By Theorem 3.5.1, for M(G) of any graph G, |E(M(G))|=

n

∑
i=1

d(vi)
2 +2e

2 .

Then as proved by Cahit[11] an Eulerian graph with |E(G)| ≡ 2(mod4) is not cordial.

�

Theorem 3.5.3. M(Pn) is a cordial graph.

Proof. If v1, v2, . . . , vn and e1, e2, . . . , en are respectively the vertices and edges of Pn

then v1, v2, . . . , vn, e1, e2, . . . , en are the vertices of M(Pn).

To define f : V (M(Pn))−→ {0,1}, we consider following four cases.

Case 1: n is odd, n = 2k+1, k=1,3,5,7.....

In this case |V (M(Pn))|= 2n−1, |E(M(Pn))|= 2n+2k−3

We label the vertices as follows.

f (v2i−1) = 0 for 1≤ i≤
⌊n

2

⌋
+1
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f (v2i) = 1 for 1≤ i≤
⌊n

2

⌋
f (e4i−3) = 1

f (e4i−2) = 1

 1≤ i≤
⌊n

4

⌋
+1

f (e4i−1) = 0

f (e4i) = 0

 1≤ i≤
⌊n

4

⌋
In view of the above defined labeling pattern we have

v f (0)+1 = v f (1) = n, e f (0) = e f (1)+1 = n+ k−1

Case 2: n odd, n = 2k+1, k=2,4,6.....

In this case |V (M(Pn))|= 2n−1, |E(M(Pn))|= 2n+2k−3

We label the vertices as follows.

f (v2i−1) = 0 for 1≤ i≤
⌊n

2

⌋
+1

f (v2i) = 1 for 1≤ i≤
⌊n

2

⌋
f (e4i−3) = 0

f (e4i−2) = 0

f (e4i−1) = 1

f (e4i) = 1


1≤ i≤

⌊n
4

⌋

In view of the above defined labeling pattern we have

v f (0) = v f (1)+1 = n, e f (0) = e f (1)+1 = n+ k−1

Case 3: n even, n = 2k k=1,3,5,7.....

In this case |V (M(Pn))|= 2n−1, |E(M(Pn))|= 2n+2k−4

We label the vertices as follows.

f (v2i−1) = 0

f (v2i) = 1

 1≤ i≤ n
2
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f (e4i−3) = 0 for 1≤ i≤
⌊n

4

⌋
+1

f (e4i−2) = 0 for 1≤ i≤
⌊n

4

⌋
f (e4i−1) = 1

f (e4i) = 1

 1≤ i≤
⌊n

4

⌋
Case 4: n even, n = 2k k=2,4,6.....

In this case |V (M(Pn))|= 2n−1, |E(M(Pn))|= 2n+2k−4

We label the vertices as follows.

f (v2i−1) = 0

f (v2i) = 1

 1≤ i≤ n
2

f (e4i−3) = 0

f (e4i−2) = 0

 1≤ i≤ n
4

f (e4i−1) = 1 for 1≤ i≤ n
4

f (e4i) = 1 for 1≤ i≤ n
4 −1

In above two cases we have

v f (0) = v f (1)+1 = n, e f (0) = e f (1) = n+ k−2

Thus in all the four cases f satisfies the condition for cordial labeling. That is, M(Pn) is

a cordial graph. �

Illustration 3.5.4. Consider the graph M(P7). The cordial labeling is as shown in Figure

3.4.
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1
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FIGURE 3.4: M(P7) and its cordial labeling
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Theorem 3.5.5. M(Cn
⊙

K1) is a cordial graph.

Proof. Consider the crown Cn
⊙

K1 in which v1, v2, . . . , vn be the vertices of cycle Cn

and v
′
1, v

′
2, . . . , v

′
n be the pendant vertices attached at each vertex of Cn. Let e1, e2, . . . ,

en and e
′
1, e

′
2, . . . , e

′
n are vertices corresponding to edges of Cn and K1 respectively in

M(Cn
⊙

K1).

To define f : V (M(Cn
⊙

K1))−→ {0,1}, we consider following three cases.

Case 1: n is odd, n = 2k+1, k=2,4,6,.....

In this case |V (M(Cn
⊙

K1))|= 4n, |E(M(Cn
⊙

K1))|= 6n+2
⌊n

2

⌋
+1

We label the vertices as follows.

f (v2i−1) = 0

f (v2i) = 1

 1≤ i≤
⌊n

2

⌋
f (vn) = 1

f (v
′
2i−1) = 1 for 1≤ i≤

⌊n
4

⌋
+1

f (v
′
2i) = 0 for 1≤ i≤

⌊n
4

⌋
f (v

′

2b n
4c+2i

) = 1

f (v
′

2b n
4c+2i+1

) = 0

 1≤ i≤
⌊n

4

⌋

f (e2i−1) = 1

f (e2i) = 0

 1≤ i≤
⌊n

2

⌋
f (en) = 0

f (e
′
2i−1) = 0 for 1≤ i≤

⌊n
2

⌋
+1

f (e
′
2i) = 1 for 1≤ i≤

⌊n
2

⌋
In view of the above defined pattern

v f (0) = v f (1) = 2n, e f (0)+1 = e f (1) = 3n+
⌊n

2

⌋
+1

Case 2: n is odd, n = 2k+1, k=1,3,5,7.....

In this case |V (M(Cn
⊙

K1))|= 4n, |E(M(Cn
⊙

K1))|= 6n+2
⌊n

2

⌋
+1
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We label the vertices as follows.

f (v
′

2b n
4c+2i

) = 1

f (v
′

2b n
4c+2i+1

) = 0

 1≤ i≤
⌊n

4

⌋
+1

Now label the remaining vertices as in case 1.

In view of the above defined pattern we have

v f (0) = v f (1) = 2n, e f (0) = e f (1)+1 = 3n+
⌊n

2

⌋
+1

Case 3: n is even, n = 2k, k = 2,3, .....

In this case |V (M(Cn
⊙

K1))|= 3n, |E(M(Cn
⊙

K1))|= 7n

We label the vertices as follows.

f (v2i−1) = 0

f (v2i) = 1

 1≤ i≤ n
2

f (v
′
i) = 1 for 1≤ i≤ n

f (ei) = 0 for 1≤ i≤ n

f (e
′
2i−1) = 1

f (e
′
2i) = 0

 1≤ i≤ n
2

In view of the above defined pattern we have

v f (0) = v f (1) = 2n, e f (0) = e f (1) = 3n+ n
2

Thus f is a cordial labeling for M(Cn
⊙

K1). That is, middle graph of crown is a cordial

graph. �
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Illustration 3.5.6. Consider G = M(C7
⊙

K1). The cordial labeling is as shown in

Figure 3.5.
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FIGURE 3.5: M(C7
⊙

K1) and its cordial labeling

Theorem 3.5.7. M(K1,n) is a cordial graph.

Proof. Let v, v1, v2, . . . , vn be the vertices of star K1,n with v as an apex vertex and e1,

e2, . . . , en be the vertices in M(K1,n) corresponding to the edges e1, e2, . . . , en in K1,n.

To define f : V (M(K1,n))−→ {0,1}, we consider following two cases.

Case 1: n = 2k+1,k = 1,2,3,4, ....

In this case |V (M(K1,n))| = 2n + 1, |E(M(K1,n))| = 2n(
⌊ k

2

⌋
+ 1) or |E(M(K1,n))| =

2n(
⌊ k

2

⌋
+1)+2k+1 depending upon k = 2,4,6,8.... or k = 3,5,7,9....

f (e2i−1) = 0, 1≤ i≤
⌊n

2

⌋
+1

f (e2i) = 1, 1≤ i≤
⌊n

2

⌋
f (vn−i) = pi, where pi = 1, if i is even,

= 0, if i is odd, 0≤ i≤
⌊ k

2

⌋
−1

f (vn−b k
2c−i) = f (en−b k

2c−i), 0≤ i≤ n−
⌊ k

2

⌋
−1

f (v) = 1

Using above pattern if k= 2,3,6,7.... then v f (0)+1= v f (1)= n+1 and if k= 1,4,5,8,9....

then v f (0) = v f (1)+1 = n+1.

If k = 2,4,6,8.... then e f (0) = e f (1) = n(
⌊ k

2

⌋
+1) and if k = 1,3,5,7, .... then e f (0) =

e f (1)+1 = n(
⌊ k

2

⌋
+1)+ k+1
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Case 2: n = 2k,k = 2,3,4, ....

In this case |V (M(K1,n))| = 2n+ 1, |E(M(K1,n))| = 2n( k
2 + 1)− k or |E(M(K1,n))| =

2n(
⌊ k

2

⌋
+1)+2

⌊ k
2

⌋
−1 depending upon k = 2,4,6,8.... or k = 3,5,7,9....

f (e2i−1) = 0, 1≤ i≤ n
2

f (e2i) = 1, 1≤ i≤ n
2

f (vn−i) = pi, where pi = 0, if i is even,

= 1, if i is odd, 0≤ i≤
⌊ k

2

⌋
−1

f (vn−b k
2c−i) = f (en−b k

2c−i), 0≤ i≤ n−
⌊ k

2

⌋
f (v) = 1

Using above pattern if k= 2,3,6,7.... then v f (0)= v f (1)+1= n+1 and if k= 4,5,8,9....

then v f (0)+1 = v f (1) = n+1.

If k = 2,4,6,8.... then e f (0) = e f (1) = n( k
2 +1)− k

2 and if k = 3,5,7, .... then e f (0) =

e f (1)+1 = n(b k
2c+1)+ b k

2c+1.

Also note that for n = 2 we have v f (0) = v f (1)+1 = 3 and e f (0)+1 = e f (1) = 3.

Thus f is a cordial labeling for M(K1,n). That is, M(K1,n) admits cordial labeling. �

Illustration 3.5.8. Consider a graph M(K1,6). The cordial labeling is as shown in Figure

3.6.
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FIGURE 3.6: M(K1,6) and its cordial labeling
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Theorem 3.5.9. M(T (n, l +1)) is a cordial graph.

Proof. Consider the tadpole T (n, l +1) in which v1, v2, . . . , vn be the vertices of cycle

Cn and v
′
1, v

′
2, v

′
3, . . . , v

′
l+1 be the vertices of the path attached to the cycle Cn. Also let

e1, e2, . . . , en and e
′
1, e

′
2, . . . , e

′
l be the vertices in M(T (n, l + 1)) corresponding to the

edges of cycle Cn and path Pl+1 respectively in T (n, l +1).

To define f : V (M(T (n, l +1)))−→ {0,1}, we consider the following cases.

Case 1: n is odd

Subcase 1: n = 2k+1, k = 2,4,6, .... and l = 2 j, j = 2,4,6, .....

In this subcase |V (M(T (n, l+1)))|= 2n+2l, |E(M(T (n, l+1)))|= 2
⌊n

2

⌋
+2n+2l+6

f (v2i−1) = 1

f (v2i) = 0

 1≤ i≤ bn
2c

f (e4i−3) = 0, 1≤ i≤
⌊n

4

⌋
+1

f (e4i−2) = 0, 1≤ i≤
⌊n

4

⌋
f (e4i−1) = 1

f (e4i) = 1

 1≤ i≤
⌊n

4

⌋

f (vn) = f (v
′
1) = 1(when v

′
1 is attached to vn)

f (v
′
2i) = 0

f (v
′
2i+1) = 1

 1≤ i≤
⌊ l

2

⌋

f (e
′
4i−3) = f (e

′
4i−2) = 0

f (e
′
4i−1) = f (e

′
4i) = 1

 1≤ i≤
⌊ l

4

⌋
In view of the above defined labeling pattern

v f (0) = v f (1) = n+ l, e f (0) = e f (1) =
⌊n

2

⌋
+n+ l +3

Subcase 2: n = 2k+1, k = 2,4,6, .... and l = 2 j, j = 3,5,7, .....

In this subcase |V (M(T (n, l+1)))|= 2n+2l, |E(M(T (n, l+1)))|= 2
⌊n

2

⌋
+2n+2l+8

f (e
′
n−1) = 0, f (e

′
n) = 1
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f (vn) = 1, f (v
′
1) = 1(when v

′
1 is attached to v1)

remaining vertices are labeled as in subcase 1.

In view of the above defined labeling pattern

v f (0) = v f (1) = n+ l, e f (0) = e f (1) =
⌊n

2

⌋
+n+ l +4

For l = 2 we have e f (0) = e f (1) = 11.

Subcase 3: n = 2k+1, k = 2,4,6, .... and l = 2 j+1, j = 1,3,5,7, .....

In this subcase |V (M(T (n, l+1)))|= 2n+2l, |E(M(T (n, l+1)))|= 2
⌊n

2

⌋
+2n+2l+5

f (vn) = f (v
′
1) = 1(when v

′
1 is attached to vn)

f (v
′
2i) = 0, 1≤ i≤

⌊ l
2

⌋
+1

f (v
′
2i+1) = 1, 1≤ i≤

⌊ l
2

⌋
f (e

′
4i−3) = f (e

′
4i−2) = 1

f (e
′
4i−1) = 0

 1≤ i≤
⌊ l

4

⌋
+1

f (e
′
4i) = 0, 1≤ i≤

⌊ l
4

⌋
remaining vertices are labeled as in subcase 1.

Using above pattern we have

v f (0) = v f (1) = n+ l, e f (0)+1 = e f (1) =
⌊n

2

⌋
+n+ l +3

For l = 1 we have e f (0)+1 = e f (1) = 10.

Subcase 4: n = 2k+1, k = 2,4,6, .... and l = 2 j+1, j = 2,4,6, , .....

In this subcase |V (M(T (n, l+1)))|= 2n+2l, |E(M(T (n, l+1)))|= 2
⌊n

2

⌋
+2n+2l+7

f (vn) = f (v
′
1) = 1(when v

′
1 is attached to vn)

f (v
′
2i) = 0, 1≤ i≤

⌊ l
2

⌋
+1

f (v
′
2i+1) = 1, 1≤ i≤

⌊ l
2

⌋
f (e

′
4i−3) = 1, 1≤ i≤

⌊ l
4

⌋
+1

f (e
′
4i−2) = 1

f (e
′
4i−1) = f (e

′
4i) = 0

 1≤ i≤
⌊ l

4

⌋
remaining vertices are labeled as in subcase 1.

Using above pattern we have

v f (0) = v f (1) = n+ l, e f (0)+1 = e f (1) =
⌊n

2

⌋
+n+ l +4
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Subcase 5: n = 2k+1, k = 1,3,5,7, .... and l = 2 j, j = 2,4,6, .....

In this subcase |V (M(T (n, l+1)))|= 2n+2l, |E(M(T (n, l+1)))|= 2
⌊n

2

⌋
+2n+2l+6

f (v2i−1) = 1

f (v2i) = 0

 1≤ i≤
⌊n

2

⌋

f (e4i−3) = f (e4i−2) = 0

f (e4i−1) = 1

 1≤ i≤
⌊n

4

⌋
+1

f (e4i) = 1, 1≤ i≤
⌊n

4

⌋
f (vn) = f (v

′
1) = 1(when v

′
1 is attached to vn)

f (v
′
2i) = 1

f (v
′
2i+1) = 0

 1≤ i≤
⌊ l

2

⌋

f (e
′
4i−3) = f (e

′
4i−2) = 0

f (e
′
4i−1) = f (e

′
4i) = 1

 1≤ i≤ l
4

Using above pattern we have

v f (0) = v f (1) = n+ l, e f (0) = e f (1) =
⌊n

2

⌋
+n+ l +3

Subcase 6: n = 2k+1, k = 1,3,5,7, .... and l = 2 j, j = 3,5,7, .....

In this subcase |V (M(T (n, l+1)))|= 2n+2l, |E(M(T (n, l+1)))|= 2
⌊n

2

⌋
+2n+2l+8

f (vn) = f (v
′
1) = 1(when v

′
1 is attached to vn)

f (v
′
2i) = 0

f (v
′
2i+1) = 1

 1≤ i≤ l
2

f (e
′
4i−3) = f (e

′
4i−2) = 0

f (e
′
4i−1) = f (e

′
4i) = 1

 1≤ i≤
⌊ l

4

⌋

f (e
′
n−1) = 0, f (e

′
n) = 1
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remaining vertices are labeled as in subcase 5.

Using above pattern we have

v f (0) = v f (1) = n+ l, e f (0) = e f (1) =
⌊n

2

⌋
+n+ l +4

For l = 2 we have e f (0) = e f (1) = 8.

Subcase 7: n = 2k+1, k = 1,3,5,7, .... and l = 2 j+1, j = 1,3,5, .....

In this subcase |V (M(T (n, l+1)))|= 2n+2l, |E(M(T (n, l+1)))|= 2
⌊n

2

⌋
+2n+2l+5

f (vn) = f (v
′
1) = 1(when v

′
1 is attached to vn)

f (v
′
2i) = 0, 1≤ i≤

⌊ l
2

⌋
+1

f (v
′
2i+1) = 1,1≤ i≤

⌊ l
2

⌋
f (e

′
4i−3) = f (v

′
4i−2) = 1

f (e
′
4i−1) = 0

 1≤ i≤
⌊ l

4

⌋
+1

f (e
′
4i) = 0, 1≤ i≤

⌊ l
4

⌋
remaining vertices are labeled as in subcase 5.

Using above pattern we have

v f (0) = v f (1) = n+ l, e f (0) = e f (1)+1 =
⌊n

2

⌋
+n+ l +3

For l = 1 we have e f (0) = e f (1)+1 = 7.

Subcase 8: n = 2k+1, k = 1,3,5,7, .... and l = 2 j+1, j = 2,4,6, .....

In this subcase |V (M(T (n, l+1)))|= 2n+2l, |E(M(T (n, l+1)))|= 2
⌊n

2

⌋
+2n+2l+7

f (vn) = f (v
′
1) = 1(when v

′
1 is attached to vn)

f (v
′
2i) = 0, 1≤ i≤

⌊ l
2

⌋
+1

f (v
′
2i+1) = 1,1≤ i≤

⌊ l
2

⌋
f (e

′
4i−3) = 1, 1≤ i≤

⌊ l
4

⌋
+1

f (e
′
4i−2) = 1

f (e
′
4i−1) = f (e

′
4i) = 0

 1≤ i≤
⌊ l

4

⌋
remaining vertices are labeled as in subcase 5.

Using above pattern we have

v f (0) = v f (1) = n+ l, e f (0) = e f (1)+1 =
⌊n

2

⌋
+n+ l +4



Chapter 3. Cordial and 3-equitable Labelings 31

Case 2:n is even

Subcase 1: n = 2k, k = 2,4,6, .... and l = 2 j, j = 2,4,6, .....

In this subcase |V (M(T (n, l +1)))|= 2n+2l, |E(M(T (n, l +1)))|= 3n+2l +5

f (v2i−1) = 1

f (v2i) = 0

 1≤ i≤ n
2

f (e4i−3) = f (e4i−2) = 0

f (e4i−1) = f (e4i) = 1

 1≤ i≤ n
4

f (v
′
1) = 1(when v

′
1 is attached to v1)

f (v
′
2i) = 0

f (v
′
2i+1) = 1

 1≤ i≤ l
2

f (e
′
4i−3) = f (e

′
4i−2) = 0

f (e
′
4i−1) = f (e

′
4i) = 1

 1≤ i≤ l
4

Using above pattern we have

v f (0) = v f (1) = n+ l, e f (0) = e f (1)+1 = 3n
2 + l +3

Subcase 2: n = 2k, k = 2,4,6, .... and l = 2 j, j = 3,5,7, .....

In this subcase |V (M(T (n, l +1)))|= 2n+2l, |E(M(T (n, l +1)))|= 3n+2l +7

f (v
′
1) = 1(when v

′
1 is attached to v1)

f (e
′
4i−3) = f (e

′
4i−2) = 0

f (e
′
4i−1) = f (e

′
4i) = 1

 1≤ i≤
⌊ l

4

⌋

f (e
′
n−1) = 0, f (e

′
n) = 1

remaining vertices are labeled as in subcase 1 of case(2).

Using above pattern we have

v f (0) = v f (1) = n+ l, e f (0)+1 = e f (1) = 3n
2 + l +4

For l = 2 we have e f (0)+1 = e f (1) = 10.



Chapter 3. Cordial and 3-equitable Labelings 32

Subcase 3: n = 2k, k = 2,4,6, .... and l = 2 j+1, j = 1,3,5,7, .....

In this subcase |V (M(T (n, l +1)))|= 2n+2l, |E(M(T (n, l +1)))|= 3n+2l +4

f (v
′
1) = 1(when v

′
1 is attached to v1)

f (v
′
2i) = 0, 1≤ i≤

⌊ l
2

⌋
+1

f (v
′
2i+1) = 1, 1≤ i≤

⌊ l
2

⌋
f (e

′
4i−3) = f (e

′
4i−2) = 1

f (e
′
4i−1) = 0

 1≤ i≤
⌊ l

4

⌋
+1

f (e
′
4i) = 0, 1≤ i≤

⌊ l
4

⌋
remaining vertices are labeled as in subcase 1 of case(2).

Using above pattern we have

v f (0) = v f (1) = n+ l, e f (0) = e f (1) = 3n
2 + l +2

For l = 1 we have e f (0) = e f (1) = 8.

Subcase 4: n = 2k, k = 2,4,6, .... and l = 2 j+1, j = 2,4,6, .....

In this subcase |V (M(T (n, l +1)))|= 2n+2l, |E(M(T (n, l +1)))|= 3n+2l +6

f (v
′
1) = 1(when v

′
1 is attached to v1)

f (v
′
2i) = 0, 1≤ i≤

⌊ l
2

⌋
+1

f (v
′
2i+1) = 1, 1≤ i≤

⌊ l
2

⌋
f (e

′
4i−3) = 1, 1≤ i≤

⌊ l
4

⌋
+1

f (e
′
4i−2) = 1

f (e
′
4i−1) = f (e

′
4i) = 0

 1≤ i≤
⌊ l

4

⌋
remaining vertices are labeled as in subcase 1 of case(2).

Using above pattern we have

v f (0) = v f (1) = n+ l, e f (0) = e f (1) = 3n
2 + l +3.

Subcase 5: n = 2k, k = 3,5,7, .... and l = 2 j, j = 2,4,6, .....

In this subcase |V (M(T (n, l +1)))|= 2n+2l, |E(M(T (n, l +1)))|= 3n+2l +5

f (v2i−1) = 1

f (v2i) = 0

 1≤ i≤ n
2
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f (e4i−3) = f (e4i−2) = 0

f (e4i−1) = f (e4i) = 1

 1≤ i≤
⌊n

4

⌋
f (en−1) = 0, f (en) = 1

f (v
′
1) = 1(when v

′
1 is attached to v1)

f (v
′
2i) = 0

f (v
′
2i+1) = 1

 1≤ i≤ l
2

f (e
′
4i−3) = f (e

′
4i−2) = 0

f (e
′
4i−1) = f (e

′
4i) = 1

 1≤ i≤ l
4

Using above pattern we have

v f (0) = v f (1) = n+ l, e f (0)+1 = e f (1) = 3n
2 + l +3

Subcase 6: n = 2k, k = 3,5,7, .... and l = 2 j, j = 3,5,7, .....

In this subcase |V (M(T (n, l +1)))|= 2n+2l, |E(M(T (n, l +1)))|= 3n+2l +7

f (v
′
1) = 1(when v

′
1 is attached to v1)

f (e
′
4i−3) = f (e

′
4i−2) = 0

f (e
′
4i−1) = f (e

′
4i) = 1

 1≤ i≤
⌊ l

4

⌋

f (e
′
n−1) = 1, f (e

′
n) = 0

remaining vertices are labeled as in subcase 5 of case(2).

Using above pattern we have

v f (0) = v f (1) = n+ l, e f (0)+1 = e f (1) = 3n
2 + l +4

For l = 2 we have e f (0)+1 = e f (1) = 13

Subcase 7: n = 2k, k = 3,5,7, .... and l = 2 j+1, j = 1,3,5,7, .....

In this subcase |V (M(T (n, l+1)))|= 2n+2l, |E(M(T (n, l+1)))|= 3n+2l+4+4b j
2c

f (v
′
1) = 0(when v

′
1 is attached to v2)

f (v
′
2i) = 1, 1≤ i≤

⌊ l
2

⌋
+1



Chapter 3. Cordial and 3-equitable Labelings 34

f (v
′
2i+1) = 0, 1≤ i≤

⌊ l
2

⌋
f (e

′
4i−3) = f (e

′
4i−2) = 0

f (e
′
4i−1) = 1

 1≤ i≤
⌊ l

4

⌋
+1

f (e
′
4i) = 1, 1≤ i≤

⌊ l
4

⌋
remaining vertices are labeled as in subcase 5 of case(2).

Using above pattern we have

v f (0) = v f (1) = n+ l, e f (0) = e f (1) = 3n
2 + l +2+2

⌊
j
2

⌋
For l = 1 we have e f (0) = e f (1) = 11

Subcase 8: n = 2k, k = 3,5,7, .... and l = 2 j+1, j = 2,4,6, .....

In this subcase |V (M(T (n, l+1)))|= 2n+2l, |E(M(T (n, l+1)))|= 3n+2l+2+4
⌊

j
2

⌋
f (v

′
1) = 0(when v

′
1 is attached to v2)

f (v
′
2i) = 1, 1≤ i≤

⌊ l
2

⌋
+1

f (v
′
2i+1) = 0, 1≤ i≤

⌊ l
2

⌋
f (e

′
4i−3) = 0, 1≤ i≤

⌊ l
4

⌋
+1

f (e
′
4i−2) = 0

f (e
′
4i−1) = f (e

′
4i) = 1

 1≤ i≤
⌊ l

4

⌋
remaining vertices are labeled as in subcase 5 of case(2).

Using above pattern we have

v f (0) = v f (1) = n+ l, e f (0) = e f (1) = 3n
2 + l +1+2

⌊
j
2

⌋

Thus in all the cases described above f admits cordial labeling for M(T (n, l +1)).

That is, M(T (n, l +1)) admits cordial labeling. �



Chapter 3. Cordial and 3-equitable Labelings 35

Illustration 3.5.10. Consider G = M(T (6,5)). The cordial labeling is as shown in

Figure 3.7.

v1

v2
v3

v4

v5

v6

e1e3

e4

e5

e6

e1 e2 e3
e4

v2 v3 v4
' ' '

' ' ' '

0

0

1

1

0

1

1

1

0

0

0

e2

1

v1
'

v5
'0 0

0 0 1 1

1 1

FIGURE 3.7: M(T (6,5)) and its cordial labeling

3.6 NP-Complete problems

The detailed discussion on this concept is reported in [38](pp 30-34) as follows.

Let P denote the class of all problems that can be solved by a polynomial time algo-

rithm, that is, polynomial in the length of the inputs for an instance of the problem. We

can think of these algorithms as running on a relatively simple computer, for example a

Turing machine, named after the British mathematician/logician Alan Turing. Briefly,

a Turing machine is a computer with (i) a two-way infinite storage tape, divided into

cells, in each of which can be written one symbol chosen from a finite alphabet, and (ii)

a finite-state control. The finite control can be thought of as a random access machine

or RAM. The execution time of such a RAM is usually measured by the number of

operations it performs in solving an instance of a problem. Each operation can be as-

sumed to require a constant amount of time, say C. Typical operations include addition,

subtraction, multiplication, and division of two numbers, storing a number in a random

access memory, and comparing two numbers.

Turing postulated the thesis that what we think of as an effective algorithm is pre-

cisely what can be done by a Turing machine or, equivalently, by a RAM with an infinite

amount of auxiliary memory. Thus, we can say that a computational problem is in class
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P if there exists an algorithm for solving any instance of the problem in time O(nk) for

some fixed positive integer k, where n is the length of the input for the given instance.

Typical examples of problems which can be solved in polynomial time, and are there-

fore in the class P, include:

• sorting n integers.

• finding a shortest path between two vertices u and v in a graph G.

• finding a maximum matching in a graph G.

• determining whether two trees T1 and T2 with n vertices are isomorphic.

• deciding whether a given graph is bipartite or connected.

• computing the convex hull of a set of n points in the plane.

In the theory of NP-completeness, we restrict our attention to the class of problems

called decision problems. These are problems, every instance of which can be stated

in such a way that the answer is either ‘yes’ or ‘no’. Thus, for example, we do not

seek an algorithm for finding the minimum cardinality of a dominating set in a graph.

Instead we seek an algorithm which, given a graph G and a positive integer k, can decide

whether G has a dominating set of size ≤ k.

Let NP denote the class of all decision problems which can be solved in polynomial

time by a nondeterministic Turing machine. Thus, NP stands for Nondeterministic

Polynomial time. Again, wishing to avoid the extended discussion required to give a

technical definition of a nondeterministic Turing machine, suffice it to say that such a

machine has the ability to make guesses at certain points in a computation. Some of

these guesses may be correct, some may be incorrect.

Instead of using the notion of nondeterminism, we can define the class NP in terms

of the concept of polynomial-time verification. A verification algorithm is an algorithm

A which takes as input an instance of a problem and a candidate solution to the problem,

called a certificate, and verifies in polynomial time whether the certificate is a solution

to the given problem instance. Thus, the class NP is the class of problems which can be

verified in polynomial time.
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If P1 is polynomial-time reducible to P2, we can say that any algorithm for solving P2

can be used to solve P1. Intuitively, problem P1 is ‘no harder’ to solve than problem P2.

We define a problem P to the NP-complete if (i) P∈NP, and (ii) for every problem P
′ ∈

NP, P
′ ≤p P. If a problem P can be shown to satisfy condition (ii), but not necessarily

condition (i), then we say that it is NP-hard.

3.7 Embedding and NP-Complete problem for cordial

Graphs

Embedding problems related to graph structures are of great importance. We will

discuss such problems in the context of labeling. The common problem is Given a

graph G having the graph theoretic property P, is it possible to embed G as an induced

subgraph of G, having the property P ?

Such problems are extensively investigated recently by Acharya et al.[1] in the

context of graceful graphs. We present here an affirmative answer for planar graphs,

trianglefree graphs and graphs with given chromatic number in the context of cordial

graphs. As a consequence we deduce that deciding whether the chromatic number is

less then or equal to k, where k ≥ 3, is NP-complete even for cordial graphs. We obtain

similar result for clique number also. The similar discussion will be held in section 3.10

for 3-equitable graph.

Theorem 3.7.1. Any graph G can be embedded as an induced subgraph of a cordial

graph.

Proof. Without loss of generality we assume that it is always possible to label the

vertices of any graph G such that the vertex condition for cordial graph is satisfied.

i.e.|v f (0)− v f (1)| ≤ 1. Let V0 and V1 be the set of vertices with label zero and one

respectively. Let E0 and E1 be the set of edges with label zero and one respectively. Let

n(V0) and n(V1) be the number of element in set V0 and V1. Let n(E0)and n(E1) be the

number of element in set E0 and E1. Let |n(E0)− n(E1)| = r > 1(for r = 0 or 1 graph

G will become cordial). Graph H can be obtained by adding r vertices to the graph G
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with following condition given in the different cases reported below.

Case 1: n(V0) = n(V1) and n(E0)> n(E1)

Let r = s+ t with |s− t| ≤ 1. Out of new r vertices label s vertices with 0 and t vertices

with 1.i.e. label the vertices v1,v2,v3 . . . ,vs with 0 and label the vertices u1,u2,u3 . . . ,ut

with 1. Join each vi with unique element of set V1 and join each ui with unique ele-

ment of set V0. Therefore all the new edges will have label 1. For the graph H num-

ber of vertices with label 0 and 1 are n(V0)+ s and n(V1)+ t respectively. Therefore

|v f (0)− v f (1)| = |n(V0)+ s− n(V1)− t| ≤ 1, Hence vertex condition is satisfied. For

the graph H number of edges with label 0 and 1 are n(E0) and n(E1)+ r respectively.

Therefore |e f (0)−e f (1)|= |n(E0)−n(E1)−r|= 0, as n(E0)> n(E1). Hence edge con-

dition is satisfied.

Case 2: n(V0) = n(V1) and n(E0)< n(E1)

Let r = s+ t with |s− t| ≤ 1. Out of new r vertices label s vertices with 0 and t vertices

with 1.i.e. label the vertices v1,v2,v3 . . . ,vs with 0 and label the vertices u1,u2,u3 . . . ,ut

with 1. Join each vi with unique element of set V0 and join each ui with unique ele-

ment of set V1. Therefore all the new edges will have label 0. For the graph H num-

ber of vertices with label 0 and 1 are n(V0)+ s and n(V1)+ t respectively. Therefore

|v f (0)− v f (1)| = |n(V0)+ s− n(V1)− t| ≤ 1, Hence vertex condition is satisfied. For

Graph H number of edges with label 0 and 1 are n(E0) + r and n(E1) respectively.

Therefore|e f (0)−e f (1)|= |n(E0)+r−n(E1)|= 0, as n(E0)< n(E1). Hence edge con-

dition is satisfied.

Case 3: |n(V0)−n(V1)|= 1 and n(E0)> n(E1)

Let r = s+ t with |n(V0)+ s−n(V1)− t| ≤ 1. Out of new r vertices label s vertices with

0 and t vertices with 1.i.e. label the vertices v1,v2,v3 . . . ,vs with 0 and label the vertices

u1,u2,u3 . . . ,ut with 1. Join each vi with unique element of set V1 and join each ui with

unique element of set V0. Therefore all the new edges will have label 1. For the graph H

number of vertices with label 0 and 1 are n(V0)+s and n(V1)+t respectively. Therefore,

|v f (0)− v f (1)| = |n(V0)+ s− n(V1)− t| ≤ 1, Hence vertex condition is satisfied. For
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the graph H number of edges with label 0 and 1 are n(E0) and n(E1)+ r respectively.

Therefore, |e f (0)− e f (1)| = |n(E0)− n(E1)− r| = 0, as n(E0) > n(E1). Hence edge

condition is satisfied.

Case 4: |n(V0)−n(V1)|= 1 and n(E0)< n(E1)

Let r = s+ t with |n(V0)+ s−n(V1)− t| ≤ 1. Out of new r vertices label s vertices with

0 and t vertices with 1.i.e. label the vertices v1,v2,v3 . . . ,vs with 0 and label the vertices

u1,u2,u3 . . . ,ut with 1. Join each vi with unique element of set V0 and join each ui with

unique element of set V1. Therefore all the new edges will have label 0. For the graph

H number of vertices with label 0 and 1 are n(V0)+ s and n(V1)+ t respectively. There-

fore, |v f (0)− v f (1)| = |n(v0)+ s− n(v1)− t| ≤ 1. Hence vertex condition is satisfied.

For Graph H number of edges with label 0 and 1 are n(E0)+ r and n(E1) respectively.

Therefore, |e f (0)− e f (1)| = |n(E0)+ r− n(E1)| = 0, as n(E0) < n(E1). Hence edge

condition is satisfied.

Thus in all the possibilities the graph H resulted due to above construction satisfies the

condition for cordial graph.i.e. Any graph G can be embedded as an induced subgraph

of a cordial graph. �

Corollary 3.7.2. Any planar graph G can embedded as an induced subgraph of a planar

cordial graph.

Proof. Let G be a planar graph. Then the graph H obtained by Theorem 3.7.1 is a planar

graph. �

Corollary 3.7.3. Any triangle-free graph G can be embedded as an induced subgraph

of a triangle free cordial graph.

Proof. Let G be a triangle-free graph. Then the graph H obtained by Theorem 3.7.1 is

a triangle-free graph. �

Corollary 3.7.4. The problem of deciding whether the chromatic number χ ≤ k, where

k ≥ 3 is NP-complete even for cordial graphs.
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Proof. Let G be a graph with chromatic number χ(G)≥ 3. Let H be the cordial graph

constructed in Theorem 3.7.1, which contains G as an induced subgraph. Since H is

constructed by adding pendant vertices only to G. We have χ(H) = χ(G).

Since the problem of deciding whether the chromatic number χ ≤ k, where k ≥ 3 is

NP-complete [27]. It follows that deciding whether the chromatic number χ ≤ k, where

k ≥ 3, is NP-complete even for cordial graphs. �

Corollary 3.7.5. The problem of deciding whether the clique number ω(G)≥ k is NP-

complete even when restricted to cordial graphs.

Proof. Since the problem of deciding whether the clique number of a graph ω(G)≥ k,

is NP-complete [27] and ω(H) = ω(G) for the cordial graph H constructed in Theorem

3.7.1,the result follows. �

3.8 3-equitable labeling of graphs

In 1990 Cahit[13] proposed the idea of distributing the vertex and the edge labels

among {0,1,2, . . . ,k− 1} as evenly as possible to obtain a generalization of graceful

labeling and named it as k-equitable labeling which is defined as follows.

3.8.1 k-equitable labeling

A vertex labeling of a graph G = (V (G),E(G)) is a function f : V (G)→{0,1,2, . . . ,k−

1} and the value f (u) is called label of vertex u. For the vertex labeling function f :

V (G)→{0,1, . . . ,k−1}, the induced function f ∗ : E(G)→{0,1, . . . ,k−1} defined as

f ∗(e = uv) = | f (u)− f (v)| which satisfies the conditions

|v f (i)− v f ( j)| ≤ 1

|e f (i)− e f ( j)| ≤ 1

 where 0≤ i, j ≤ k−1

where v f (i) and e f (i) denotes the number of vertices and the number of edges having

label i under f and f ∗ respectively. Such labeling f is called k-equitable labeling for
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the graph G. A graph which admits k-equitable labeling is called k-equitable graph.

Obviously 2-equitable labeling is cordial labeling which is already discussed in section

3.4. When k = 3 the labeling is called 3-equitable labeling. The remaining part of this

chapter is devoted to the discussion of 3-equitable labeling of graphs.

3.8.2 Illustration

In the following Figure 3.8 H4 and its 3-equitable labeling is shown.

2 1

0 1

10

02

2

FIGURE 3.8: H4 and its 3-equitable labeling

3.8.3 Some known results

• Cahit[12],[13] proved that

� Cn is 3-equitable if and only if n . 3(mod 6).

� An Eulerian graph with q≡ 3(mod 6) is not 3-equitable where q is the num-

ber of edges.

� All caterpillars are 3-equitable.

� A triangular cactus with n blocks is 3-equitable if and only if n is even.(Conjecture)

� Every tree with fewer than five end vertices has a 3-equitable labeling.
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• Seoud and Abdel Maqsoud[60] proved that

� A graph with p vertices and q edges in which every vertex has odd degree is

not 3-equitable if p≡ 0(mod 3) and q≡ 3(mod 6).

� All fans except P2 +K1 are 3-equitable.

� P2
n is 3-equitable for all n except 3.

� Km,n(where 3≤ m≤ n) is 3-equitable if and only if (m,n) = (4,4).

• Bapat and Limaye[7] proved that Helms Hn(where n≥ 4) are 3-equitable.

• Youssef[84] proved that Wn =Cn +K1 is 3-equitable for all n≥ 4.

• Vaidya et al.[74, 75] have discussed wheel related 3-equitable graphs.

• Vaidya et al.[72] have discussed some shell related 3-equitable graphs.

• Vaidya et al.[71, 73] have discussed some star related 3-equitable graphs.

3.9 3-equitable graphs in the context of some graph

operations

Theorem 3.9.1. The graph D2(Cn) is 3 - equitable except for n = 3,5.

Proof. If D2(Cn) be the shadow graph of cycle Cn then let v1, v2, . . . , vn be the vertices

of cycle Cn and v′1, v′2, . . . , v′n be the vertices added corresponding to the vertices v1, v2,

. . . , vn in order to obtain D2(Cn).

Define f : V (D2(Cn))→{0,1,2}, we consider following six cases.

Case 1: When n = 3,5

In order to satisfy the vertex condition for 3-equitable graph when n = 3 it is essential

to assign label 0 to two vertices, label 1 to two vertices and label 2 to two vertices. The

vertices with label 1 will give rise to six edges with label 1 out of total twelve edges of

D2(C3). Then obviously the graph is not 3-equitable.

In order to satisfy the vertex condition for 3-equitable graph when n = 5 it is essential
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to assign label 1 to at least three vertices. The vertices with label 1 will give rise to at

least eight edges with label 1 out of total twenty edges of D2(C5). Then obviously the

graph is not 3-equitable.

Case 2: For n = 4,6,8 and the respective graphs and their 3-equitable labeling is shown

in following Figure 3.9.
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0
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0

0

0

1
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1
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FIGURE 3.9: 3-equitable labeling of D2(C4), D2(C6) and D2(C8)
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Case 3: For n = 14 the 3-equitable labeling is shown in following Figure 3.10.

2

2

2

2

2

2

2

2

2

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

2

0

FIGURE 3.10: 3-equitable labeling of D2(C14)
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Case 4: When n≡ 0(mod 3).

Sub Case 1: When n = 3k, k = 4,6, . . .

f (v4i−3) = f (v4i−2) = f (v4i−1) = 1, 1≤ i≤ k
2

f (v4i) = 0, 1≤ i≤ k
2 −1

f (v2k) = 2,

f (vi) = 0, otherwise;

f (v′1) = 2,

f (v′4i−2) = 1, 1≤ i≤ k
2

f (v′4i−1) = 2, 1≤ i≤ k
2 −1

f (v′5) = 2,

f (v′4i+5) = 2, 1≤ i≤ k
2 −2

f (v′4i) = 0, 1≤ i≤ k
2 −1

f (v′2k−1) = f (v′n) = 0,

f (v′i) = 2, otherwise.

Sub Case 2: n = 3k, k = 3,5, . . .

f (vi) = 1, 1≤ i≤ k

f (vk+2i−1) = 2, 1≤ i≤
⌊ k

2

⌋
+1

f (vi) = 0, otherwise;

f (v′2i−1) = 2, 1≤ i≤
⌊ k

2

⌋
f (v′2i) = 0, 1≤ i≤

⌊ k
2

⌋
f (v′

2b k
2c+i

) = 1, 1≤ i≤ k

f (v′
2b k

2c+k+i
) = 2, 1≤ i≤ k

f (v′n) = 0

In view of the above labeling pattern we have

v f (0) = v f (1) = v f (2) = 2k

e f (0) = e f (1) = e f (2) = 4k
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Case 5: When n≡ 1(mod 3).

Sub Case 1: When n = 3k+1, k = 3,5, . . .

f (v1) = 2

f (v1+i) = 0, 1≤ i≤ k−1

f (vk+i) = 1, 1≤ i≤ k

f (v2k+2i−1) = 2, 1≤ i≤ k−1

f (v2k+2i) = 0, 1≤ i≤ k−1

f (v′i) = 1, 1≤ i≤ k

f (v′k+i) = 2, 1≤ i≤ k−1

f (v′2k+2i−2) = 0, 1≤ i≤
⌊ k

2

⌋
f (v′2k+2i−1) = 2, 1≤ i≤

⌊ k
2

⌋
f (v′n−2) = 2, f (v′n−1) = f (v′n) = 0

Sub Case 2: n = 3k+1, k = 2,4, . . .

f (v2i−1) = 2, 1≤ i≤ k

f (vi) = 0, otherwise;

f (v′i) = 1, 1≤ i≤ 2k

f (v′i) = 2, otherwise.

In view of the above labeling pattern we have

v f (0) = v f (1)+1 = v f (2) = n− k

e f (0)+1 = e f (1) = e f (2)+1 = n+ k+1

Case 6: n≡ 2(mod 3).

Sub Case 1: n = 3k+2, k = 3,5, . . .

f (vi) = 1, 1≤ i≤ k+1

f (vk+2i) = 0, 1≤ i≤ k+1

f (vk+2i+1) = 2, 1≤ i≤ k

f (v′1) = 2,

f (v′2i) = 0, 1≤ i≤
⌊ k

2

⌋
f (v′2i+1) = 2, 1≤ i≤

⌊ k
2

⌋
f (v′

2b k
2c+i+1

) = 1, 1≤ i≤ k
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f (v′
2b k

2c+k+2i
) = 2, 1≤ i≤

⌊ k
2

⌋
f (v′n−2) = f (v′n−1) = 2,

f (v′i) = 0, otherwise.

Sub Case 2: n = 3k+2, k = 6,8, . . .

f (vi) = 1, 1≤ i≤ k+1

f (vk+2i) = 0, 1≤ i≤ k+1

f (vk+2i+1) = 2, 1≤ i≤ k

f (v′2i−1) = 2, 1≤ i≤ k
2 −2

f (v′2i) = 0, 1≤ i≤ k
2 −2

f (v′k+i−4) = 2, 1≤ i≤ 4

f (v′k+i) = 1, 1≤ i≤ k

f (v′2k+2i−1) = 0, 1≤ i≤ k
2 −1

f (v′2k+2i) = 2, 1≤ i≤ k
2 −1

f (v′n−3) = f (v′n−2) = f (v′n) = 0, f (v′n−1) = 2

In view of the above labeling pattern we have

v f (0)+1 = v f (1)+1 = v f (2) = n− k

e f (0) = e f (1)+1 = e f (2) = n+ k+1

Thus in each cases we have |v f (i)−v f ( j)| ≤ 1 and |e f (i)−e f ( j)| ≤ 1, for all 0≤ i, j≤ 2.

Hence D2(Cn) is 3 - equitable graph except for n = 3,5. �
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Illustration 3.9.2. Consider the graph D2(C12). The 3-equitable labeling is as shown

in Figure 3.11.
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FIGURE 3.11: 3 - equitable labeling of D2(C12)

Theorem 3.9.3. The graph D2(Pn) is 3 - equitable except for n = 3.

Proof. If D2(Pn) be the shadow graph of path Pn then let v1, v2, . . . , vn be the vertices

of path Pn and v′1, v′2, . . . , v′n be the vertices added corresponding to the vertices v1, v2,

. . . , vn in order to obtain D2(Pn) .

Define f : V (D2(Pn))→{0,1,2}, we consider following five cases.
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Case 1: when n = 3.

In order to satisfy the vertex condition for 3-equitable graph when n = 3 it is essential

to assign label 0 to two vertices, label 1 to two vertices and label 2 to two vertices. The

vertices with label 1 will give rise to four edges with label 1 out of total eight edges of

D2(P3). Then obviously the graph is not 3-equitable.

Case 2: For n = 2 the respective graph and its 3-equitable labeling is shown in Figure

3.12.

20

11

FIGURE 3.12: 3-equitable labeling of D2(P2)

Case 3: When n≡ 0(mod 3),(n = 3k,k = 2,3,4, . . .).

f (vi) = 1, 1≤ i≤
⌊n

2

⌋
if n is odd and 1≤ i≤ n

2 −1 if n is even

f (vb n
2c+1+i) = 0, 1≤ i≤

⌊n
2

⌋
if n is odd

f (v n
2+i) = 0, 1≤ i≤ n

2 if n is even

f (vn) = 1, f (v′1) = 1,

f (v′2i) = 2, 1≤ i≤ k−1

f (v′2i+1) = 0, 1≤ i≤ k−1

f (v′i) = 2, otherwise

In view of the above labeling pattern we have

v f (0) = v f (1) = v f (2) = 2k

e f (0) = e f (1)+1 = e f (2) = n+ k−1
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Case 4: When n≡ 1(mod 3),(n = 3k+1,k = 1,2,3, . . .).

f (vi) = 1, 1≤ i≤
⌊n

2

⌋
+1 if n is odd and 1≤ i≤ n

2 if n is even

f (vb n
2c+1+i) = 0, 1≤ i≤

⌊n
2

⌋
if n is odd

f (v n
2+i) = 0, 1≤ i≤ n

2 if n is even

f (v′2i) = 0, 1≤ i≤ k

f (v′i) = 2, otherwise

In view of the above labeling pattern we have

v f (0) = v f (1)+1 = v f (2) = n− k

e f (0) = e f (1) = e f (2) = 2(n− k−1)

Case 5: When n≡ 2(mod 3),(n = 3k+2,k = 1,2,3, . . .)

f (vi) = 1, 1≤ i≤ 2k+1

f (vi) = 0, otherwise;

f (v′2i−1) = 2, 1≤ i≤ k

f (v′2i) = 0, 1≤ i≤ k

f (v′2k+i) = 2, 1≤ i≤ n−2k

In view of the above labeling pattern we have

v f (0)+1 = v f (1)+1 = v f (2) = n− k

e f (0)+1 = e f (1) = e f (2)+1 = n+ k

Thus in each cases we have |v f (i)−v f ( j)| ≤ 1 and |e f (i)−e f ( j)| ≤ 1, for all 0≤ i, j≤ 2.

Hence D2(Pn) is 3 - equitable graph except for n = 3. �

Illustration 3.9.4. Consider the graph D2(P7). The 3-equitable labeling is as shown in

Figure 3.13.
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FIGURE 3.13: 3- equitable labeling of D2(P7)
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Theorem 3.9.5. M(Cn) is 3-equitable for n even and not 3-equitable for n odd.

Proof. If M(Cn) be the middle graph of cycle Cn then let v1, v2, . . . , vn be the vertices

of cycle Cn and v′1, v′2, . . . , v′n be the vertices added corresponding to the edges en, e1,

. . . , en−1 in order to obtain M(Cn).

Define f : V (M(Cn))→{0,1,2}, we consider following two cases.

Case 1: When n is even.

Sub Case 1: n = 6k,k = 1,2, . . .

f (v3i−2) = 1, 1≤ i≤ k

f (v3k−1+i) = 1, 1≤ i≤ k

f (vi) = 2, otherwise

f (v′3i−2) = 1, 1≤ i≤ k

f (v′3i−1) = 1, 1≤ i≤ k

f (v′i) = 0, otherwise

In view of the above labeling pattern we have

v f (0) = v f (1) = v f (2) = 4k

e f (0) = e f (1) = e f (2) = 6k

Sub Case 2: n = 6k−2,k = 2,3, . . .

f (v3i−2) = 1, 1≤ i≤ k

f (v3i−1) = 1, 1≤ i≤ k−1

f (vn) = 1, i = n

f (vi) = 0, otherwise

f (v′3i−2) = 1, 1≤ i≤ k

f (v′3i−1) = 1, 1≤ i≤ k−1

f (v′3k−1+i) = 0, 1≤ i≤ k−1

f (v′i) = 2, otherwise

In view of the above labeling pattern we have

v f (0) = v f (1) = v f (2)+1 = 4k−1

e f (0) = e f (1) = e f (2) = 6k−2
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Sub Case 3: n = 6k+2,k = 1,2, . . .

f (v3i−2) = 1, 1≤ i≤ k

f (v3k−1+i) = 1, 1≤ i≤ k+1

f (vi) = 2, otherwise

f (v′3i−2) = 1, 1≤ i≤ k

f (v′3i−1) = 1, 1≤ i≤ k

f (v′i) = 0, otherwise

In view of the above labeling pattern we have

v f (0) = v f (1)+1 = v f (2)+1 = 4k+2

e f (0) = e f (1) = e f (2) = 6k+2

Case 2: When n is odd.

In this case M(Cn) is an Eulerian graph with |E(M(Cn))| ≡ 3(mod 6). So it is not 3-

equitable as we stated earlier.

Thus in each cases we have |v f (i)−v f ( j)| ≤ 1 and |e f (i)−e f ( j)| ≤ 1, for all 0≤ i, j≤ 2.

Hence M(Cn) is 3-equitable for n even and not 3-equitable for n odd. �

Illustration 3.9.6. Consider the graph M(C14). The 3-equitable labeling is as shown in

Figure 3.14.

0 0

1 1

0 0 00

1 0 1 0

0 0

12

2

1

12

2 2 1 2

2 2 2 1

FIGURE 3.14: 3-equitable labeling of M(C14)
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Theorem 3.9.7. The graph M(Pn) is 3 - equitable.

Proof. If M(Pn) be the middle graph of path Pn then let v1, v2, . . . , vn be the vertices of

path Pn and v′1, v′2, . . . , v′n−1 be the vertices added corresponding to the edges e1, e2, . . . ,

en−1 in order to obtain M(Pn).

Define f : V (M(Pn))→{0,1,2}, we consider following four cases.

Case 1: when n = 3,5,7 and 9 the 3-equitable labeling of the corresponding graphs are

given in Figure 3.15.

0 1 1 1 1 1 0 0 0 0 1

0202222220

1 1 0 0 1 1 1 1 0 0 0 1

0222220222

1

FIGURE 3.15: 3-equitable labeling of M(P3), M(P5), M(P7) and M(P9)

Case 2: when n = 2,4 and 6 the 3-equitable labeling of the corresponding graphs are

given in Figure 3.16.

1 1 1

1 1 1

0

0 0

0 0 0

0

2

2222

222

M(P )
2

M(P )
4

M(P )
6

FIGURE 3.16: 3-equitable labeling of M(P2), M(P4), and M(P6)
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Case 3: When n is even (n = 2k,k = 4,5,6, . . .).

f (vi) = 1, 1≤ i≤ n
2

f (v n
2+i) = 0, 1≤ i≤ n

2

f (v′2i−1) = 1, 1≤ i≤
⌊ k

3

⌋
and

f (v′2i−1) = 1, 1≤ i≤
⌊ k

3

⌋
−1, for k = 3 j, j = 2,3, . . .

f (v′n−2i) = 0, 1≤ i≤
⌊ k

3

⌋
f (v′i) = 2, otherwise;

In view of the above labeling pattern we have

v f (0) = v f (1) = v f (2) = 2n−1
3

e f (0) = e f (1)+1 = e f (2) = n−1, when n≡ 2(mod 3)

v f (0)+1 = v f (1)+1 = v f (2) =
⌊2n−1

3

⌋
+1

e f (0) = e f (1)+1 = e f (2) = n−1, when n≡ 1(mod 3)

v f (0) = v f (1)+1 = v f (2) =
⌊2n−1

3

⌋
+1

e f (0) = e f (1)+1 = e f (2) = n−1, when n≡ 0(mod 3)

Case 4: When n is odd (n = 2k+1,k = 5,6, . . .).

f (vi) = 1, 1≤ i≤
⌊n

2

⌋
, i = n

f (vb n
2c+i) = 0, 1≤ i≤

⌊n
2

⌋
f (v′2i−1) = 1, 1≤ i≤

⌊ k
3

⌋
−1 and

f (v′2i−1) = 1, 1≤ i≤
⌊ k

3

⌋
, for k = 3 j+2, j = 1,2,3, . . .

f (v′n−2i+1) = 0, 1≤ i≤
⌊ k

3

⌋
+1 and

f (v′n−2i+1) = 0, 1≤ i≤
⌊ k

3

⌋
for k = 3 j, j = 2,3,4, . . .

f (v′i) = 2, otherwise

In view of the above labeling pattern we have

v f (0) = v f (1) = v f (2) = 2n−1
3

e f (0) = e f (1)+1 = e f (2) = n−1, when n≡ 2(mod 3)

v f (0)+1 = v f (1)+1 = v f (2) =
⌊2n−1

3

⌋
+1

e f (0) = e f (1)+1 = e f (2) = n−1, when n≡ 1(mod 3)
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v f (0)+1 = v f (1) = v f (2) =
⌊2n−1

3

⌋
+1

e f (0) = e f (1) = e f (2)+1 = n−1, when n≡ 0(mod 3)

Thus in each cases we have |v f (i)−v f ( j)| ≤ 1 and |e f (i)−e f ( j)| ≤ 1, for all 0≤ i, j≤ 2.

Hence M(Pn) is 3 - equitable graph. �

Illustration 3.9.8. Consider the graph M(P10). The 3-equitable labeling is as shown in

Figure 3.17.

1 2

0

2 2 2 2 2 20

0 0 0 011111

FIGURE 3.17: 3-equitable labeling of M(P10)

3.10 Embedding and NP-complete problems for 3-equitable

graphs

The embedding and NP-complete problems in the context of cordial labeling is

discussed briefly in section 3.7 while this section is aimed to discuss such problems for

3-equitable graphs.

Theorem 3.10.1. Any graph G can be embedded as an induced subgraph of a 3-equitable

graph.

Proof. Let G be the graph with n vertices. Without loss of generality we assume that it

is always possible to label the vertices of any graph G such that the vertex conditions

for 3-equitable graphs are satisfied. i.e.|v f (i)− v f ( j)| ≤ 1, 0 ≤ i, j ≤ 2. Let V0,V1 and

V2 be the set of vertices with label 0 ,1 and 2 respectively. Let E0, E1 and E2 be the set

of edges with label 0,1 and 2 respectively. Let n(V0) ,n(V1)and n(V2) be the number of

elements in sets V0 ,V1 and V2 respectively. Let n(E0), n(E1) and n(E2) be the number
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of elements in sets E0 , E1 and E2 respectively.

Case 1: n≡ 0(mod 3)

Subcase 1:n(E0) , n(E1) , n(E2).

Suppose n(E0) < n(E1) < n(E2). Let |n(E2)− n(E0)| = r > 1 and |n(E2)− n(E1)| =

s > 1. The new graph H can be obtained by adding r+ s vertices to the graph G.

Define r+s= p and consider a partition of p as p= a+b+c with |a−b| ≤ 1,|b−c| ≤ 1

and |c−a| ≤ 1.

Now out of new p vertices label a vertices with 0, b vertices with 1 and c vertices with

2. i.e. label the vertices u1,u2,. . . ,ua with 0, v1,v2,. . . ,vb with 1 and w1,w2,. . . ,wc with 2.

Now we adapt the following procedure.

Step 1: To obtain required number of edges with label 1.

• Join s number of elements vi to the arbitrary element of V0.

• If b< s then join (s−b) number of elements u1,u2,... ,us−b to the arbitrary element

of V1.

• If a < s−b then join (s−a−b) number of vertices w1,w2,. . . ,ws−b−a to the arbi-

trary element of V1.

Above construction will give rise to required number of edges with label 1.

Step 2: To obtain required number of edges with label 0.

• Join remaining number of ui’s (which are left at the end of step 1) to the arbitrary

element of V0.

• Join the remaining number of vi’s(which are left at the end of step 1) to the arbi-

trary element of V1.

• Join the remaining number of wi’s(which are left at the end of step 1) to the

arbitrary element of V2.

As a result of above procedure we have following vertex conditions and edge conditions.
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|v f (0)− v f (1)|= |n(V0)+a−n(V1)−b| ≤ 1,

|v f (1)− v f (2)|= |n(V1)+b−n(V2)− c| ≤ 1 ,

|v f (2)− v f (0)|= |n(V2)+ c−n(V0)−a| ≤ 1

and

|e f (0)− e f (1)|= |n(E0)+n(E2)−n(E0)−n(E1)−n(E2)+n(E1)|= 0,

|e f (1)− e f (2)|= |n(E1)+n(E2)−n(E1)−n(E2)|= 0,

|e f (2)− e f (0)|= |n(E2)−n(E0)−n(E2)+n(E0)|= 0.

Similarly one can handle the following cases.

n(E0)< n(E2)< n(E1),

n(E2)< n(E0)< n(E1),

n(E1)< n(E2)< n(E0),

n(E2)< n(E1)< n(E0),

n(E1)< n(E0)< n(E2).

Subcase 2: n(Ei) = n(E j)< n(Ek), i , j , k,0≤ i, j,k ≤ 2

Suppose n(E0) = n(E1)< n(E2)

|n(E2)−n(E0)|= r

|n(E2)−n(E1)|= r

The new graph H can be obtained by adding 2r vertices to the graph G.

Define 2r = p and consider a partition of p as p = a+b+c with |a−b| ≤ 1,|b−c| ≤ 1

and |c−a| ≤ 1.

Now out of new p vertices, label a vertices with 0, b vertices with 1 and c vertices with

2. i.e. label the vertices u1,u2,. . . ,ua with 0, v1,v2,. . . ,vb with 1 and w1,w2,. . . ,wc with 2.

Now we adapt the following procedure.

Step 1: To obtain required number of edges with label 0.

• Join r number of elements ui’s to the arbitrary element of V0.

• If a< r then join (r−a) number of elements v1,v2,... ,vr−a to the arbitrary element

of V1.

• If b < r− a then join (r− a− b) number of vertices w1,w2,. . . ,wr−b−a to the

arbitrary element of V2.
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Above construction will give rise to required number of edges with label 0.

Step 2: To obtain required number of edges with label 1.

• Join remaining number of wi’s (which are not used at the end of step 1)to the

arbitrary element of V1.

• Join the remaining number of vi’s (which are not used at the end of step 1) to the

arbitrary element of V0.

• Join the remaining number of ui’s (which are not used at the end of step 1) to the

arbitrary element of V1.

Similarly we can handle the following possibilities.

n(E1) = n(E2)< n(E0)

n(E0) = n(E2)< n(E1)

Subcase 3 : n(Ei)< n(E j) = n(Ek), i , j , k,0≤ i, j,k ≤ 2

Suppose n(E2)< n(E0) = n(E1)

Define |n(E2)−n(E0)|= r

The new graph H can be obtained by adding r vertices to the graph G as follows .

Consider a partition of r as r = a+b+ c with |a−b| ≤ 1,|b− c| ≤ 1 and |c−a| ≤ 1.

Now out of new r vertices label a vertices with 0,b vertices with 1 and c vertices with

2. i.e. label the vertices u1,u2,. . . ,ua with 0, v1,v2,. . . ,vb with 1 and w1,w2,. . . ,wc with 2.

Now we adapt the following procedure.

Step 1: To obtain required number of edges with label 2.

• Join r number of vertices wi’s to the arbitrary element of V0.

• If c < r then join r− c number of elements u1,u2,... ,ur−c to the arbitrary element

of V2.

Above construction will give rise to required number of edges with label 2.

At the end of this step if the required number of 2 as edge labels are generated then we

have done. If not then move to step 2. This procedure should be followed in all the

situations described earlier when n(E2)< n(E0) or n(E2)< n(E1).
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Step 2: To obtain the remaining (at the end of step 1) number of edges with label 2.

• If k number of edges are required after joining all the vertices with label 0 and 2

then add k number of vertices labeled with 0, k number of vertices labeled with 1

and k number of vertices labeled with 2. Then vertex conditions are satisfied.

• Now we have k number of new vertices with label 2, k number of new vertices

with label 0 and 2k number of new vertices with label 1.

• Join k new vertices with label 2 to the arbitrary element of the set V0.

• Join k new vertices with label 0 to the arbitrary element of the set V2.

• Join k new vertices with label 1 to the arbitrary element of set V0.

• Join k new vertices with label 1 to the arbitrary element of the set V1.

Case 2: n≡ 1(mod 3).

Subcase 1: n(Ei) , n(E j) , n(Ek), i , j , k,0≤ i, j,k ≤ 2.

Suppose n(E0)< n(E1)< n(E2) Let |n(E2)−n(E0)|= r > 1 and |n(E2)−n(E1)|= s> 1

.

Define r+ s = p and consider a partition of p such that p = a+b+ c with

|n(V0)+a−n(V1)−b| ≤ 1

|n(V1)+b−n(V2)− c| ≤ 1

|n(V0)+a−n(V2)− c| ≤ 1.

Now we can follow the procedure which we have discussed in case 1.

Case 3: n≡ 2(mod 3)

We can proceed as case 1 and case 2.

Thus in all the possibilities the graph H resulted due to above construction satisfies the

conditions for 3-equitable graph. That is, any graph G can be embedded as an induced

subgraph of a 3-equitable graph. �

For the better understanding of result derived above consider following illustrations.
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Illustration 3.10.2. For a graph G =C9 we have n(E0) = 0, n(E1) = 6, n(E2) = 3.

Now |n(E1)−n(E0)|= 6 = r,|n(E1)−n(E2)|= 3 = s.

This is the case related to subcase(1) of case(1).
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FIGURE 3.18: C9 and its 3-equitable embedding

Procedure to construct H :

Step 1:

• Add p= r+s= 6+3= 9 vertices in G and partition p as p= a+b+c= 3+3+3.

• Label 3 vertices with 0 as a = 3.

• Label 3 vertices with 1 as b = 3.

• Label 3 vertices with 2 as c = 3.

Step 2:

• Join the vertices with 0 and 1 to the arbitrary element of the set V0 and V1 respec-

tively.

• Join the vertices with label 2 to the arbitrary element of set V0.

The resultant graph H is shown in Figure 3.18 is 3-equitable.
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Illustration 3.10.3. Consider a graph G = K4 as shown in following Figure 3.19 for

which n(E0) = 1, n(E1) = 4, n(E2) = 1.

Here |n(E1)−n(E0)|= 3 = r, |n(E1)−n(E2)|= 3 = s i.e. r = s.

This is the case related to subcase(2) of case(2).
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FIGURE 3.19: K4 and its 3-equitable embedding

Procedure to construct H :

Step 1:

• Add p = 2r = 3+3 = 6 vertices in G and partition p as p = a+b+c = 2+1+3.

• Label 2 vertices with 0 as a = 2.

• Label 1 vertex with 1 as b = 1.

• Label 3 vertices with 2 as c = 2.

Step 2:

• Join the vertices with label 0 to the arbitrary element of the set V0 and join one

vertex with label 2 to the arbitrary element of V2.

• Join the remaining vertices with label 2 with the arbitrary element of set V0.
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Step 3:

• Now add three more vertices and label them as 0,1 and 2 respectively.

• Now join the vertices with label 0 and 2 with the arbitrary elements of V2 and V0

respectively.

• Now out of the remaining two vertices with label 1 join one vertex with arbitrary

element of set V0 and the other with the arbitrary element of set V1.

The resultant graph H shown in Figure 3.19 is 3-equitable.

Corollary 3.10.4. Any planar graph G can be embedded as an induced subgraph of a

planar 3-equitable graph.

Proof. If G is planar graph. Then the graph H obtained by Theorem 3.10.1 is a planar

graph. �

Corollary 3.10.5. Any triangle free graph G can be embedded as an induced subgraph

of a triangle free 3-equitable graph.

Proof. If G is triangle free graph. Then the graph H obtained by Theorem 3.10.1 is a

triangle free graph. �

Corollary 3.10.6. The problem of deciding whether the chromatic number χ ≤ k, where

k ≥ 3 is NP-complete even for 3-equitable graphs.

Proof. Let G be a graph with chromatic number χ(G) ≥ 3. Let H be the 3-equitable

graph constructed in Theorem 3.10.1, which contains G as an induced subgraph. Since

H is constructed by adding only pendant vertices to G. We have χ(H) = χ(G). Since

the problem of deciding whether the chromatic number χ ≤ k, where k ≥ 3 is NP-

complete [27]. It follows that deciding whether the chromatic number χ ≤ k, where

k ≥ 3, is NP-complete even for 3-equitable graphs. �
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Corollary 3.10.7. The problem of deciding whether the clique number ω(G) ≥ k is

NP-complete even when restricted to 3-equitable graphs.

Proof. Since the problem of deciding whether the clique number of a graph ω(G) ≥ k

is NP-complete [27] and ω(H) = ω(G) for the 3-equitable graph H constructed in

Theorem 3.10.1, the above result follows. �

3.11 Concluding Remarks and Scope of Further Research

We have contributed four new results for cordial labeling and 3-equitable la-

beling each. Some new families of cordial and 3-equitable graphs are also obtained.

We have also discussed embedding and NP-complete problems in the context of both

the labelings. To investigate some more cordial and 3-equitable graphs which remains

invariant under various graph operations is a potential area of research.

The next chapter is intended to discuss the total product cordial and the prime

cordial labelings of graphs.
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4.1 Introduction

The previous chapter was focused on cordial and 3-equitable labeling of graphs while

the present chapter is aimed to discuss two labelings which are having cordial theme.

4.2 Total Product cordial labeling

4.2.1 Total product cordial graph

A total product cordial labeling of a graph G is a function

f : (V (G)
⋃

E(G))−→ {0,1} such that f (xy)= f (x) f (y) where x,y ∈V (G), xy ∈ E(G)

and the total number of 0 and 1 are balanced. That is, if v f (i) and e f (i) denote the set

of vertices and edges which are labeled as i for i = 0,1 respectively,

then |(v f (0)+ e f (0))− (v f (1)+ e f (1))| ≤ 1. If there exists a total product cordial la-

beling of a graph G then it is called a total product cordial graph.

4.2.2 Some existing results

Sundaram, Ponraj and Somasundaram in [66, 67] have shown that the following graphs

are total product cordial.

• Every product cordial graph of even order or odd order and even size.

• Trees.

• All cycles except C4.

• The graph Kn,2n−1.

• Cn with m edges appended at each vertex.

• fans; double fans; wheels; helms.

• The graph C2×P2.
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• Pm×Pn if and only if (m,n) , (2,2).

• K2,n if and only if n≡ 2(mod 4).

• Cn +2K1 if and only if n is even or n≡ 1(mod 3).

• Kn×2K2 if n is odd, or n≡ 0 or 2(mod 6); n≡ 2(mod 8).

4.3 Total product cordial graphs induced by some graph

operations on cycle related graphs

Theorem 4.3.1. T (Cn) is a total product cordial graph.

Proof. Let v1, v2, . . . , vn be the vertices of cycle Cn and e
′
1, e

′
2, . . . , e

′
n be the vertices in

T (Cn) corresponding to the edges e1, e2, . . . , en in Cn.

To define f : V (T (Cn))
⋃

E(T (Cn))−→ {0,1}, we consider following two cases.

Case 1: n≥ 6 is even

We label the vertices as follows.

f (e
′
i) = 0, 1≤ i≤ n

2

f (e
′
i) = 1, n

2 +1≤ i≤ n

f (vi) = 0, 1≤ i≤ n
2 −1

f (vi) = 1, n
2 ≤ i≤ n

Case 2: n is odd

We label the vertices as follows.

f (e
′
i) = 1, 1≤ i≤

⌊n
2

⌋
+1

f (e
′
i) = 0,

⌊n
2

⌋
+2≤ i≤ n

f (vi) = 1, 1≤ i≤
⌊n

2

⌋
+1

f (vi) = 0,
⌊n

2

⌋
+2≤ i≤ n

In view of the labeling pattern defined above we have

v f (0)+ e f (0) = v f (1)+ e f (1) = 3n
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Thus we conclude that the graph f satisfies the condition

|(v f (0)+ e f (0))− (v f (1)+ e f (1))| ≤ 1.

That is, T (Cn) is a total product cordial graph. �

Illustration 4.3.2. Consider a graph T (C6). The corresponding total product cordial

labeling is as shown in Figure 4.1.
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1

1

1

1 1

1

1

FIGURE 4.1: T (C6) and its total product cordial labeling

Theorem 4.3.3. The star of cycle Cn admits total product cordial labeling.

Proof. Let v1, v2, . . . , vn be the vertices of central cycle Cn and vi j be the vertices of

cycle C j
n, where 1 ≤ j ≤ n, which are adjacent to the ith vertex of central cycle Cn to

obtain C
′
n.

To define f : (V (C
′
n)
⋃

E(C
′
n))−→ {0,1}, we consider following two cases.

Case 1: n is even

We label the vertices as

f (vi) = 1, 1≤ i≤ n

f (v1 j) = 1, 1≤ j ≤ n
2

f (v1 j) = 0, n
2 +1≤ j ≤ n

f (vi j) = 0, 1≤ j ≤ n
2 ,2≤ i≤ n

f (vi j) = 1, n
2 +1≤ j ≤ n,2≤ i≤ n

In view of the labeling pattern defined above we have

v f (0)+ e f (0) = v f (1)+ e f (1) = n2 + 3n
2
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Case 2: n is odd

We label the vertices as

f (vi) = 1 1≤ i≤ n

f (vi j) = 0, 1≤ j ≤
⌊n

2

⌋
+1,1≤ i≤ n

f (vi j) = 1,
⌊n

2

⌋
+2≤ j ≤ n,1≤ i≤ n

In view of the labeling pattern defined above we have

v f (0)+ e f (0) = v f (1)+ e f (1)+1 = 2n
⌊n

2

⌋
+
⌊n

2

⌋
+2n+1

Thus |(v f (0)+ e f (0))− (v f (1)+ e f (1))| ≤ 1.

Hence f is a total product cordial labeling for the graph star of cycle. �

Illustration 4.3.4. Consider the graph star of cycle C7. The corresponding total product

cordial labeling is shown in Figure 4.2.
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FIGURE 4.2: Total product cordial labeling for star of cycle C7

Theorem 4.3.5. C(k)
n admits total product cordial labeling.

Proof. Let vi j be the ith vertex of jth copy of cycle C j. Let v1 be the common vertex of

all the cycles. Without loss of generality we start the label assignment from v1.

To define f : V (C(k)
n )

⋃
E(C(k)

n )−→ {0,1} we consider following three cases.
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Case 1: n ∈ N(n≥ 3) and k is even

f (v1) = 1

f (vi j) = 1, 1≤ j ≤ k
2 , 2≤ i≤ n

f (vi j) = 0, k
2 +1≤ j ≤ k, 2≤ i≤ n

In view of the labeling pattern defined above we have

v f (0)+ e f (0)+1 = v f (1)+ e f (1) = 2n

Case 2: n > 3 is even, k is odd

f (v1) = 1

f (vi j) = 1, 1≤ j ≤ b k
2c, 2≤ i≤ n

f (vi j) = 0,
⌊ k

2

⌋
+1≤ j ≤ k−2, 2≤ i≤ n

f (vi j) = 1, j = k−1, 2≤ i≤ n
2

f (vi j) = 0, j = k−1, n
2 +1≤ i≤ n

f (v3 j) = 1, j = k

f (vi j) = 0 j = k, 2≤ i≤ n, i , 3

In view of the labeling pattern defined above we have

v f (0)+ e f (0) = v f (1)+ e f (1) = 2n
⌊ k

2

⌋
−
⌊ k

2

⌋
+n

Case 3: n≥ 3 is odd, k is odd

f (v1) = 1

f (vi j) = 1, 1≤ j ≤
⌊ k

2

⌋
, 2≤ i≤ n

f (vi j) = 0,
⌊ k

2

⌋
+1≤ j ≤ k−1 , 2≤ i≤ n

f (vi j) = 1, j = k, 2≤ i≤
⌊n

2

⌋
+1

f (vi j) = 0, j = k,
⌊n

2

⌋
+2≤ i≤ n

In view of the labeling pattern defined above we have

v f (0)+ e f (0)+1 = v f (1)+ e f (1) = 2n
⌊ k

2

⌋
−
⌊ k

2

⌋
+
⌊n

2

⌋
+ n+1

2

Thus in all the four cases |(v f (0)+ e f (0))− (v f (1)+ e f (1))| ≤ 1.

Hence C(k)
n admits total product cordial labeling. �
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Illustration 4.3.6. Consider a graph C(3)
6 . The corresponding total product cordial la-

beling is as shown in Figure 4.3.
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FIGURE 4.3: C(3)
6 and its total product cordial labeling

Corollary 4.3.7. Friendship graph Fn admits total product cordial labeling.

Proof. The proof is obvious from the case 1 and 3 of the above Theorem 4.3.5. �

Theorem 4.3.8. M(Cn) is a total product cordial graph.

Proof. Let v1, v2, . . . , vn be the vertices of cycle Cn and e
′
1, e

′
2, . . . , e

′
n be the vertices in

M(Cn) corresponding to the edges e1, e2, . . . , en of Cn.

To define f : V (M(Cn))
⋃

E(M(Cn))−→ {0,1}, we consider following two cases.

Case 1: n is even

f (vi) = 1, 1≤ i≤ n

f (e
′
2i−1) = 0, 1≤ i≤ n

2

f (e
′
2i) = 1, 1≤ i≤ n

2

In view of the labeling pattern defined above we have

v f (0)+ e f (0) = v f (1)+ e f (1) = 5n
2

Case 2: n is odd

f (vi) = 1, 1≤ i≤ n−1

f (vi) = 0, i = n

f (e
′
2i−1) = 1, 1≤ i≤

⌊n
2

⌋
+1

f (e
′
2i) = 0, 1≤ i≤

⌊n
2

⌋
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In view of the labeling pattern defined above we have

v f (0)+ e f (0)+1 = v f (1)+ e f (1) = 2n+
⌊n

2

⌋
+1

In view of the above defined pattern f satisfies the condition

|(v f (0)+ e f (0))− (v f (1)+ e f (1))| ≤ 1.

Hence M(Cn) admits total product cordial labeling. �

Illustration 4.3.9. Consider a graph M(C9). The total product cordial labeling is as

shown in Figure 4.4.
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FIGURE 4.4: Total product cordial labeling for M(C9)

Theorem 4.3.10. The graph obtained by switching of an arbitrary vertex in cycle Cn

admits total product cordial labeling.

Proof. Let v1,v2, . . . ,vn be the successive vertices of Cn and Gv denotes the graph ob-

tained by switching of vertex v of G. Without loss of generality let the switched vertex

be v1 and we initiate the labeling from this switched vertex v1.

To define f : (V (Gv1)
⋃

E(Gv1))−→ {0,1} we consider following four cases.

Case 1: The graph obtained by vertex switching in cycle C4 is an acyclic graph and its

total product cordial labeling is given in following Figure 4.5.
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0

1

1

1

FIGURE 4.5: Total product cordial labeling for the graph obtained by switching of a
vertex in C4

Case 2: n is even, n = 2k, k = 3,5,7,9, . . .

f (v1) = 0

f (vi) = 1, 2≤ i≤ n
2 +1

f (v n
2+1+i) = 0, 1≤ i≤

⌊n
4

⌋
f (v n

2+b n
4c+1+i) = 1, 1≤ i≤

⌊n
4

⌋
In view of the labeling pattern defined above we have

v f (0)+ e f (0) = v f (1)+ e f (1)+1 = n+2
⌊n

4

⌋
−1

Case 3: n is even, n = 2k, k = 4,6,8, . . .

f (v1) = 0

f (vi) = 1, 2≤ i≤ n
2 +1

f (v n
2+1+i) = 0, 1≤ i≤ n

4 −1

f (v n
2+

n
4−1+i) = 1, 1≤ i≤ n

4

In view of the labeling pattern defined above we have

v f (0)+ e f (0)+1 = v f (1)+ e f (1) = 3n
2 −2

Case 4: n is odd

f (v1) = 1

f (vi) = 0, 2≤ i≤
⌊n

2

⌋
+1

f (vb n
2c+1+i) = 1, 1≤ i≤

⌊n
2

⌋
In view of the labeling pattern defined above we have

v f (0)+ e f (0) = v f (1)+ e f (1) = 3
⌊n

2

⌋
−1

Thus f satisfies the condition |(v f (0)+ e f (0))− (v f (1)+ e f (1))| ≤ 1.

Hence Gv1 admits total product cordial labeling. �
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Illustration 4.3.11. Consider the graph obtained by switching of a vertex in cycle C10.

The total product cordial labeling is as shown in Figure 4.6.
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FIGURE 4.6: Vertex switching in C10 and its total product cordial labeling

4.4 Total Product cordial labeling for split graph of some

graphs

Theorem 4.4.1. spl(Cn) is total product cordial graph.

Proof. Let v
′
1, v

′
2, . . . , v

′
n be the added vertices corresponding to v1, v2, . . . , vn of cycle

Cn.

To define f : V (spl(Cn))
⋃

E(spl(Cn))−→ {0,1}, we consider following two cases.

Case 1: n is even

We label the vertices as follows.
f (v2i−1) = 1, 1≤ i≤ n

2

f (v2i) = 0, 1≤ i≤ n
2

f (v
′
i) = 1, 1≤ i≤ n

Using above pattern we have

v f (0)+ e f (0) = v f (1)+ e f (1) = 5n
2
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Case 2: n is odd

We label the vertices as follows.
f (v2i−1) = 0, 1≤ i≤ n−1

2

f (v2i) = 1, 1≤ i≤ n−1
2

f (vn) = 1,

f (v
′
i) = 1, 1≤ i≤ n−1

f (v
′
n) = 0

Using above pattern we have

v f (0)+ e f (0)+1 = v f (1)+ e f (1) = 5n−1
2

Thus f satisfies the condition |(v f (0)+ e f (0))− (v f (1)+ e f (1))| ≤ 1.

That is, spl(Cn) is total product cordial graph. �

Illustration 4.4.2. Consider a graph spl(C7). The corresponding total product cordial

labeling is shown in Figure 4.7.

0

0

0

0
1

1

1

1

1

1

1

1 1

1

FIGURE 4.7: spl(C7) and its total product cordial labeling

Theorem 4.4.3. spl(Pn) is total product cordial graph.

Proof. Let u1, u2, u3 . . . , un be the vertices corresponding to v1, v2, v3 . . . , vn of Pn

which are added to obtain spl(Pn).

We define vertex labeling f : V (spl(Pn))
⋃

E(spl(Pn))→{0,1} as follows. We consider

following two cases.
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Case 1: n is even
f (vi) = 0, 1≤ i≤ n

2

f (v n
2+i) = 1, 1≤ i≤ n

2

f (ui) = 0, 1≤ i≤ n
2 −1

f (u n
2+i) = 1, 0≤ i≤ n

2

Using above pattern we have

v f (0) + e f (0) + 1 = v f (1) + e f (1) = 2n+1

Case 2: n is odd
f (vi) = 0, 1≤ i≤

⌊n
2

⌋
f (v n

2+i) = 1, 1≤ i≤
⌊n

2

⌋
f (vn) = 0,

f (ui) = 0, 1≤ i≤ n−1
2 −1

f (u n−1
2 +i) = 1, 0≤ i≤ n+1

2

Using above pattern we have

v f (0) + e f (0) = v f (1) + e f (1) = 5n−3
2

Thus f satisfies the condition |(v f (0) + e f (0))− v f (1) + e f (1)| ≤ 1.

That is, spl(Pn) is total product cordial graph. �

Illustration 4.4.4. Consider a graph spl(P7). The total product cordial labeling is as

shown in Figure 4.8.

0 0 0 1 1 1 0

0 0 1 1 1 1 1

FIGURE 4.8: spl(P7) and its total product cordial labeling

Theorem 4.4.5. spl(K1,n) is total product cordial graph.

Proof. Let u, u1, u2, u3,......un be the vertices corresponding to v, v1, v2, v3........vn of

K1,n which are added to obtain spl(K1,n), where v be the apex vertex. We define vertex

labeling f : V (spl(K1,n))
⋃

E(spl(K1,n))→ {0,1} as follows. We consider following

two cases.
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Case 1: n is even
f (v) = 0, f (u) = 1

f (vi) = 1, 1≤ i≤ n

f (u2i−1) = 0, 1≤ i≤ n
2

f (u2i) = 1, 1≤ i≤ n
2

In view of the labeling pattern defined above we have

v f (0) + e f (0) = v f (1) + e f (1) = 5n
2 +1

Case 2: n is odd
f (v) = 0, f (u) = 1

f (vi) = 1, 1≤ i≤ n

f (u2i−i) = 0, 1≤ i≤ bn
2c+1

f (u2i) = 1, 1≤ i≤ bn
2c

In view of the labeling pattern defined above we have

v f (0) + e f (0) = v f (1) + e f (1) + 1 = 5n+1
2 +1

Thus f satisfies the condition |(v f (0) + e f (0))− v f (1) + e f (1)| ≤ 1.

That is, spl(K1,n) is a total product cordial graph. �

Illustration 4.4.6. Consider a graph spl(K1,6) . The total product cordial labeling is as

shown in Figure 4.9.

1

0

1

1

1

1

1

1

1

1
1

0

0
0

FIGURE 4.9: spl(K1,6) and its total product cordial labeling
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Theorem 4.4.7. spl(Cn
⊙

K1) is total product cordial graph.

Proof. Consider the crown Cn
⊙

K1 in which v1, v2, v3........vn be the vertices of cycle

Cn and u1, u2, u3,......un be the pendant vertices attached at each vertex of Cn. Let v
′
1, v

′
2,

v
′
3........v

′
n and u

′
1, u

′
2, u

′
3,......u

′
n be the vertices corresponding to the vertices of Cn and

K1 which are added to obtain spl(Cn
⊙

K1).

We define vertex labeling f : V (spl(Cn
⊙

K1))
⋃

E(spl(Cn
⊙

K1))→{0,1} as follows.

f (vi) = 1, 1≤ i≤ n

f (v
′
i) = 1, 1≤ i≤ n

f (ui) = 0, 1≤ i≤ n

f (u
′
i) = 0, 1≤ i≤ n

using above pattern we have

v f (0) + e f (0) = v f (1) + e f (1) = 5n

Thus f satisfies the condition |(v f (0) + e f (0))− v f (1) + e f (1)| ≤ 1.

That is, spl(Cn
⊙

K1) is total product cordial graph. �

Illustration 4.4.8. Consider a graph spl(C5
⊙

K1). The total product cordial labeling is

as shown in Figure 4.10.
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FIGURE 4.10: spl(C5
⊙

K1) and its total product cordial labeling
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Theorem 4.4.9. spl(Fn) is total product cordial graph.

Proof. Let v1, v2, v3........v2n be the vertices of Fn and v be the apex vertex. Let v
′
,v
′
1, v

′
2,

v
′
3........v

′
2n be the vertices corresponding to the vertices of Fn which are added to obtain

spl(Fn).

We define vertex labeling f : V (spl(Fn))
⋃

E(spl(Fn))→{0,1} as follows. We consider

following two cases.

Case 1: n even
f (v) = 1, f (v

′
) = 0 f (vi) = 0, 1≤ i≤ n

f (vi) = 1, n+1≤ i≤ 2n

f (v
′
2i−1) = 0, 1≤ i≤ n

2

f (v
′
2i) = 1, 1≤ i≤ n

2

f (v
′
i) = 1, n+1≤ i≤ 2n

In view of the labeling pattern defined above we have

v f (0) + e f (0) = v f (1) + e f (1) = 13n
2 +1

Case 2: n odd
f (v) = 1, f (v

′
) = 1, f (v1) = 0

f (vi) = 1, otherwise

f (v
′
2) = 1

f (v
′
i) = 0, otherwise

In view of the labeling pattern defined above we have

v f (0) + e f (0) + 1 = v f (1) + e f (1) = 13n+1
2 +1

Thus we conclude that the graph f satisfies the condition

|(v f (0) + e f (0))− v f (1) + e f (1)| ≤ 1

That is, spl(Fn) is a total product cordial graph. �
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Illustration 4.4.10. Consider a graph spl(F4). The total product cordial labeling is as

shown in Figure 4.11.
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FIGURE 4.11: spl(F4) and its total product cordial labeling

Theorem 4.4.11. spl(Sn) is total product cordial graph.

Proof. Let v1, v2, v3........vn be the vertices of Sn and v1 be the apex vertex of Sn. Let

v
′
1, v

′
2, v

′
3........v

′
n be the vertices corresponding to the vertices of Sn which are added to

obtain Spl(Sn).

We define vertex labeling f : V (spl(Sn))
⋃

E(spl(Sn))→{0,1} as follows.

f (vi) = 1, 1≤ i≤ n−1

f (vi) = 0, i = n

f (v
′
i) = 1, i = 1,n

f (v
′
i) = 0, 2≤ i≤ n−1

Using above pattern we have

v f (0) + e f (0) + 1 = v f (1) + e f (1) = 4n−4

Thus f satisfies the condition |(v f (0) + e f (0))− v f (1) + e f (1)| ≤ 1

That is, spl(Sn) is total product cordial graph. �
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Illustration 4.4.12. Consider a graph spl(S6). The total product cordial labeling is as

shown in Figure 4.12.
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0
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0

FIGURE 4.12: spl(S6) and its total product cordial labeling

4.5 Prime Cordial Labeling

Any investigation related to prime numbers is much interesting as the number of

prime is infinite and there are arbitrarily large gaps in the series of primes. When this

important characteristic is take-up in the frame work of graph theory then it becomes

more appealing. In the present section we will investigate some results on prime cordial

labeling of graphs.

4.5.1 Prime Cordial graph

A prime cordial labeling of a graph G with vertex set V (G) is a bijection f : V (G)−→

{1,2,3, . . . , p} such that

f ∗(e = uv) = 1; if gcd( f (u), f (v)) = 1

= 0; otherwise
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and |e f (0)− e f (1)| ≤ 1. A graph which admits prime cordial labeling is called a prime

cordial graph.

4.5.2 Some existing results

Sundaram, Ponraj and Somasundaram[65] have shown that following graphs are prime

cordial.

• Cn if and only if n≥ 6.

• Pn if and only if n , 3.

• The graph K1,n(n odd).

• The graph obtained by subdividing each edge of K1,n if and only if n≥ 3.

• bistars; dragons; crowns.

• Triangular snakes Tn if and only if n≥ 3.

• The ladder graphs Ln.

• K1,n if n is even and there exists a prime p such that 2p < n+1 < 3p.

• K2,n if n is even and there exists a prime p such that 3p < n+2 < 4p.

• K3,n if n is odd and there exists a prime p such that 5p < n+3 < 6p.

• If G is a prime cordial graph of even size, then the graph obtained by identifying

the central vertex of K1,n with the vertex of G labeled with 2 is prime cordial and

if G is a prime cordial graph of odd size, then the graph obtained by identifying

the central vertex of K1,2n with the vertex of G labeled with 2 is prime cordial.

In the same paper they have also shown that Km,n is not prime cordial for a number of

special cases of m and n.
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4.6 Prime Cordial Labeling For Some Graphs

Theorem 4.6.1. T (P3) is not a prime cordial graph.

Proof. For the graph T (P3) the possible pairs of labels of adjacent vertices are (1,2),

(1,3), (1,4), (1,5), (2,3), (2,4), (2,5), (3,4), (3,5), (4,5). Then obviously e f (0) = 1,

e f (1) = 6. That is, |e f (0)− e f (1)| = 5 and in all other possible arrangement of vertex

labels |e f (0)− e f (1)|> 5. Therefore T (P3) is not a prime cordial graph. �

Theorem 4.6.2. T (Pn) is not a prime cordial graph, for n = 2,4.

Proof. For the graph T (P2) the possible pairs of labels of adjacent vertices are (1,2),

(1,3), (2,3) then obviously e f (0) = 0, e f (1) = 3. Therefore T (P2) is not a prime cordial

graph.

For the graph T (P4) the possible pairs of labels of adjacent vertices are (1,2), (1,3), (1,4),

(1,5), (1,6), (1,7), (2,3), (2,4), (2,5), (2,6), (2,7), (3,4), (3,5), (3,6), (3,7), (4,5), (4,6),

(4,7), (5,6), (5,7), (6,7). Then obviously e f (0) = 4, e f (1) = 7. That is |e f (0)−e f (1)|=

3 and in all other possible arrangement of vertex labels |e f (0)−e f (1)|> 3. Thus T (P4)

is not a prime cordial graph. �

Theorem 4.6.3. T (Pn) is prime cordial graph, for all n≥ 5.

Proof. If v1,v2.......vn and e1,e2.......en be the vertices and edges of Pn then v1,v2.......vn,

e1,e2.......en are vertices of T (Pn).

We define vertex labeling f : V (T (Pn)) −→ {1,2,3......|V (G)|} we consider following

four cases.

Case 1: n = 5

The case when n = 5 is to be dealt separately. The graph T (P5) and its prime cordial

labeling is shown in Figure 4.13.
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2 4 3 1 7

8 6 9 5

FIGURE 4.13: T (P5) and its prime cordial labeling

Case 2: n odd, n≥ 7
f (v1) = 2, f (v2) = 4

f (vi+2) = 2(i+3), 1≤ i≤
⌊n

2

⌋
−2,

f (vb n
2c+1) = 3, f (vb n

2c+2) = 1, f (vb n
2c+3) = 7,

f (vb n
2c+3+i) = 4i+9, 1≤ i≤

⌊n
2

⌋
−2,

f (ei) = f (vb n
2c)+2i, 1≤ i≤

⌊n
2

⌋
−1,

f (eb n
2c) = 6, f (eb n

2c+1) = 9, f (eb n
2c+2) = 5,

f (eb n
2c+i+2) = 4i+7, 1≤ i≤

⌊n
2

⌋
−2,

Using above pattern we have e f (0) = e f (1)+1 = 2(n−1)

Case 3: n = 6

The case when n = 6 is to be dealt separately. The graph T (P6) and its prime cordial

labeling is shown in Figure 4.14.

2 4 6 9 5

8 10 3 1

11

7

FIGURE 4.14: T (P6) and its prime cordial labeling

Case 4: n even, n≥ 8
f (v1) = 2, f (v2) = 4

f (vi+2) = 2(i+3), 1≤ i≤ n
2 −3,

f (v n
2
) = 6, f (v n

2+1) = 9, f (v n
2+2) = 5,
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f (v n
2+2+i) = 4i+7, 1≤ i≤ n

2 −2,

f (ei) = f (v n
2−1)+2i, 1≤ i≤ n

2 −1,

f (e n
2
) = 3, f (e n

2+1) = 1, f (e n
2+2) = 7,

f (e n
2+i+2) = 4i+9, 1≤ i≤ n

2 −3,

Usinf above pattern we have e f (0) = e f (1)+1 = 2(n−1)

That is, T (Pn) is a prime cordial graph, for every n≥ 5. �

Illustration 4.6.4. The graph T (P7) and its prime cordial labeling is as shown in Figure

4.15.

2 4 8 3 1

10 12 6 9

7
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13
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FIGURE 4.15: T (P7) and its prime cordial labeling

Theorem 4.6.5. T (C3) is not a prime cordial graph.

Proof. For the graph T (C3) the possible pairs of labels of adjacent vertices are (1,2),

(1,3), (1,4), (1,5), (1,6), (2,3), (2,4), (2,5), (2,6), (3,4), (3,5), (3,6), (4,5), (4,6), (5,6).

Then obviously e f (0) = 4, e f (1) = 8. That is, |e f (0)− e f (1)| = 4 and in all other

possible arrangement of vertex labels |e f (0)− e f (1)| > 4. Therefore T (C3) is not a

prime cordial graph. �

Theorem 4.6.6. T (C4) is not a prime cordial graph.

Proof. For the graph T (C4) the possible pairs of labels of adjacent vertices are (1,2),

(1,3), (1,4), (1,5), (1,6), (1,7), (1,8), (2,3), (2,4), (2,5), (2,6), (2,7), (2,8), (3,4), (3,5),

(3,6), (3,7), (3,8), (4,5), (4,6), (4,7), (4,8), (5,6), (5,7), (5,8), (6,7), (6,8), (7,8). Then

obviously e f (0) = 6, e f (1) = 10. That is, |e f (0)− e f (1)| = 4 and in all other possible

arrangement of vertex labels |e f (0)−e f (1)|> 4. Therefore T (C4) is not a prime cordial

graph. �
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Theorem 4.6.7. T (Cn) is a prime cordial graph, for every n≥ 5.

Proof. If v1,v2.......vn and e1,e2.......en be the vertices and edges of Cn then v1,v2.......vn,

e1,e2.......en are vertices of T (Cn).

To define vertex labeling f : V (T (Cn) −→ {1,2,3......|V (G)|} we consider following

two cases.

Case 1: n even, n≥ 6
f (v1) = 2, f (v2) = 8

f (vi+2) = 4i+10, 1≤ i≤ n
2 −3,

f (v n
2
) = 12, f (v n

2+1) = 3, f (v n
2+2) = 9, f (v n

2+3) = 7,

f (v n
2+3+i) = 4i+9, 1≤ i≤ n

2 −3,

f (e1) = 4, f (e2) = 10

f (ei+2) = 4(i+3), 1≤ i≤ n
2 −3,

f (e n
2
) = 6, f (e n

2+1) = 1, f (e n
2+2) = 5,

f (e n
2+i+2) = 4i+7, 1≤ i≤ n

2 −2,

Case 2: n odd, n≥ 5
f (v1) = 2,

f (vi+1) = 4(i+1), 1≤ i≤ bn
2c−1,

f (vb n
2c+1) = 6, f (vb n

2c+2) = 9, f (vb n
2c+3) = 5,

f (vb n
2c+3+i) = 4i+7, 1≤ i≤ n−

⌊n
2

⌋
−3,

f (e1) = 4,

f (ei+1) = 4i+6, 1≤ i≤
⌊n

2

⌋
−1,

f (eb n
2c+1) = 3, f (eb n

2c+2) = 1, f (eb n
2c+3) = 7,

f (eb n
2c+i+3) = 4i+9, 1≤ i≤ n−bn

2c−3,

In view of the labeling pattern defined above we have e f (0) = e f (1) = 2n

Thus f is a prime cordial labeling of T (Cn). �
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Illustration 4.6.8. The graph T (C6) and its prime cordial labeling is shown in Figure

4.16.
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FIGURE 4.16: T (C6) and its prime cordial labeling

Theorem 4.6.9. P2[Pm] is not a prime cordial graph, for m = 2,4.

Proof. For the graph P2[P2] the possible pairs of labels of adjacent vertices are (1,2),

(1,3), (1,4), (2,3), (2,4), (3,4). Then obviously e f (0) = 1, e f (1) = 5. That is, |e f (0)−

e f (1)| = 4 and in all other possible arrangement of vertex labels |e f (0)− e f (1)| > 4.

Therefore P2[P2] is not a prime cordial graph.

For the graph P2[P4] the possible pairs of labels of adjacent vertices are (1,2), (1,3),

(1,4), (1,5), (1,6), (1,7), (1,8), (2,3), (2,4), (2,5), (2,6), (2,7), (2,8), (3,4), (3,5), (3,6),

(3,7), (3,8), (4,5), (4,6), (4,7), (4,8), (5,6), (5,7), (5,8), (6,7), (6,8), (7,8). Then obviously

e f (0) = 7, e f (1) = 9. That is, |e f (0)−e f (1)|= 2 and in all other possible arrangement

of vertex labels |e f (0)− e f (1)|> 2. Therefore P2[P4] is not a prime cordial graph. �

Theorem 4.6.10. P2[P3] is not a prime cordial graph.

Proof. For the graph P2[P3] the possible pairs of labels of adjacent vertices are (1,2),

(1,3), (1,4), (1,5), (1,6), (2,3), (2,4), (2,5), (2,6), (3,4), (3,5), (3,6), (4,5), (4,6), (5,6).

Then obviously e f (0) = 4, e f (1) = 7. That is, |e f (0)− e f (1)| = 3 and in all other

possible arrangement of vertex labels |e f (0)− e f (1)| > 3. Therefore P2[P3] is not a

prime cordial graph. �
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Theorem 4.6.11. P2[Pm] is prime cordial graph, for all m≥ 5.

Proof. If u1,u2.......um be the vertices of Pm and v1,v2 be the vertices P2.

We define vertex labeling f : V (P2[Pm])−→ {1,2,3......|V (G)|} we consider following

two cases.

Case 1: m even, m≥ 6
f (u1,v1) = 2, f (u2,v1) = 8

f (u2+i,v1) = 4i+10, 1≤ i≤ m
2 −3,

f (u m
2
,v1) = 12,

f (u m
2 +i,v1) = 4i−3, 1≤ i≤ m

2 ,

f (u1,v2) = 4, f (u2,v2) = 10

f (u2+i,v2) = 4(i+3), 1≤ i≤ m
2 −3,

f (u m
2
,v2) = 6, f (u m

2 +1,v2) = 3,

f (u m
2 +1+i,v2) = 4i+3, 1≤ i≤ m

2 −1,

Using above pattern we have e f (0) = e f (1) = 5n−4
2

Case 2: m odd, m≥ 5
f (ui,v1) = 4(i+1), 1≤ i≤

⌊m
2

⌋
−1,

f (ubm
2 c,v1) = 2,

f (ubm
2 c+1,v1) = 6, f (ubm

2 c+2,v1) = 9, f (ubm
2 c+3,v1) = 5,

f (ubm
2 c+3+i,v1) = 4i+7, 1≤ i≤

⌊m
2

⌋
−2,

f (u1,v2) = 4,

f (u1+i,v2) = 4i+6, 1≤ i≤
⌊m

2

⌋
−1,

f (ubm
2 c+1,v2) = 3, f (ubm

2 c+2,v2) = 1, f (ubm
2 c+3,v2) = 7,

f (ubm
2 c+2+i,v2) = 4i+9, 1≤ i≤

⌊m
2

⌋
−2,

Using above pattern we have e f (0) = e f (1)+1 = 2n+ bn
2c−1.

Thus in case 1 and case 2 the graph f satisfies the condition |e f (0)− e f (1)| ≤ 1.

That is, P2[Pm] is a prime cordial graph for all m≥ 5. �
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Illustration 4.6.12. The graph P2[P5] and its prime cordial labeling is shown in Figure

4.17.

8 2 6 9 5

4 10 3 1 7

FIGURE 4.17: P2[P5] and its prime cordial labeling

Theorem 4.6.13. The graph obtained by joining two cycles by a path Pm admits prime

cordial labeling.

Proof. Let G be the graph obtained by joining two cycles Cn and C
′
n by a path Pm. Let

v1,v2.......vn,v
′
1,v

′
2.......v

′
n be the vertices of Cn and C

′
n respectively. Here u1,u2.......um

are the vertices of Pm.

We define vertex labeling f : V (G)−→ {1,2,3......|V (G)|} we consider following four

cases.

Case 1: m odd, m≥ 5
f (v1) = f (u1) = 2, f (v2) = 4

f (vi+2) = 2(i+3), 1≤ i≤ n−2,

f (ui+1) = f (vn)+2i, 1≤ i≤
⌊m

2

⌋
−2,

f (ubm
2 c) = 6, f (ubm

2 c+1) = 3, f (ubm
2 c+2) = 5,

f (ubm
2 c+2+i) = 2i+5, 1≤ i≤

⌊m
2

⌋
−2,

f (v
′
1) = f (um) = 1, f (v

′
i+1) = f (um−1)+2i, 1≤ i≤ n−1,

In view of the labeling pattern defined above we have e f (0) = e f (1) = n+
⌊m

2

⌋
Case 2: m = 3

f (v1) = f (u1) = 6, f (v2) = 2, f (v3) = 4

f (vi+3) = 2(i+3), 1≤ i≤ n−3,

f (u2) = 3, f (v
′
1) = f (u3) = 1, f (v

′
2) = 5,

f (v
′
2+i) = 2i+5, 1≤ i≤ n−2
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In view of the labeling pattern defined above we have e f (0) = e f (1) = n+1

Case 3: m even, m≥ 4
f (v1) = f (u1) = 2, f (v2) = 4

f (vi+2) = 2(i+3), 1≤ i≤ n−2,

f (ui+1) = f (vn)+2i, 1≤ i≤ m
2 −2,

f (u m
2
) = 6, f (u m

2 +1) = 3, f (u m
2 +2) = 5,

f (u m
2 +2+i) = 2i+5, 1≤ i≤ m

2 −3,

f (v
′
1) = f (um) = 1, f (v

′
i+1) = f (um−1)+2i, 1≤ i≤ n−1,

In view of the labeling pattern defined above we have

e f (0) = e f (1)+1 = n+ m
2

Case 4: m = 2
f (v1) = f (u1) = 2,

f (vi+1) = 2(i+1), 1≤ i≤ n−1,

f (v
′
1) = f (u2) = 1,

f (v
′
1+i) = 2i+1, 1≤ i≤ n−1

In view of the labeling pattern defined above we have e f (0)+1 = e f (1) = n+1

Thus in all the cases described above f satisfies the condition |e f (0)− e f (1)| ≤ 1.

That is, G is a prime cordial graph. �

Illustration 4.6.14. The graph obtained by joining two copies of C5 by the path P7 and

its prime cordial labeling is shown in Figure 4.18.
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14 6 3 15 7
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1113

15

FIGURE 4.18: The graph obtained by joining two copies of C5 and its prime cordial
labeling
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Theorem 4.6.15. The graph obtained by switching of an arbitrary vertex in cycle Cn

admits prime cordial labeling except for n = 5.

Proof. Let v1,v2.......vn be the successive vertices of Cn and Gv denotes the graph ob-

tained by switching of a vertex v. Without loss of generality let the switched vertex be

v1 and we initiate the labeling from the switched vertex v1.

We define vertex labeling f : V (Gv1) −→ {1,2,3......|V (Gv1)|} we consider following

four cases.

Case 1: n = 4

The case when n = 4 is to be dealt separately. The graph Gv1 and its prime cordial

labeling is shown in Figure 4.19.

1 3

4

2

FIGURE 4.19: The graph obtained by vertex switching in C4 and its prime cordial
labeling

Case 2: n even, n≥ 6
f (v1) = 2, f (v2) = 1, f (v3) = 4,

f (vi+3) = 2(i+3), 1≤ i≤ n
2 −3,

f (v n
2+1) = 6, f (v n

2+2) = 3,

f (v n
2+2+i) = 2i+3, 1≤ i≤ n

2 −2

Using above pattern we have e f (0) = e f (1)+1 = n−2

Case 3: n = 5

For the graph Gv1 the possible pairs of labels of adjacent vertices are (1,2), (1,3), (1,4),

(1,5), (2,3), (2,4), (2,5), (3,4), (3,5), (4,5). Then obviously e f (0) = 1, e f (1) = 4.
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That is, |e f (0)− e f (1)| = 3 and in all other possible arrangement of vertex labels

|e f (0)− e f (1)|> 3. Therefore Gv1 is not a prime cordial graph.

Case 4: n odd, n≥ 7
f (v1) = 2, f (v2) = 1, f (v3) = 4

f (vi+3) = 2(i+3), 1≤ i≤
⌊n

2

⌋
−3,

f (vb n
2c+1) = 6, f (vb n

2c+2) = 3,

f (vb n
2c+2+i) = 2i+3, 1≤ i≤

⌊n
2

⌋
−1,

Using above pattern we have e f (0)+1 = e f (1) = n−2

Thus in cases 1,2 and 4 f satisfies the condition for prime cordial labeling. That is, Gv1

is a prime cordial graph. �

Illustration 4.6.16. Consider the graph obtained by switching the vertex in C7. The

prime cordial labeling is as shown in Figure 4.20.

2

1

4

6 3

5

7

FIGURE 4.20: The graph obtained by vertex switching in C7 and its prime cordial
labeling
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4.7 Prime Cordial Labeling For Some Cycle Related

Graphs

Theorem 4.7.1. The graph obtained by duplicating each edge by a vertex in cycle Cn

admits prime cordial labeling except for n = 4.

Proof. Let C
′
n be the graph obtained by duplicating an edge by a vertex in a cycle Cn

then let v1, v2, . . . , vn be the vertices of cycle Cn and v
′
1, v

′
2, . . . , v

′
n be the added vertices

to obtain C
′
n corresponding to the vertices v1, v2, . . . , vn in Cn.

Define f : V (C
′
n)−→ {1,2,3 . . . ,2p}, we consider following two cases.

Case 1: n is odd

Sub Case 1: n = 3,5

The prime cordial labeling of C
′
n for n = 3,5 is as shown in Figure 4.21.

1

4
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6
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61

7

9 8

10

3

5

FIGURE 4.21: Prime cordial labeling of C
′
3 and C

′
5

Sub Case 2: n≥ 7
f (v1) = 2, f (v2) = 4,

f (v2+i) = 6+2i; 1≤ i≤
⌊n

2

⌋
−2

f (v n+1
2
) = 6,

f (v n+1
2 +1) = 1,

f (vb n
2c+2+i) = 4i+3; 1≤ i≤

⌊n
2

⌋
−1

f (v
′
i) = f (vb n

2c)+2i; 1≤ i≤
⌊n

2

⌋
f (v

′

b n
2c+1

) = 3,

f (v
′

b n
2c+1+i

) = 4i+1; 1≤ i≤
⌊n

2

⌋
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In the view of the labeling pattern defined above we have

e f (0)+1 = e f (1) = 3
⌊n

2

⌋
+2

Case 2: n is even

Sub Case 1: n = 4

For the graph C
′
4 the possible pairs of labels of adjacent vertices are (1,2),(1,3),(1,4),(1,5),

(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),

(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8).

Then obviously e f (0) = 5,e f (1) = 7. That is, e f (1)−e f (0) = 2 and in all other possible

arrangement of vertex labels |e f (0)− e f (1)| ≥ 2. Thus C
′
4 is not a prime cordial graph.

Sub Case 2: n = 6,8,10

The prime cordial labeling of C
′
6, C

′
8 and C

′
10 is as shown in Figure 4.22.

4

6

3

5

9

2
8

10

121

7

11

10

12

14

16

9

3
1

5
7

11

15

13

2
4

8

6

2
4

8

10

6
3

5

9

13

17

20

12

14

16

18

1

7

11

15

19

FIGURE 4.22: Prime cordial labeling of C
′
6, C

′
8 and C

′
10

Sub Case 3: n≥ 12
f (v1) = 2, f (v2) = 4, f (v3) = 8, f (v4) = 10, f (v5) = 14,

f (v5+i) = 14+2i; 1≤ i≤ n
2 −6

f (v n
2
) = 6,

f (v n+1
2 +1) = 3,

f (v n
2+1+i) = 4i+1; 1≤ i≤ n

2 −1

f (v
′
1) = 2n

f (v
′
1+i) = f (v n

2−1)+2i; 1≤ i≤ n
2 −2

f (v
′
n
2
) = 12

f (v
′
n
2+1) = 1

f (v
′
n
2+1+i) = 4i+3; 1≤ i≤ n

2 −1
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In the view of the labeling above defined we have

e f (0) = e f (1) = 3n
2

Thus in above two cases we have |e f (0)− e f (1)| ≤ 1 Hence the graph obtained by

duplicating each edge by a vertex in a cycle Cn admits prime cordial labeling except for

n = 4. �

Illustration 4.7.2. Consider a graph C
′
12. The prime cordial labeling is as shown in

Figure 4.23.
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FIGURE 4.23: Prime cordial labeling of C
′
12

Theorem 4.7.3. The graph obtained by duplicating a vertex by an edge in cycle Cn is

prime cordial graph.

Proof. Let C
′
n be the graph obtained by duplicating a vertex by an edge in cycle Cn then

let v1, v2, . . . , vn be the vertices of cycle Cn and v
′
1, v

′
2, . . . , v

′
2n be the added vertices to

obtain C
′
n corresponding to the vertices v1, v2, . . . , vn in Cn.

To define f : V (C
′
n)−→ {1,2,3 . . . ,3p} we consider following two cases.

Case 1: n is odd

Sub Case 1: n = 3,5

The prime cordial labeling of C
′
n for n = 3,5 is shown in Figure 4.24.
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FIGURE 4.24: Prime cordial labeling of C
′
3 and C

′
5

Sub Case 2: n≥ 7

f (v1) = 2, f (v2) = 4,

f (v2+i) = 6+2i; 1≤ i≤
⌊n

2

⌋
−2

f (v n+1
2
) = 3,

f (v n+1
2 +1) = 1,

f (vb n
2c+2+i) = 6i+5; 1≤ i≤

⌊n
2

⌋
−1

f (v
′
i) = f (vb n

2c)+2i; 1≤ i≤ 2
⌊n

2

⌋
f (v

′

2b n
2c+1

) = 6, f (v
′

2b n
2c+2

) = 9

f (v
′

2b n
2c+3

) = 5, f (v
′

2b n
2c+4

) = 7

f (v
′

2b n
2c+4+2i−1

) = 6i+7; 1≤ i≤
⌊n

2

⌋
−1

f (v
′

2b n
2c+4+2i

) = 6i+9; 1≤ i≤
⌊n

2

⌋
−1

Case 2: n is even

Sub Case 1: n = 4,6

The prime cordial labeling of C
′
n for n = 4,6 is shown in Figure 4.25.
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FIGURE 4.25: Prime cordial labeling of C
′
4 and C

′
6

Sub Case 2: n≥ 8

f (v1) = 2, f (v2) = 4,

f (v2+i) = 6+2i; 1≤ i≤ n
2 −3

f (v n
2
) = 6,

f (v n
2+1) = 3,

f (v n
2+1+i) = 6i+1; 1≤ i≤ n

2 −1

f (v
′
i) = f (v n

2−1)+2i; 1≤ i≤ n

f (v
′
n+1) = 1, f (v

′
n+2) = 5

f (v
′
n+1+2i) = 6i+3; 1≤ i≤ n

2 −1

f (v
′
n+2+2i) = 6i+5; 1≤ i≤ n

2 −1

Thus in both the cases defined above we have

e f (0) = e f (1) = 2n

Hence C
′
n admits prime cordial labeling. �
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Illustration 4.7.4. The graph C
′
7 and its prime cordial labeling is shown in Figure 4.26.
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FIGURE 4.26: Prime cordial labeling of C
′
7

Theorem 4.7.5. The path union of m copies of cycle Cn is a prime cordial graph.

Proof. Let G
′

be the path union of m copies of cycle Cn and v1, v2, v3, v4. . . ,vmn be the

vertices of G
′
.

To define f : V (G
′
)−→ {1,2,3 . . . ,mn} we consider following four cases.

Case 1: n even, m even

f (vi) = 2i; 1≤ i≤ mn
2

f (v mn
2 +1) = 1,

f (v mn
2 +1+i) = 4i−1; 1≤ i≤ n

2

f (v mn
2 + n

2+2) = f (v mn
2 + n

2+1)−2,

f (v mn
2 + n

2+2+i) = f (v mn
2 + n

2+2)−4i; 1≤ i≤ n
2 −2

f (v mn
2 + jn+i) = f (v mn

2 +( j−1)n+i)+2n; 1≤ j ≤ m
2 −1, 1≤ i≤ n

Case 2: n odd, m even

f (vi) = 2i; 1≤ i≤ mn
2

f (v mn
2 +1) = 1,

f (v mn
2 +1+i) = 4i−1; 1≤ i≤ bn

2c

f (v mn
2 +b n

2c+2) = f (v mn
2 + n

2+1)+2,
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f (v mn
2 +b n

2c+2+i) = f (v mn
2 +b n

2c+2)−4i; 1≤ i≤
⌊n

2

⌋
−1

f (v mn
2 + jn+i) = f (v mn

2 +( j−1)n+i)+2n; 1≤ j ≤ m
2 −1, 1≤ i≤ n

using above pattern we have e f (0)+1 = e f (1) =
m(n+1)

2

Case 3: n even, m odd

f (v1) = 4, f (v2) = 8,

f (v2+i) = 8+2i; 1≤ i≤ n
⌊m

2

⌋
−2

f (vnbm
2 c+1) = 2

f (vnbm
2 c+1+i) = f (vnbm

2 c)+2i; 1≤ i≤ n
2 −2

f (vnbm
2 c+ n

2
) = 6,

f (vnbm
2 c+ n

2+1) = 3, f (vnbm
2 c+ n

2+2) = 1

f (vnbm
2 c+ n

2+2+i) = 2i+3 1≤ i≤ n
2 −2

f (vnbm
2 c+n+1) = f (vnbm

2 c+n)+2 or f (vnbm
2 c+n+1) = f (vnbm

2 c+n)+4 for n = 4

f (vnbm
2 c+n+2) = f (vnbm

2 c+n+1)+2,

f (vnbm
2 c+n+2+i) = f (vnbm

2 c+n+1)+4i, 1≤ i≤ n
2 −1

f (vnbm
2 c+n+ n

2+2) = f (vnbm
2 c+n+ n

2+1)+2

f (vnbm
2 c+n+ n

2+2+i) = f (vnbm
2 c+n+ n

2+2)−4i; 1≤ i≤ n
2 −2

f (vnbm
2 c+( j+1)n+i) = f (vn m

2 +( j)n+i)+2n; 1≤ j ≤
⌊m

2

⌋
−1, 1≤ i≤ n

using above pattern we have e f (0) = e f (1) =
⌊m

2

⌋
(n+1)+ n

2

Case 4: n odd, m odd

Sub Case 1: n = 3

f (v1) = 2, f (v2) = 4,

f (v2+i) = 6+2i; 1≤ i≤ n
⌊m

2

⌋
−2

f (vnbm
2 c+1) = 6,

f (vnbm
2 c+2) = 3,

f (vnbm
2 c+3) = 5,

f (vnbm
2 c+4) = 1;

f (vnbm
2 c+3+i) = 2i+5; 1≤ i≤ n

⌊m
2

⌋
−1

using above pattern we have e f (0)+1 = e f (1) =
⌊m

2

⌋
(n+1)+2

Sub Case 2: n≥ 5

f (v1) = 4, f (v2) = 8,

f (v2+i) = 8+2i; 1≤ i≤ n
⌊m

2

⌋
−2
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f (vnbm
2 c+1) = 2,

f (vnbm
2 c+1+i) = f (vnbm

2 c)+2i; 1≤ i≤
⌊n

2

⌋
−2

f (vnbm
2 c+b n

2c) = 6,

f (vnbm
2 c+b n

2c+1) = 3,

f (vnbm
2 c+b n

2c+2) = 1,

f (vnbm
2 c+b n

2c+2+i) = 2i+3, 1≤ i≤
⌊n

2

⌋
−1

f (vnbm
2 c+n+1) = f (vnbm

2 c+n)+2,

f (vnbm
2 c+n+1+i) = f (vnbm

2 c+n+1)+2i, 1≤ i≤ n−1

f (vnbm
2 c+( j+1)n+i) = f (vn m

2 +( j)n+i)+2n; 1≤ j ≤
⌊m

2

⌋
−1, 1≤ i≤ n

using above pattern we have e f (0)+1 = e f (1) = bm
2 c(n+1)+ bn

2c+1

Thus in all the above cases we have |e f (0)− e f (1)| ≤ 1.

Hence G
′
admits prime cordial labeling. �

Illustration 4.7.6. Consider a path union of three copies of C7. The prime cordial

labeling is as shown in Figure 4.27.
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FIGURE 4.27: Prime cordial labeling of C
′
7

Theorem 4.7.7. The friendship graph Fn is a prime cordial graph for n≥ 3.

Proof. Let v1 be the vertex common to all the cycles. Without loss of generality we

start the label assignment from v1.

To define f : V (Fn)−→ {1,2,3 . . . ,2n+1}, we consider following two cases.

Case 1: n even

let p be the highest prime such that 3p≤ 2n+1,

f (v1) = 2p,

now label the remaining vertices from 1 to 2n+1 first even and then odd except 2p.
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In view of the labeling pattern defined above we have

e f (0) = e f (1) = 3n
2

Case 2: n odd

let p be the highest prime such that 2p≤ 2n+1,

f (v1) = 2p,

now label the remaining vertices from 1 to 2n+1 first even and then odd except 2p.

In view of the labeling above defined we have

e f (0)+1 = e f (1) = 3bn
2c+2

Thus in above two cases |e f (0)− e f (1)| ≤ 1

Hence friendship graph Fn admits prime cordial labeling. �

Illustration 4.7.8. Consider the friendship graph F8. The prime cordial labeling is as

shown in Figure 4.28.
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FIGURE 4.28: Prime cordial labeling of F8
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4.8 Concluding Remarks and Scope of Further Research

This chapter was targeted to discuss two labelings with cordial theme. We have

investigated several results for total product cordial labeling and prime cordial labeling.

To derive similar results in the context of different graph labeling problems and for

various graph families is an open area of research.

The next chapter is focused on Fibonacci graceful labeling of graphs.
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102
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5.1 Introduction

The brief account of graceful labeling is given in chapter 3. As we mention there

the Ringel conjecture and many efforts to settle it provided the reason for various graph

labeling problems. Some labeling with variations in graceful theme are also introduced.

Some of them are edge graceful labeling, odd graceful labeling, Fibonacci graceful

labeling etc. The present chapter is intended to discuss Fibonacci graceful labeling and

its extension.

5.2 Fibonacci and Super Fibonacci Graceful Labeling

5.2.1 Fibonacci numbers

The Fibonacci numbers F0, F1, F2 . . . are defined by F0 = 0, F1 = 1, F2 = 1 and Fn+1 =

Fn +Fn−1.

5.2.2 Fibonacci graceful labeling

The function f : V (G)→ {0,1,2, .........Fq} (where Fq is the qth Fibonacci number)

is said to be Fibonacci graceful if f ∗ : E(G)→ {F1,F2, ......Fq} defined by f ∗(uv) =

| f (u)− f (v)| is bijective.

5.2.3 Super Fibonacci graceful labeling

The function f : V (G) → {0,F1,F2, .........Fq} (where Fq is the qth Fibonacci num-

ber) is said to be Super Fibonacci graceful if the induced edge labeling f ∗ : E(G)→

{F1,F2, ......Fq} defined by f ∗(uv) = | f (u)− f (v)| is bijective.

Above two concepts were introduced by Kathiresen and Amutha [46]. Deviating from

the standard definition of Fibonacci numbers they assumed that F1 = 1,F2 = 2,F3 =

3,F4 = 5, ........ which also avoid repetition of 1 as vertex(edge) label.
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5.2.4 Some existing results

Kathiresen and Amutha [46] have proved that

• Kn is Fibonacci graceful if and only if n≤ 3.

• If G is Eulerian and Fibonacci graceful then q≡ 0(mod 3).

• Every path Pn of length n is Fibonacci graceful.

• P2
n is a Fibonacci graceful graph.

• Caterpillars are Fibonacci graceful.

• The bistar Bm,n is Fibonacci graceful but not Super Fibonacci graceful for n≥ 5.

• Cn is Super Fibonacci graceful if and only if n≡ 0(mod 3).

• Every fan Fn is Super Fibonacci graceful.

• If G is Fibonacci or Super Fibonacci graceful then its pendant edge extension G′

is Fibonacci graceful.

• If G1 and G2 are Super Fibonacci graceful in which no two adjacent vertices have

the labeling 1 and 2, then their union G1∪G2 is Fibonacci graceful.

• If G1, G2, .......,Gn are super Fibonacci graceful graphs in which no two adjacent

vertices are labeled with 1 and 2 then amalgamation of G1, G2, .......,Gn obtained

by identifying the vertices having labels 0 is also a super Fibonacci graceful.
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5.3 Fibonacci and Super Fibonacci Graceful Labeling

of Some Graphs

Theorem 5.3.1. Trees are Fibonacci graceful.

Proof. Consider a vertex with minimum eccentricity as the root of tree T . Let this ver-

tex be v. Without loss of generality at each level of tree T we initiate the labeling from

left to right. Let P1,P2,P3, ..........Pn be the children of v.

Define f : V (T )−→ {0,1,2......Fq} in the following manner.

f (v) = 0, f (P1) = F1

Now if P1
1i(1≤ i≤ t) are children of P1 then

f (P1
1i) = f (P1)+Fi+1, 1≤ i≤ t

If there are r vertices at level two of P1 and out of these r vertices, r1 be the children of

P1
11 then label them as follows,

f (P1
11i) = f (P1

11)+Ft+1+i, 1≤ i≤ r1

Let there are r2 vertices, which are children of P1
12 then label them as follows,

f (P1
12i) = f (P1

12)+Ft+1+r1+i, 1≤ i≤ r2

Following the same procedure to label all the vertices of a subtree with root as P1.

we can assign label to each vertex of the subtree with roots as P2,P3, ..........Pn−1 and

define f (Pi+1) = Ffi+1, where Ffi is the f th
i Fibonacci number assign to the last edge of

the tree rooted at Pi.

Now for the vertex Pn. Define f (Pn) = Fq

Let us denote Pn
i j, where i is the level of vertex and j is number of vertices at ith level. At

this stage one has to be cautious to avoid the repeatation of vertex labels in right most

branch. For that we first assign vertex label to that vertex which is adjacent to Fq and

is a internal vertex of the path whose length is largest among all the paths whose origin

is Fq(That is, Fq is a root). Without loss of generality we consider this path to be a left

most path to Fq and continue label assignment from left to right as stated earlier.

If Pn
1i(1≤ i≤ s) be the children of Pn then define

f (Pn
1i) = f (Pn)−Fq−i, 1≤ i≤ s

If there are Pn
2i(1 ≤ i ≤ b) vertices at level two of Pn and out of these b vertices, b1 be
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the children of P11 then label them follows.

f (Pn
2i) = f (Pn

11)−Fq−s−i, 1≤ i≤ b1

If there are b2 vertices, which are children of Pn
12 then label them as follows.

f (Pn
2(b1+i)

) = f (Pn
12)−Fq−s−b1−i, 1≤ i≤ b2

We will also consider the situation when all the vertices of subtree rooted at Fq is having

all the vertices of degree two after ith level then we define labeling as follows.

f (Pn
(i+1)1) = f (Pn

i1)+ (−1)(i) Fq−(labeled vertices in the branchrooted at Pn) Continue this label-

ing scheme unless all the vertices of a subtree with root as Pn are labeled.

Thus we have labeled all the vertices at each level. That is, T admits Fibonacci graceful

labeling and accordingly trees are Fibonacci graceful graph. �

Illustration 5.3.2. Consider the tree with 12 edges then the Fibonacci graceful labeling

is as follows.
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FIGURE 5.1: Fibonacci graceful labeling of a tree with 12 edges

Theorem 5.3.3. Wheels are not Fibonacci graceful.

Proof. Let v be the apex vertex of the wheel Wn and v1,v2.......vn be the rim vertices.

Define f : V (Wn)−→ {0,1,2......Fq}

We consider following cases.

Case 1: Let f (v) = 0

so, the vertices v1,v2.......vn must be label with Fibonacci numbers.

Let f (v1) = Fq then f (v2) = Fq−1 or f (v2) = Fq−2.

If f (v2) = Fq−2 then f (vn) = Fq−1 is not possible as f (v1vn) = f (vv2) = Fq−2.
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If f (v2) = Fq−1 then f (vn) , Fq−2 otherwise f (v1vn) = f (vv2) = Fq−1.

If f (vn) = Fp be the Fibonacci number other then Fq−1 and Fq−2 then | f (vn)− f (v1)|=

|Fp−Fq| can not be Fibonacci number for |p−q|> 2

Case 2: If v1 is a rim vertex then define f (v1) = 0

If f (v2) = Fq then the apex vertex must be labeled with Fq−1 or Fq−2.

Sub Case 1: Let f (v) = Fq−1

Now f (vn) must be labeled with either by Fq−2 or by Fq−3.

If f (vn) = Fq−2 then f (v1vn) = f (vv2) = Fq−2

and if f (vn) = Fq−3 then f (vvn) = f (vv2) = Fq−2

Sub Case 2: Let f (v) = Fq−2

Now f (vn) must be label with either by Fq−1 or by Fq−3 or by Fq−4.

if f (vn) = Fq−1 then f (v1vn) = f (vv2) = Fq−1

if f (vn) = Fq−3 then

f (v1v2) = Fq

f (vv1) = Fq−2

f (vv2) = Fq−1

f (vnv1) = Fq−3

f (vvn) = Fq−4

For W3, f (v2v3) can not be Fibonacci number. Now for n > 3 let us assume that

f (v3) = k which is not Fibonacci number because for f (v3) = Fq−1, we have f (vv1) =

f (v2v3) = Fq−2.

now we have following cases. (1) Fq−2 < k < Fq, (2) k < Fq−2 < Fq

In (1) we have.....

Fq− k = Fs

k−Fq−2 = Fs′

Fq−Fq−2 = Fs+Fs′ =⇒ Fq−1 = Fs+Fs′ is possible only when s = q−2 and s
′
= q−3,

then f (v2v3) = f (vv1) and f (vv3) = f (v1vn)

In (2) we have.....
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Fq− k = Fs

Fq−2− k = Fs′

Fq−Fq−2 = Fs+Fs′ =⇒ Fq−1 = Fs+Fs′ is possible only when s = q−2 and s
′
= q−3,

then f (v2v3) = f (vv1) and f (vv3) = f (v1vn)

so, we can not find a number f (v3) = k such that f (v2v3) and f (vv3) have the distinct

Fibonacci numbers.

For f (vn) = Fq−4 we can argue as above.

Sub Case 3: If f (v) = Fq

Then we do not have two Fibonacci numbers corresponding to f (v1) and f (vn) such

that the edges will receive distinct Fibonacci numbers.

Thus we conclude that wheels are not Fibonacci graceful. �

Theorem 5.3.4. Helms are not Fibonacci graceful.

Proof. Let Hn be the helm and v
′
1,v
′
2,v
′
3.........v

′
n be the pendant vertices corresponding

to it. If 0 is the label of any of the rim vertices of wheel corresponding to Hn then all

the possibilities to admit Fibonacci graceful labeling is ruled out as we argued in above

Theorem 5.3.3. Thus possibilities of 0 being the label of any of the pendant vertices is

remained at our disposal.

Define f : V (Hn)−→ {0,1,2......Fq}

Without loss of generality we assume f (v
′
1) = 0 then f (v1) = Fq

Let f (v2) = p and f (v) = r

In the following Figures 5.2(1) to 5.2(3) the possible labeling is demonstrated. In first

two arrangements the possibility of H3 being Fibonacci graceful is washed out by the

similar arrangements for wheels are not Fibonacci graceful held in Theorem 5.3.3. For

the remaining arrangement as shown in Figure 5.2 we have to consider following two

possibilities.
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Case 1: p < r < Fq

Fq− p = Fs

Fq− r = Fs′

r− p = Fs′′ then

Fs′ +Fs′′ −Fs = 0 =⇒ Fs = Fs′ +Fs′′

Case 2: r < p < Fq

Fq− p = Fs

Fq− r = Fs′

p− r = Fs′′ then

Fs +Fs′′ −Fs′ = 0 =⇒ Fs′ = Fs +Fs′′

Now let f (v3) = t then consider the case p < r < t < Fq,

Fs = Fs′ +Fs′′

Fs′ = Fr +Fr′

From these two equations we have...

Fs′ = Fr +Fr′ = Fs−Fs′′

so we have Fr < Fr′ < Fs′ < Fs′′ < Fs and they are consecutive Fibonacci numbers.

For r ≥ p, t we have Fs = Fs′ +Fs′′ and Fr = Fs′ +Fr′ so we have

Fs′ = Fs−Fs′′ and Fs′ = Fr−Fr′ which is not possible.

similar argument can be made for r ≤ p, t.

i.e. we have either p < r < t or t < r < p.

As Fs′ < Fs′′ < Fs, so we can say that with f (vv2) = Fs′′ the edges of the triangle with

vertices f (v), f (v2) and f (v3) will not have Fibonacci numbers such that Fs′′= sum of
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two Fibonacci numbers.

Similar arguments can also be made for t < r < p < Fq.

Hence Helms are not Fibonacci graceful graphs. �

Theorem 5.3.5. The graph obtained by switching of a vertex in cycle Cn admits Fi-

bonacci graceful labeling.

Proof. Let v1,v2,v3, .......vn be the vertices of cycle Cn and C
′
n be the graph resulted

from switching of the vertex v1.

Define f : V (C
′
n)−→ {0,1,2......Fq} as follows.

f (v1) = 0

f (v2) = Fq−1

f (v3) = Fq

f (vi+3) = Fq−2i, 1≤ i≤ n−3

Above defined function f admits Fibonacci graceful labeling.

Hence we have the result. �

Illustration 5.3.6. Consider C
′
8. The corresponding Fibonacci graceful labeling is as

shown in Figure 5.3
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FIGURE 5.3: Fibonacci graceful labeling of C
′
8
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Theorem 5.3.7. Joint sum of two copies of fans( fn = Pn +K1) is Fibonacci graceful.

Proof. Let v1,v2, ......vn and v
′
1,v

′
2, ......v

′
n be the vertices of two copies f 1

n and f 2
m re-

spectively. Let v be the apex vertex of F1
n and v

′
be the apex vertex of f 2

m and let G be

the joint sum of two fans.

Define f : V (G)−→ {0,1,2......Fq} as follows.

f (v) = 0

f (v
′
) = Fq

f (vi) = F2i−1, 1≤ i≤ n

f (v
′
1) = Fq−F2n+1

f (v
′
2) = Fq−F2n+2

f (v
′
2+i) = Fq−F2n+2+2i,1≤ i≤ m−2

In view of the above defined pattern the graph G admits Fibonacci graceful labeling. �

Illustration 5.3.8. Consider the Joint Sum of two copies of F4. The corresponding

Fibonacci graceful labeling is as shown in Figure 5.4
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FIGURE 5.4: Joint Sum of two copies of F4 and its Fibonacci graceful labeling

Theorem 5.3.9. The graph obtained by switching of a vertex in a cycle Cn is super

Fibonacci graceful except for n≥ 6.

Proof. We consider here two cases.

Case 1: n = 3,4,5

For n = 3 the graph obtained by switching of a vertex is a disconnected graph which is
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not desirable for the Fibonacci graceful labeling.

Super Fibonacci graceful labeling of switching of a vertex in Cn for n = 4,5 is as shown

in Figure 5.5.
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FIGURE 5.5: Super Fibonacci graceful labeling of switching of a vertex in C4 and C5

Case 2: n ≥ 6 The graph shown in Figure 5.6 will be the subgraph of all the graphs

obtained by switching of a vertex in Cn(n≥ 6).

FIGURE 5.6

In Figure 5.7 all the possible assignment of vertex labels is shown which demonstrates

the repetition of edge labels.
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(1) In Fig8(a) edge label Fq−1 is repeated as

|Fq−Fq−2|= Fq−1 & |Fq−1−0|= Fq−1

(2) In Fig8(b) edge label Fq−1 is repeated as

|Fq−Fq−2|= Fq−1 & |Fq−1−0|= Fq−1

(3) In Fig8(c) edge label Fp is repeated as |Fp+1−Fp−1|= Fp & |Fp−0|= Fp,

where Fp is any Fibonacci number.

(4) In Fig8(d) edge label Fp is repeated as |Fp+2−Fp+1|= Fp & |Fp−0|= Fp,

where Fp is any Fibonacci number.

(5) In Fig8(e) edge label Fp−1 is repeated as |Fp−Fp−2|= Fp−1 & |Fp−1−0|=

Fp−1, where Fp is any Fibonacci number.

(6) In Fig8(f) edge label Fq−2 is repeated as

|Fq−1−Fq−3|= Fq−2 & |Fq−Fq−1|= Fq−2

(7) In Fig8(g) edge label Fq−1 is repeated as

|Fq−Fq−2|= Fq−1 & |Fq−1−0|= Fq−1

(8) In Fig8(h) edge label Fq−1 is repeated as

|Fq−Fq−2|= Fq−1 & |Fq−1−0|= Fq−1 �
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Theorem 5.3.10. Switching of a vertex in cycle Cn for n ≥ 6 can be embedded as an

induced subgraph of a super Fibonacci graceful graph.

Proof. Let v1,v2,v3.........vn be the vertices of Cn and v1 be the switched vertex.

Define f : V (Gv1)−→ {0,F1,F2......Fq+3}

f (v1) = 0

f (vi+1) = F2i−1, 1≤ i≤ n−1

Now it remains to assign Fibonacci numbers F1, Fq+2 and Fq+3. Put 3 vertices in the

graph. Join first vertex v
′

labeled with F2 to the vertex v3. Now join second vertex v
′′

labeled with Fq+3 to the vertex v1 and vertex v
′′′

labeled with Fq+2 to the vertex v
′′
.

Thus the resultant graph is a super Fibonacci graceful graph. �

Illustration 5.3.11. In the following Figure 5.8 the graph obtained by switching of a

vertex in cycle C6 and its super Fibonacci graceful labeling of its embedding is shown.
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FIGURE 5.8: Super Fibonacci graceful labeling of embedding of switching of a vertex
in cycle C6
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5.4 Concluding Remarks

The work reported here is a nice combination of graph theory and elementary num-

ber theory. To investigate some more graphs or graph families of Fibonacci graceful

graphs as well as to derive some characterizations for Fibonacci graceful graph is an

open area or research.

The pen ultimate chapter also possess the same flavour.
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116
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6.1 Introduction

This chapter is intended to discuss triangular sum labeling of graphs. We will show

that some classes of graph can be embedded as an induced subgraphs of a triangular sum

graph. In the succeeding section we will provide brief summary of definitions which

are necessary for the subsequent development.

6.2 Triangular sum labeling

6.2.1 Triangular number

A triangular number is a number obtained by adding all positive integers less than

or equal to a given positive integer n. If nth triangular number is denoted by Tn then

Tn =
1
2

n(n+1). It is easy to observe that there does not exist consecutive integers which

are triangular numbers.

6.2.2 Triangular sum graph

A triangular sum labeling of a graph G is a one-to-one function

f : V → N ( where N is the set of all non-negative integers) that induces a bijection

f+ : E(G)→{T1,T2, · · · ,Tq} of the edges of G defined by f+(uv) = f (u)+ f (v),

∀e = uv ∈ E(G).

The graph which admits such labeling is called a triangular sum graph.

6.2.3 Some existing results

This concept was introduced by Hegde and Shankaran [39] and they proved that

• Path Pn, Star K1,n are triangular sum graphs.
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• Any tree obtained from the star K1,n by replacing each edge by a path is a trian-

gular sum graph.

• The lobster T obtained by joining the centers of k copies of a stat to a new vertex

w is a triangular sum graph.

• The complete n-ary tree Tm of level m is a triangular sum graph.

• The complete graph Kn is triangular sum if and only if n≤ 2.

They also shown that

• If G is an Eulerian (p,q)-graph admitting a triangular sum labeling then

q . 1(mod 12).

• The dutch windmill DW(n)(n copies of K3 sharing a common vertex) is not a

triangular sum graph.

• The complete graph K4 can be embedded as an induced subgraph of a triangular

sum graph.

In a paper by Vaidya et al.[79] it has been shown that

• In any triangular sum graph G the vertices with labels 0 and 1 are always adjacent.

• In any triangular sum graph G, 0 and 1 cannot be the vertex labels in the same

triangle contained in G.

• In any triangular sum graph G, 1 and 2 cannot be the vertex labels of the same

triangle contained in G.

• The helm graph Hn is not a triangular sum graph.

• If every edge of a graph G is an edge of a triangle then G is not a triangular sum

graph.
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6.3 Some important results on triangular sum graphs

Theorem 6.3.1. Every cycle can be embedded as an induced subgraph of a triangular

sum graph.

Proof. Let G = Cn be a cycle with n vertices. We define labeling f : V (G)→ N as

follows such that the induced function f+ : E(G)→{T1,T2, . . .Tq} is bijective.

f (v1) = 0

f (v2) = 6

f (vi) = Ti+2− f (vi−1); 3≤ i≤ n−1

f (vn) = Tf (vn−1)−1

Now let A = {T1,T2 . . . Tr} be the set of missing edge labels. That is, elements of set

A are the missing triangular numbers between 1 and Tf (vn−1)−1. Now add r pendant

vertices which are adjacent to the vertex with label 0 and label these new vertices with

labels T1,T2 . . . Tr. This construction will give rise to edges with labels T1,T2, . . . Tr

such that the resultant supergraph H admits triangular sum labeling. Thus we proved

that every cycle can be embedded as an induced subgraph of a triangular sum graph. �

Illustration 6.3.2. In the following Figure 6.1 embedding of C5 as an induced subgraph

of a triangular sum graph is shown.
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FIGURE 6.1: Embedding of C5 as an induced subgraph of a triangular sum graph
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Theorem 6.3.3. Every cycle with one chord can be embedded as an induced subgraph

of a triangular sum graph.

Proof. Let G be the cycle with one chord and e = v1vk be the chord of cycle Cn.

We define labeling f : V (G)→ N as follows such that the induced function

f+ : E(G)→{T1,T2, . . .Tq} is bijective.

f (v1) = 0

f (v2) = 6

f (vi) = Ti+2− f (vi−1); 3≤ i≤ k−1

f (vk) = Tf (vk−1)−1

f (vk+i−1) = Tf (vk−1)−1+i− f (vk+i−2); 2≤ i≤ n− k

f (vn) = Tf (vn−1)−1

Now following the procedure described in Theorem 6.3.1 and the resultant supergraph

H admits triangular sum labeling. Thus we proved that every cycle with one chord can

be embedded as an induced subgraph of a triangular sum graph. �

Illustration 6.3.4. In the following Figure 6.2 embedding of C4 with one chord as an

induced subgraph of a triangular sum graph is shown.
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FIGURE 6.2: Embedding of C4 with one chord as an induced subgraph of a triangular
sum graph
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Theorem 6.3.5. Every cycle with twin chords can be embedded as an induced subgraph

of a triangular sum graph.

Proof. Let G be the cycle with twin chords and e1 = v1vk and e2 = v1vk+1 be its chords.

We define labeling f : V (G)→ N such that the induced function

f+ : E(G)→{T1,T2, . . .Tq} is bijective.

f (v1) = 0

f (v2) = 6

f (vi) = Ti+2− f (vi−1); 3≤ i≤ k−1

f (vk) = Tf (vk−1)−1

f (vk+1) = Tf (vk)−1

f (vk+i) = Tf (vk)−1+i− f (vk+i−1); 2≤ i≤ n− k−1

f (vn) = Tf (vn−1)−1

Now following the procedure adapted in Theorem 6.3.1 the resulting supergraph H

admits triangular sum labeling. That is, every cycle with twin chords can be embedded

as an induced subgraph of a triangular sum graph. �

Illustration 6.3.6. In the following Figure 6.3 embedding of C6 with twin chord as an

induced subgraph of a triangular sum graph is shown.
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FIGURE 6.3: Embedding of C6 with twin chord as an induced subgraph of a triangular
sum graph
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6.4 Concluding Remarks

As every graph is not a triangular sum graph it is very interesting to investigate

graphs or graph families which are not triangular sum graphs but they can be embedded

as an induced subgraph of a triangular sum graph. We show that cycle, cycle with

one chord and cycle with twin chords can be embedded as an induced subgraph of a

triangular sum graph.

The next chapter is focused on L(2,1) and Radio labeling of graphs.
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7.1 Introduction

The unprecedented growth of different modes of communication provided the rea-

son for many real life problems. The allocation of radio channels or frequencies to radio

transmitters network is one such problem and it is the focus of our investigations. The

present chapter is aimed to discuss L(2,1)-labeling and Radio labeling of graphs.

7.2 Channel assignment problem

The channel assignment problem is the problem to assign a channel (non negative

integer) to each TV or radio transmitters located at various places such that communi-

cation do not interfere. This problem was first formulated as a graph coloring problem

by Hale[36] who introduced the notion of T-coloring of a graph.

In a graph model of this problem, the transmitters are represented by the vertices of a

graph; two vertices are very close if they are adjacent in the graph and close if they are

at distance two apart in the graph.

In a private communication with Griggs during 1988 Roberts proposed a variation of the

channel assignment problem in which close transmitters must receive different channels

and very close transmitters must receive channels that are at least two apart. Motivated

by this problem Griggs and Yeh[34] introduced L(2,1)-labeling which is defined as

follows.

7.3 L(2,1)- Labeling and L
′
(2,1)- Labeling

7.3.1 L(2,1)- Labeling and λ -number

For a graph G, L(2,1)-labeling (or distance two labeling) with span k is a function

f : V (G)−→ {0,1, . . . ,k} such that the following conditions are satisfied:
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(1)| f (x)− f (y)| ≥ 2 if d(x,y) = 1

(2)| f (x)− f (y)| ≥ 1 if d(x,y) = 2

In otherwords the L(2,1)-labeling of a graph is an abstraction of assigning integer fre-

quencies to radio transmitters such that (1) Transmitters that are one unit of distance

apart receive frequencies that differ by at least two and (2) Transmitters that are two

units of distance apart receive frequencies that differ by at least one. The span of f is

the largest number in f (V ). The minimum span taken over all L(2,1)-labeling of G,

denoted as λ (G) is called the λ -number of G. The minimum label in L(2,1)-labeling

of G is assumed to be 0.

7.3.2 L
′
(2,1)-labeling and λ

′-number

An injective L(2,1)-labeling is called an L
′
(2,1)-labeling and the minimum span taken

over all such L
′
(2,1)-labeling is called λ

′
-number of the graph.

7.3.3 Some existing results

• In [34] Griggs and Yeh have discussed L(2,1)-labeling for path, cycle, tree and

cube. They also derived the relation between λ−number and other graph invari-

ants of G such as chromatic number and the maximum degree. They have also

shown that determining λ− number of a graph is an NP-Complete problem, even

for graphs with diameter 2.

• Chang and Kuo [14] provided an algorithm to obtain λ (T ).

• Georges et al.[28, 83] have discussed L(2,1)-labeling of cartesian product of paths

and n-cube.

• Georges and Mauro[29] proved that the λ -number of every generalized Petersen

graph is bounded from above by 9.

• Kuo and Yan [50] have discussed L(2,1)-labeling of cartesian product of paths

and cycles.
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• Vaidya and Bantva[69] have discussed L(2,1)-labeling of middle graphs.

• Vaidya and Bantava[70] have discussed L(2,1)-labeling of cacti.

• Jha et al.[41] have discussed L(2,1)-labeling of direct product of paths and cycles.

• Chiang [17] studied L(d,1)-labeling for d ≥ 2 on the cartesian product of cycle

and a path.

7.4 L(2,1)-Labeling in the Context of Some Graph Op-

erations

Theorem 7.4.1. λ (spl(Cn)) = 7. (where n > 3)

Proof. Let v
′
1, v

′
2, . . . , v

′
n be the duplicated vertices corresponding to v1, v2, . . . , vn of

cycle Cn.

To define f : V (spl(Cn))−→ N
⋃
{0} we consider following four cases.

Case 1: n≡ 0(mod 3) (where n > 5)

We label the vertices as follows.

f (vi) = 0, i = 3 j−2, 1≤ j ≤ n
3

f (vi) = 2, i = 3 j−1, 1≤ j ≤ n
3

f (vi) = 4, i = 3 j, 1≤ j ≤ n
3

f (v
′
i) = 7, i = 3 j−2, 1≤ j ≤ n

3

f (v
′
i) = 6, i = 3 j−1, 1≤ j ≤ n

3

f (v
′
i) = 5, i = 3 j, 1≤ j ≤ n

3

Case 2: n≡ 1(mod 3) (where n > 5)

We label the vertices as follows.

f (vi) = 0, i = 3 j−2, 1≤ j ≤
⌊n

3

⌋
−1

f (vi) = 2, i = 3 j−1, 1≤ j ≤
⌊n

3

⌋
−1
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f (vi) = 4, i = 3 j, 1≤ j ≤
⌊n

3

⌋
−1

f (vn−3) = 0, f (vn−2) = 3, f (vn−1) = 1, f (vn) = 4

f (v
′
i) = 7, i = 3 j−2, 1≤ j ≤

⌊n
3

⌋
−1

f (v
′
i) = 6, i = 3 j−1, 1≤ j ≤

⌊n
3

⌋
−1

f (v
′
i) = 5, i = 3 j, 1≤ j ≤

⌊n
3

⌋
−1

f (v
′
n−3) = 7, f (v

′
n−2) = 7, f (v

′
n−1) = 6, f (v

′
n) = 5

Case 3: n≡ 2(mod 3) (where n > 5)

We label the vertices as follows.

f (vi) = 0, i = 3 j−2, 1≤ j ≤
⌊n

3

⌋
f (vi) = 2, i = 3 j−1, 1≤ j ≤

⌊n
3

⌋
f (vi) = 4, i = 3 j, 1≤ j ≤

⌊n
3

⌋
f (vn−1) = 1, f (vn) = 3

f (v
′
1) = 6, f (v

′
n) = 7

f (v
′
i) = 6, i = 3 j−1, 1≤ j ≤

⌊n
3

⌋
f (v

′
i) = 5, i = 3 j, 1≤ j ≤

⌊n
3

⌋
f (v

′
i) = 7, i = 3 j+1, 1≤ j ≤

⌊n
3

⌋
Case 4: n = 4,5

These cases are to be dealt separately. The L(2,1)-labeling for spl(Cn) when n = 4,5

are as shown in Figure 7.1

4
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0

6

5

7

7 6

6

5

3

1 4

2

0

5

FIGURE 7.1: spl(C4),spl(C5) and its L(2,1)-labeling

Thus in all the possibilities R f = {0,1,2 . . . ,7} ⊂ N
⋃
{0}.

i.e. λ (spl(Cn)) = 7. �
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Remark : The L(2,1)-labeling for spl(C3) is shown in Figure 7.2

Thus R f = {0,1,2 . . . ,6} ⊂ N
⋃
{0}.

6

65

0

24

FIGURE 7.2: spl(C3) and its L(2,1)-labeling

Illustration 7.4.2. Consider the graph spl(C6). The L(2,1)-labeling is as shown in

Figure 7.3.
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FIGURE 7.3: spl(C6) and its L(2,1)-labeling

Theorem 7.4.3. λ
′
(spl(Cn)) = p− 1, where p is a total number vertices in spl(Cn)

(where n > 3).

Proof. Let v
′
1, v

′
2, . . . , v

′
n be the duplicated vertices corresponding to v1, v2, . . . , vn of

cycle Cn.

To define f : V (spl(Cn))−→ N
⋃
{0}, we consider following two cases.
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Case 1: n > 5

f (vi) = 2i−7, 4≤ i≤ n

f (vi) = f (vn)+2i, 1≤ i≤ 3

f (v
′
i) = 2i−2, 1≤ i≤ n

Now label the vertices of C
′
n using the above defined pattern we have

R f = {0,1,2, . . . , p−1} ⊂ N
⋃
{0}

This implies that λ
′
(spl(Cn)) = p−1.

Case 2: n = 4,5 These cases to be dealt separately. The L
′
(2,1)-labeling for spl(Cn)

when n = 4,5 are as shown in the following Figure 7.4. �
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4

8 2

6

0

3

FIGURE 7.4: spl(C4),spl(C5) and its L
′
(2,1)-labeling

Remark The L
′
(2,1)-labeling for spl(C3) is shown in the following Figure 7.5.

Thus R f = {0,1,2 . . . ,6} ⊂ N
⋃
{0}.

1

32

0

46

FIGURE 7.5: spl(C3) and its L
′
(2,1)-labeling
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Illustration 7.4.4. Consider the graph spl(C6). The L
′
(2,1)-labeling is as shown in

Figure 7.6.
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FIGURE 7.6: spl(C6) and its L
′
(2,1)-labeling

Theorem 7.4.5. Let C
′
n be the graph obtained by taking arbitrary supersubdivision of

each edge of cycle Cn then

1 For n even

λ (C
′
n) = ∆+2

2 For n odd

λ (C
′
n) =


∆+2; i f s+ t + r < ∆,

∆+3; i f s+ t + r = ∆,

s+ t + r+2; i f s+ t + r > ∆

where vk is a vertex with label 2,

s is number of subdivision between vk−2 and vk−1,

t is number of subdivision between vk−1 and vk,

r is number of subdivision between vk and vk+1,

∆ is the maximum degree of C
′
n.
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Proof. Let v1, v2, . . . , vn be the vertices of cycle Cn. Let C
′
n be the graph obtained by

arbitrary super subdivision of cycle Cn.

It is obvious that for any two vertices vi and vi+2, N(vi)
⋂

N(vi+2) = φ

To define f : V (C
′
n)−→ N

⋃
{0}, we consider following two cases.

Case 1: n is even

f (v2i−1) = 0, 1≤ i≤ n
2

f (v2i)= 1, 1≤ i≤ n
2

If Pi j is the number of supersubdivisions between vi and v j then for the vertex v1,

|N(v1)| = P12 +Pn1. Without loss of generality we assume that v1 is the vertex with

maximum degree i.e. d(v1) = ∆. suppose u1,u2.....u∆ be the members of N(v1). We

label the vertices of N(v1) as follows.

f (ui) = 2+ i, 1≤ i≤ ∆

As N(v1)
⋂

N(v3) = φ then it is possible to label the vertices of N(v3) using the vertex

labels of the members of N(v1) in accordance with the requirement for L(2,1)-labeling.

Extending this argument recursively upto N(vn−1) it is possible to label all the vertices

of C
′
n using the distinct numbers between 0 and ∆+2.

i.e. R f = {0,1,2, . . . ,∆+2} ⊂ N
⋃
{0}

Consequently λ (C
′
n) = ∆+2.

Case 2: n is odd

Let v1, v2, . . . , vn be the vertices of cycle Cn.

Without loss of generality we assume that v1 is a vertex with maximum degree and vk

be the vertex with minimum degree.

Define f (vk) = 2 and label the remaining vertices alternatively with labels 0 and 1 such

that f (v1) = 0. Then either f (vk−1) = 1 ; f (vk+1) = 0 OR f (vk−1) = 0 ; f (vk+1) = 1.

We assign labeling in such a way that f (vk−1) = 1 ; f (vk+1) = 0.

Now following the procedure adapted in case (1) it is possible to label all the vertices

except the vertices between vk−1 and vk. Label the vertices between vk−1 and vk using
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the vertex labels of N(v1) except the labels which are used earlier to label the vertices

between vk−2, vk−1 and between vk, vk+1.

If there are p vertices u1,u2...up are left unlabeled between vk−1 and vk then label them

as follows,

f (ui)=max{labels of the vertices between vk−2 and vk−1, labels of the vertices between

vk and vk+1} + i, 1≤ i≤ p

Now if s is the number of subdivisions between vk−2 and vk−1

t is the number of subdivisions between vk−1 and vk

r is the number of subdivisions between vk and vk+1

then (1) R f = {0,1,2, . . . ,∆+2} ⊂ N
⋃
{0}, when s+ t + r < ∆

i.e. λ (C
′
n) = ∆+2

(2) R f = {0,1,2, . . . ,∆+3} ⊂ N
⋃
{0}, when s+ t + r = ∆

i.e. λ (C
′
n) = ∆+3

(3) R f = {0,1,2, . . . ,s+ t + r+2} ⊂ N
⋃
{0}, when s+ t + r > ∆

i.e. λ (C
′
n) = s+ t + r+2 �

Illustration 7.4.6. Consider the graph C8. The L(2,1)-labeling of C
′
8 is shown in Figure

7.7.
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FIGURE 7.7: L(2,1)-labeling of C
′
8
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Theorem 7.4.7. Let G
′

be the graph obtained by taking arbitrary supersubdivision of

each edge of graph G with number of vertices n≥ 3 then λ
′
(G
′
) = p−1, where p is the

total number of vertices in G
′
.

Proof. Let v1, v2, . . . , vn be the vertices of any connected graph G and let G
′

be the

graph obtained by taking arbitrary supersubdivision of G. Let uk be the vertices which

are used for arbitrary supersubdivision of the edge viv j where 1≤ i≤ n, 1≤ j ≤ n and

i < j. Here k is a total number of vertices used for arbitrary supersubdivision.

We define f : V (G
′
)−→ N

⋃
{0} as

f (vi) = i−1, where 1≤ i≤ n

Now we label the vertices ui in the following order.

First we label the vertices between v1 and v1+ j, 1 ≤ j ≤ n then following the same

procedure for v2, v3,...vn

f (ui) = f (vn)+ i, 1≤ i≤ k

Now label the vertices of G
′
using the above defined pattern we have R f = {0,1,2, . . . , p−

1} ⊂ N
⋃
{0}

This implies that λ
′
(G
′
) = p−1. �

Illustration 7.4.8. Consider the graph P4 and its supersubdivision. The L
′
(2,1)-labeling

is as shown in Figure 7.8.
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FIGURE 7.8: L
′
(2,1)-labeling of P

′
4
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Theorem 7.4.9. Let C
′
n be the graph obtained by taking star of a cycle Cn then

λ (C
′
n) = 5.

Proof. Let v1, v2, . . . , vn be the vertices of cycle Cn and vi j be the vertices of cycle Cn

which are adjacent to the ith vertex of cycle Cn.

To define f : V (C
′
n)−→ N

⋃
{0}, we consider following four cases.

Case 1: n≡ 0(mod 3)

f (vi) = 0, i = 3 j−2, 1≤ j ≤ n
3

f (vi) = 2, i = 3 j−1, 1≤ j ≤ n
3

f (vi) = 4, i = 3 j, 1≤ j ≤ n
3

Now we label the vertices vi j of star of a cycle according to the label of f (vi).

(1) when f (vi) = 0, i = 3 j−2, 1≤ j ≤ n
3

f (vik) = 3, k = 3p−2, 1≤ p≤ n
3

f (vik) = 5, k = 3p−1, 1≤ p≤ n
3

f (vik) = 1, k = 3p, 1≤ p≤ n
3

(2) when f (vi) = 2, i = 3 j−1, 1≤ j ≤ n
3

f (vik) = 5, k = 3p−2, 1≤ p≤ n
3

f (vik) = 3, k = 3p−1, 1≤ p≤ n
3

f (vik) = 1, k = 3p, 1≤ p≤ n
3

(3) when f (vi) = 4, i = 3 j, 1≤ j ≤ n
3

f (vik) = 1, k = 3p−2, 1≤ p≤ n
3

f (vik) = 3, k = 3p−1, 1≤ p≤ n
3

f (vik) = 5, k = 3p, 1≤ p≤ n
3

Case 2: n≡ 1(mod 3)

f (vi) = 0, i = 3 j−2, 1≤ j ≤ bn
3c

f (vi) = 2, i = 3 j−1, 1≤ j ≤ bn
3c

f (vi) = 5, i = 3 j, 1≤ j ≤ bn
3c

f (vn) = 3
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Now we label the vertices of star of a cycle vi j according to label of f (vi).

(1) when f (vi) = 0, i = 3 j−2, 1≤ j ≤ bn
3c

f (vik) = 4, k = 3p−2, 1≤ p≤ bn
3c

f (vik) = 2, k = 3p−1, 1≤ p≤ bn
3c

f (vik) = 0, k = 3p, 1≤ p≤ bn
3c−1

f (vi(n−1)) = 5,

f (vin) = 1

(2) when f (vi) = 2, i = 3 j−1, 1≤ j ≤ bn
3c

f (vik) = 4, k = 3p−2, 1≤ p≤ bn
3c

f (vik) = 0, k = 3p−1, 1≤ p≤ bn
3c

f (vik) = 2, k = 3p, 1≤ p≤ bn
3c−1

f (vi(n−1)) = 3,

f (vin) = 1

(3) when f (vi) = 5, i = 3 j, 1≤ j ≤ bn
3c

f (vik) = 1, k = 3p−2, 1≤ p≤ bn
3c

f (vik) = 3, k = 3p−1, 1≤ p≤ bn
3c

f (vik) = 5, k = 3p, 1≤ p≤ bn
3c−1

f (vi(n−1)) = 0,

f (vin) = 4

(4) when f (vi) = 3, i = n

f (vik) = 1, k = 3p−2, 1≤ p≤ bn
3c

f (vik) = 5, k = 3p−1, 1≤ p≤ bn
3c

f (vik) = 3, k = 3p, 1≤ p≤ bn
3c−1

f (vi(n−1)) = 0

f (vin) = 4
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Case 3: n≡ 2(mod 3), n , 5

f (vi) = 1, i = 3 j−2, 1≤ j ≤ bn
3c−1

f (vi) = 3, i = 3 j−1, 1≤ j ≤ bn
3c−1

f (vi) = 5, i = 3 j, 1≤ j ≤ bn
3c−1

f (vn−4) = 0, f (vn−3) = 2,

f (vn−2) = 5, f (vn−1) = 0, f (vn) = 4

Now we label the vertices vi j of star of a cycle according to the label of f (vi).

(1) when f (vi) = 1, i = 3 j−2, 1≤ j ≤ bn
3c−1

f (vik) = 5, k = 3p−2, 1≤ p≤ bn
3c

f (vik) = 3, k = 3p−1, 1≤ p≤ bn
3c

f (vik) = 1, k = 3p, 1≤ p≤ bn
3c

f (vi(n−1)) = 4,

f (vin) = 0

(2) when f (vi) = 3, i = 3 j−1, 1≤ j ≤ bn
3c−1

f (vik) = 0, k = 3p−2, 1≤ p≤ bn
3c

f (vik) = 2, k = 3p−1, 1≤ p≤ bn
3c

f (vik) = 4, k = 3p, 1≤ p≤ bn
3c

f (vi(n−1)) = 1,

f (vin) = 5

(3) when f (vi) = 5, i = 3 j, 1≤ j ≤ bn
3c−1 and i = n−2

f (vik) = 1, k = 3p−2, 1≤ p≤ bn
3c

f (vik) = 3, k = 3p−1, 1≤ p≤ bn
3c

f (vik) = 5, k = 3p, 1≤ p≤ bn
3c

f (vi(n−1)) = 2,

f (vin) = 4
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(4) when f (vi) = 0, i = n−4,n−1

f (vik) = 3, k = 3p−2, 1≤ p≤ bn
3c

f (vik) = 5, k = 3p−1, 1≤ p≤ bn
3c

f (vik) = 1, k = 3p, 1≤ p≤ bn
3c−1

f (vi(n−2)) = 2,

f (vi(n−1)) = 4,

f (vin) = 1

(5) when f (vi) = 2, i = n−3

f (vik) = 4, k = 3p−2, 1≤ p≤ bn
3c

f (vik) = 0, k = 3p−1, 1≤ p≤ bn
3c

f (vik) = 2, k = 3p, 1≤ p≤ bn
3c

f (vi(n−1)) = 5,

f (vin) = 1

(6) when f (vi) = 4, i = n

f (vik) = 2, k = 3p−2, 1≤ p≤ bn
3c

f (vik) = 0, k = 3p−1, 1≤ p≤ bn
3c

f (vik) = 4, k = 3p, 1≤ p≤ bn
3c

f (vi(n−1)) = 1,

f (vin) = 5

Case 4: n = 5 This case is to be dealt separately. The L(2,1)-labeling for the graph

obtained by taking star of the cycle C5 is shown in Figure 7.9 .
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FIGURE 7.9: L(2,1)-labeling for star of cycle C5

Thus in all the possibilities we have λ (C
′
n) = 5 �

Illustration 7.4.10. Consider the graph C7, the L(2,1)-labeling is as shown in Figure

7.10.
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FIGURE 7.10: L(2,1)-labeling for star of cycle C7
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Theorem 7.4.11. Let G
′
be the graph obtained by taking star of a graph G then λ

′
(G
′
) =

p−1, where p be the total number of vertices of G
′
.

Proof. Let v1, v2, . . . , vn be the vertices of any connected graph G. Let vi j be the vertices

of a graph which is adjacent to the ith vertex of graph G. By the definition of a star of a

graph the total number of vertices in a graph G
′
are n(n+1).

To define f : V (G
′
)−→ N

⋃
{0}

f (vi1) = i−1, 1≤ i≤ n

for 1≤ i≤ n do the labeling as follows:

f (vi) = f (vni)+1

f (v1(i+1)) = f (vi)+1

f (v( j+1)(i+1)) = f (v j(i+1))+1, 1≤ j ≤ n−1

Thus λ
′
(G
′
) = p−1 = n2 +n−1 �

Illustration 7.4.12. Consider the star of a graph K4, the L
′
(2,1)-labeling is as shown in

Figure 7.11.
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FIGURE 7.11: L
′
(2,1)-labeling for star of a complete graph K4
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7.5 Radio labeling of graph

We have discussed the L(2,1)-labeling in previous section. Practically it has been

observed that the interference among channels might go beyond two levels. Radio la-

beling extends the number of interference level considered for L(2,1)-labeling from two

to the largest possible - the diameter of G. Motivated through the problem of channel

assignments to FM radio stations Chartrand et al.[15] introduced the concept of radio

labeling of graph as follows.

7.5.1 Radio labeling

A radio labeling of a graph G is an injective function f : V (G) −→ N ∪{0} such that

for every u,v ∈V

| f (u)− f (v)| ≥ diam(G)−d(u,v)+1

The span of f is the difference of the largest and the smallest channels used. That is,

max( f (u), f (v)), for every u,v ∈V

The radio number of G is defined as the minimum span of a radio labeling of G and

denoted as rn(G). In the survey of literature available on radio labeling we found that

only two types of problems are considered in this area till this date.

• To investigate bounds for the radio number of a graph.

• To completely determine the radio number of a graph.

7.5.2 Some existing results

• Chartrand et al.[15] and Liu and Zhu[52] have discussed the radio number for

paths and cycles.

• D.D-F Liu [53] has discuss radio number for trees.

• D.D-F.Liu and M.Xie[54] have discussed radio number of square of cycles.
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• Mustapha et al.[47] have discussed radio k-labeling for cartesian products of

graphs.

• Sooryanarayana et al.[64] have discussed radio number of cube of a path.

7.6 Radio labeling for some cycle related graphs

Theorem 7.6.1. Let G be the cycle with chords then.
'

i i

'
i i

n '
i i

'
i i

(k+2)(2k-1)+1+ (d  - d ).   n 0 (mod 4)
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Proof. Let Cn denote the cycle on n vertices and V (Cn) = {v0,v1 . . .vn−1} be such that

where vi is adjacent to vi+1 and vn−1 is adjacent to v0. We denote d = diam(Cn).

Here the radio labeling of a cycle Cn is given by the following two sequences.

• the distance gap sequence D = (d0,d1 . . .dn−2)

• the color gap sequence F = ( f0, f1 . . . fn−2)

The distance gap sequence in which each di ≤ d is a positive integer is used to generate

an ordering of the vertices of Cn. Let τ : {0,1, . . . ,n−1}−→{0,1, . . . ,n−1} be defined

as τ(0) = 0 and τ(i+ 1) = τ(i)+ di (mod n). Here τ is a corresponding permutation.

Let xi = vτ(i) for i = 0,1,2, . . .n− 1 then {x0,x1 . . .xn−1} is an ordering of the vertices

of Cn. Let us denote d(xi,xi+1) = di.

The color gap sequence is used to assign labels to the vertices of Cn. Let f be the la-

beling defined by f (x0) = 0 and for i ≥ 1, f (xi+1) = f (xi)+ fi. By definition of radio

labeling fi ≥ d− di + 1 for all i. We adopt the scheme for distance gap sequence and

color gap sequence reported in [52] and proceed as follows.



Chapter 7. L(2,1)-Labeling and Radio labeling of graphs 142

Case 1: n = 4k in this case diam(G) = 2k

Using the sequences given below we can generate the radio labeling of cycle Cn for

n≡ 0(mod 4)with minimum span.

The distance gap sequence is given by

di = 2k if i is even

= k if i≡ 1(mod 4)

= k+1 if i≡ 3(mod 4)

and the color gap sequence is given by

fi = 1 if i is even

= k+1 if i is odd

Then for i = 0,1,2, . . .k−1 we have the following permutation,

τ(4i) = 2ik+ i(mod n)

τ(4i+1) = (2i+2)k+ i(mod n)

τ(4i+2) = (2i+3)k+ i(mod n)

τ(4i+3) = (2i+1)k+ i(mod n)

Now we add chords in cycle Cn such that diameter of cycle remain unchanged. Label

the vertices of this newly obtained graph using above permutation. Suppose the new

distance between xi and xi+1 is d
′
i(xi,xi+1) then due to chords in the cycle it is obvious

that di ≥ d
′
i .

We define the color gap sequence as

f
′
i = fi +(di−d

′
i), 0≤ i≤ n−2

So, that span f
′
for cycle with chords is

f
′
0 + f

′
1 . . .+ f

′
n−2 = f0 + f1 + f2 . . .+ fn−2 +∑(di−d

′
i)

= rn(Cn)+∑(di−d
′
i)

=(k+2)(2k−1)+1+∑(di−d
′
i). 0≤ i≤ n−2

which is an upper bound for radio number for cycle with arbitrary number of chords

when n = 4k.

Case 2: n = 4k+2 in this case diam(G) = 2k+1

Using the sequences given below we can generate radio labeling of cycle Cn for
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n≡ 2(mod 4) with minimum span.

The distance gap sequence is given by

di = 2k+1 if i is even

= k+1 if i is odd

and the color gap sequence is given by

fi = 1 if i is even

= k+1 if i is odd

Hence for i = 0,1, . . .2k, we have the following permutation,

τ(2i) = i(3k+2) (mod n)

τ(2i+1) = i(3k+2)+2k+1 (mod n)

Now we add chords in cycle Cn such that diameter of cycle remain unchanged. Label

the vertices of this newly obtained graph by using the above permutation. So, that span

f
′
for cycle with chords is

f
′
0 + f

′
1 . . .+ f

′
n−2 = f0 + f1 + f2 . . .+ fn−2 +∑(di−d

′
i)

= rn(Cn)+∑(di−d
′
i)

= 2k(k+2)+1+∑(di−d
′
i). 0≤ i≤ n−2

which is an upper bound for radio number for cycle with arbitrary number of chords.

when n = 4k+2

Case 3: n = 4k+1 in this case diam(G) = 2k

Using the sequences given below we can generate radio labeling of cycle Cn for n ≡

1(mod 4) with minimum span.

The distance gap sequence is given by

d4i = d4i+2 = 2k− i

d4i+1 = d4i+3 = k+1+ i

and the color gap sequence is given by

fi = 2k−di +1
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Then we have

τ(2i) =i(3k+1) (mod n), 0≤ i≤ 2k

τ(4i+1) = 2(i+1)k (mod n), 0≤ i≤ k−1

τ(4i+3) = (2i+1)k (mod n), 0≤ i≤ k−1

Label the vertices of this newly obtained graph by using the above permutation. So, that

span of f
′
for cycle with chords is

f
′
0 + f

′
1 . . .+ f

′
n−2 = f0 + f1 + f2 . . .+ fn−2 +∑(di−d

′
i)

= rn(Cn)+∑(di−d
′
i)

= 2k(k+1)+∑(di−d
′
i). 0≤ i≤ n−2

which is an upper bound for radio number for cycle with arbitrary number of chords.

when n = 4k+1

Case 4: n = 4k+3 in this case diam(G) = 2k+1

Using the sequences below we can give radio labeling of cycle Cn for n ≡ 3(mod 4)

with minimum span.

The distance gap sequence is given by

d4i = d4i+2 = 2k+1− i

d4i+1 = k+1+ i

d4i+3 = k+2+ i

and the color gap sequence is given by

fi = 2k−di +2 if i . 3(mod 4)

= 2k−di +3 otherwise

Then we have the following permutation,

τ(4i) = 2i(k+1) (mod n) , 0≤ i≤ k

τ(4i+1) = (i+1)(2k+1) (mod n) , 0≤ i≤ k

τ(4i+2) = (2i−1)(k+1) (mod n) , 0≤ i≤ k

τ(4i+3) = i(2k+1)+ k (mod n), 0≤ i≤ k−1, 1≤ i≤ n−2

Label the vertices of this newly obtained graph by following the above permutation. So,

that span of f
′
for cycle with chords is
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f
′
0 + f

′
1 . . .+ f

′
n−2 = f0 + f1 + f2 . . .+ fn−2 +∑(di−d

′
i)

= rn(Cn)+∑(di−d
′
i)

= (k+2)(2k+1)+∑(di−d
′
i)

which is an upper bound for radio number for cycle with arbitrary number of chords for

the cycle with chords.

Thus in all the possibilities we have obtained the upper bounds of the radio numbers. �

Illustration 7.6.2. Consider the graph C12 with 5 chords, the radio labeling is as shown

in Figure 7.12.
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FIGURE 7.12: ordinary and radio labeling for cycle with chords for C12

Theorem 7.6.3. Let G be n/2-petal graph then

rn(G)≤


3p
2 +n

⌊n
4

⌋
−
⌊n

8

⌋
−2n−2

(p−1)+n
⌊n

4

⌋
−
⌊n

8

⌋
+2n

Proof. Let G be n/2-petal graph with v0,v1 . . .vn−1 vertices of degree 3 and v
′
1,v

′
2 . . .v

′
p

vertices of degree 2. Here vi is adjacent to vi+1 and vn−1 is adjacent to v0.
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Case 1: n≡ 0(mod4) and diam(G) = bn/4c+2

First we label the vertices of degree 2. Let v
′
1,v

′
2 . . .v

′
p be the vertices on the petals

satisfying the order define by following distance sequence.

d
′
i = bn/4c+2 if i is even

= bn/4c+1 if i is odd

The color gap sequence for vertices on petals is defined as

f
′
i = 1 if i is even

= 2 if i is odd

Let v1 be the vertex on the cycle Cn such that d(v
′
p,v1) = bn/8c+1 = d(v

′
p−1,v1)

then label v1 as f (v1) = f (v
′
p)+diam(G)−bn/8c

Now for the remaining vertices of degree 3 we use the permutation defined for the cycle

Cn in case 1 of Theorem 7.6.1.

and the color gap sequence for the same vertices is defined as

fi = bn/4c+2, 0≤i≤ n−2

Then span of f = 3p/2+nbn/4c−bn/8c−2n−2.

Which is an upperbound for the radio number of n/2-petal graph when n≡ 0(mod4).

Case 2: n≡ 2(mod4) and diam(G) = bn/4c+2

First we label the vertices of degree 2. Let v
′
1,v

′
2 . . .v

′
p be the vertices on the petals

satisfying the order define by following distance sequence.

d(v
′
i,v
′
i+1) = bn/4c+2

The color gap sequence for the vertices on the petals is defined as

f
′
i = 1,1≤ i≤ p

Let v1 be the vertex on the cycle Cn such that d(v
′
p,v1) = bn/8c+1 = d(v

′
p−1,v1)

then label v1 as f (v1) = f (v
′
p)+diam(G)−bn/8c

Now for the remaining vertices of degree 3 we use the permutation defined for the cycle

Cn in case 2 of Theorem 7.6.1.

and the color gap sequence for the same vertices is defined as

fi = bn/4c+2, 0≤i≤ n−2

Then span of f = p−1+nbn/4c−bn/8c+2n.

Which is an upperbound for the radio number of n/2-petal graph when n ≡ 2(mod4).

�
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Illustration 7.6.4. Consider the n/2-petal graph of C8. The radio labeling is shown in

Figure 7.13.
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FIGURE 7.13: ordinary and radio labeling for a n/2-petal graph of C8

Theorem 7.6.5.

rn(spl(Cn)) =



2[(k+2)(2k−1)+1]+ k+1 n ≡ 0(mod 4)

2[2k(k+2)+1]+ k+1 n≡ 2(mod 4)

2[2k(k+1)] + k+1 n≡ 1(mod 4)

2[(k+2)(2k+1)]+ k+1 n≡ 3(mod 4)

Proof. Let v
′
1,v

′
2,v

′
3 . . .v

′
n be the duplicated vertices corresponding to v1,v2,v3 . . .vn. As

d(vi,v j) = d(vi,v
′
j) and in order to obtain the labeling with minimum span we employ

twice the distance gap sequence, the color gap sequence and the permutation scheme

used in [52]. First we label the vertices of cycle and then their duplicated vertices.

Case 1: n≡ 4k(n > 4)then diam(G) = 2k

We first label the vertices v1,v2,v3 . . .vn as according to Case 1 of Theorem 7.6.1 and

then we label the vertices v
′
1,v

′
2,v

′
3 . . .v

′
n as follows.

Define f (v
′
j) = f (vn−1)+ k+1 where v

′
j be the vertex such that d(vn−1,v

′
j) = k

Now with permutation scheme used in Case 1 of Theorem 7.6.1 for cycle n≡ 0(mod 4)

label the duplicated vertices starting from v
′
j.
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Then rn(spl(Cn))= f0 + f1 + f2 . . .+ fn−2 +2k− k+1+ f
′
0 + f

′
1 + · · ·+ f

′
n−2

As fi = f
′
i , for i = 0,1,2 . . .n−2, then

rn(spl(Cn)) = 2 f0 +2 f1 +2 f2 . . .+2 fn−2 + k+1

= 2[(k+2)(2k−1)+1]+ k+1

Case 2: n≡ 4k+2(n > 6) then diam(G) = 2k+1

We first label the vertices v1,v2,v3 . . .vn according to Case 2 of Theorem 7.6.1 and then

we label the vertices v
′
1,v

′
2,v

′
3 . . .v

′
n as follows.

Define f (v
′
j) = f (vn−1)+1 where v

′
j be the vertex such that d(vn−1,v

′
j) = k+1

Now with permutation for cycle n ≡ 2(mod 4) used in Case 2 of Theorem 7.6.1 label

the duplicated vertices starting from v
′
j.

Then rn(spl(Cn))= f0 + f1 + f2 . . .+ fn−2 +2k+1− k−1+1+ f
′
0 + f

′
1 + · · ·+ f

′
n−2

As fi = f
′
i , for i = 0,1,2 . . .n−2, then

rn(spl(Cn)) =2 f0 +2 f1 +2 f2 . . .+2 fn−2 + k+1

= 2[2k(k+2)+1]+ k+1

Case 3: n≡ 4k+1(n > 5) then diam(G) = 2k

We first label the vertices v1,v2,v3 . . .vn as defined in Case 3 of Theorem 7.6.1. Now

we label the vertices v
′
1,v

′
2,v

′
3 . . .v

′
n as follows.

Define f (v
′
j) = f (vn−1)+ k where v

′
j be the vertex such that d(vn−1,v

′
j) = k+1

Now with permutation for cycle n ≡ 1(mod 4) used in Case 3 of Theorem 7.6.1 label

the duplicated vertices starting from v
′
j.

Then rn(spl(Cn))= f0 + f1 + f2 . . .+ fn−2 +2k− k−1+1+ f
′
0 + f

′
1 + · · ·+ f

′
n−2

As fi = f
′
i , for i = 0,1,2 . . .n−2, then

rn(spl(Cn)) =2 f0 +2 f1 +2 f2 . . .+2 fn−2 + k+1

= 2[2k(k+1)]+ k+1

Case 4: n≡ 4k+3(n > 3) then diam(G) = 2k+1

We first label the vertices v1,v2,v3 . . .vn as defined in Case 4 of Theorem 7.6.1. Now

we label the vertices v
′
1,v

′
2,v

′
3 . . .v

′
n as follows.

v
′
j be the vertex such that d(vn−1,v

′
j) = k+1

Define f (v
′
j) = f (vn−1)+ k+1 where v

′
j be the vertex such that d(vn−1,v

′
j) = k+1

Now with permutation for cycle n ≡ 3(mod 4) used in Case 4 of Theorem 7.6.1 label
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the duplicated vertices starting from v
′
j.

Then rn(spl(Cn))= f0 + f1 + f2 . . .+ fn−2 +2k+1− k−1+1+ f
′
0 + f

′
1 + · · ·+ f

′
n−2

As fi = f
′
i , for i = 0,1,2 . . .n−2, then

rn(spl(Cn)) =2 f0 +2 f1 +2 f2 . . .+2 fn−2 + k+1

= 2[(k+2)(2k+1)]+ k+1

Thus in all the four possibilities we have determined radio number of graph G under

consideration. �

Illustration 7.6.6. Consider the graph spl(C10). The radio labeling is shown in Figure

7.14.
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FIGURE 7.14: ordinary and radio labeling for spl(C10)

Application 7.6.7. Above result can be applied for the purpose of expansion of existing

circular network of radio transmitters. By applying the concept of duplication of vertex

the number of radio transmitters are doubled and separation of the channels assigned

to the stations is such that interference can be avoided. Thus our result can play vital

role for the expansion of radio transmitter network without disturbing the existing one.

In the expanded network the distance between any two transmitters is large enough to

avoid the interference. Thus our result is useful for network expansion.
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Theorem 7.6.8. rn(M(Cn)) =



2(k+2)(2k−1)+n+3 n≡ 0(mod 4)

4k(k+2)+ k+n+3 n≡ 2(mod 4)

4k(k+1)+ k+n n≡ 1(mod 4)

2(k+2)(2k+1)+ k+n+1 n≡ 3(mod 4)

Proof. Let u1,u2, . . . ,un be the vertices of the cycle Cn and u
′
1,u

′
2, . . . ,u

′
n be the newly

inserted vertices corresponding to the edges of Cn to obtain M(Cn). In M(Cn) the diam-

eter is increased by 1.

Here d(ui,u j)≥ d(ui,u
′
j) for n≡ 0,2(mod 4) and d(ui,u j)= d(ui,u

′
j) for n≡ 1,3(mod 4).

Through out the discussion first we label the vertices u1,u2, . . . ,un and then newly in-

serted vertices u
′
1,u

′
2, . . . ,u

′
n. For this purpose we will employ twice the permutation

scheme for respective cycle as in considered in Theorem 7.6.1.

Case 1: n≡ 4k in this case diam(M(Cn)) = 2k+1

The distance gap sequence to order the vertices of original cycle Cn is defined as follows

because fi + fi+1 ≤ f
′
i + f

′
i+1, for all i

di = 2k+1 if i is even

= k+1 if i≡ 1(mod 4)

= k+2 if i≡ 3(mod 4)

The color gap sequence is defined as follows

fi = 1 if i is even

= k+1 if i is odd

Let u
′
1 be the vertex on the inscribed cycle such that d(un,u

′
1) = k+1 and f = k+1

The distance gap sequence to order the vertices of the inscribed cycle Cn is defined as

follows

di = 2k if i is even

= k if i≡ 1(mod 4)

= k+1 if i≡ 3(mod 4)
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The color gap sequence is defined as follows

f
′
i = 2 if i is even

= k+2 if i≡ 1(mod 4)

= k+1 if i≡ 3(mod 4)

Thus in this case rn(M(Cn)) = 2(k+2)(2k−1)+n+3

Case 2: n = 4k+2 in this case diam(M(Cn)) = 2k+2

The distance gap sequence to order the vertices of original cycle Cn is defined as follows

because fi + fi+1 ≤ f
′
i + f

′
i+1, for all i

di = 2k+2 if i is even

= k+3 if i is odd

and the color gap sequence is given by

fi = 1 if i is even

= k+1 if i is odd

Let u
′
1 be the vertex on the inscribed cycle such that d(un,u

′
1) = k+1 and f = k+2

The distance gap sequence to order the vertices of the inscribed cycle Cn is defined as

follows
di = 2k+1 if i is even

= k+1 if i is odd

and the color gap sequence is given by

f
′
i = 2 if i is even

= k+2 if i is odd

Thus rn(M(Cn)) = 4k(k+2)+ k+n+3

Case 3: n = 4k+1 in this case diam(M(Cn)) = 2k+1

The distance gap sequence to order the vertices of original cycle Cn is defined as follows

because fi + fi+1 ≤ f
′
i + f

′
i+1, for all i

d4i = d4i+2 = 2k+1− i

d4i+1 = d4i+3 = k+2+ i

and the color gap sequence is given by

fi = (2k+1)−di +1

Let u
′
1 be the vertex on the inscribed cycle such that d(un,u

′
1) = k+1 and f = k+1
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The distance gap sequence to order the vertices of the inscribed cycle Cn is defined as

follows

d4i = d4i+2 = 2k− i

d4i+1 = d4i+3 = k+1+ i

and the color gap sequence is given by

f
′
i = 2k−di +2

Thus in this case rn(M(Cn)) = 4k(k+1)+ k+n

Case 4: n = 4k+3 in this case diam(M(Cn)) = 2k+2

The distance gap sequence to order the vertices of original cycle Cn is defined as follows

because fi + fi+1 ≤ f
′
i + f

′
i+1, for all i

d4i = d4i+2 = 2k+2− i

d4i+1 = d4i+3 = k+2+ i

and the color gap sequence is given by

fi= 2k−di +3

Let u
′
1 be the vertex on the inscribed cycle such that d(un,u

′
1) = k+2 and f = k+1

The distance gap sequence to order the vertices of inscribed cycle Cn is defined as fol-

lows

d4i = d4i+2 = 2k+1− i

d4i+1 = k+1+ i

d4i+3 = k+2+ i

and the color gap sequence is given by

f
′
i = 2k−di +3

Thus in this case rn(M(Cn)) = 2(k+2)(2k+1)+n

Thus the radio number is completely determined for the graph M(Cn). �
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Illustration 7.6.9. consider the graph M(C8). The radio labeling is shown in Figure

7.15.
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FIGURE 7.15: ordinary and radio labeling of M(C8)

Application 7.6.10. Above result is possibly useful for the expansion of existing radio

transmitters network. In the expanded network two newly installed nearby transmitters

are connected and interference is also avoided between them. Thus the radio labeling

described in above Theorem 7.6.8 is rigourously applicable to accomplish the task of

channel assignment for the feasible network.

7.6.11. The comparison between Radio numbers of Cn, spl(Cn) and M(Cn) is tabulated

in the following Table 1.

Table 1 Comparison of radio numbers of Cn , spl(Cn) and M(Cn)
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7.7 Concluding Remarks and Scope of Further Research

The L(2,1)-labeling and the Radio labeling are the labelings which concern to

channel assignment problem. The lowest level of interference will make the enter-

tainment meaningful and enjoyable. The expansion of network is also demand of the

recent time. The investigations reported in this chapter will serve both of these pur-

poses. Our investigations can be applied for network expansion without disturbing the

existing network. To develop such results for various graph families is an open area of

research.
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List of Symbols

|B| Cardinality of set B.

Cn Cycle with n vertices.

Cn
⊙

K1 Crown graph.

C(k)
n One point union of k copies of Cycle Cn.

D2(G) Shadow graph of G.

diam(G) Diameter of G.

E(G) or E Edge set of graph G.

e f (n) Number of edges with edge label n.

fn Fan on n vertices.

Fn Friendship graph with 2n+1 vertices.

Fn nth Fibonacci number with special reference to chapter - 5.

G = (V (G),E(G)) A graph G with vertex set V (G) and edge set E(G).

G1[G2] Composition of G1 and G2.

Gv The graph obtained by switching of a vertex v in G.

Hn Helm on n vertices.

Kn Complete graph on n vertices.

Km,n Complete bipartite graph.

K1,n Star graph.

M(G) Middle graph of G

N(v) Open neighbourhood of vertex v.

N[v] Closed neighbourhood of vertex v.

Pn Path graph on n vertices.

rn(G) Radio number of G.
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Sn Shell on n vertices.

spl(G) Split graph.

T Tree.

Tn Triangular number.

T (n, l) Tadpole graph.

T (G) Total graph of G.

V (G) or V Vertex set of graphs G.

v f (n) Number of vertices with vertex label n.

Wn Wheel on n vertices.

bnc Greatest integer not greater than real number n (Floor of n).
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Abstract

Let G = (V,E) be a graph with p vertices an q edges. A graph G is
said to admit a triangular sum labeling if its vertices can be labeled
by non-negative integers such that induced edge labels obtained by the
sum of the labels of end vertices are the first q triangular numbers. A
graph G which admits a triangular sum labeling is called a triangular
sum graph. In the present work we investigate some classes of graphs
which does not admit a triangular sum labeling. Also we show that
some classes of graphs can be embedded as an induced subgraph of a
triangular sum graph. This work is a nice composition of graph theory
and combinatorial number theory.
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1. Introduction and Definitions
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We begin with simple, finite, connected, undirected and non-trivial
graph G = (V, E), where V is called the set of vertices and E is called the
set of edges. For various graph theoretic notations and terminology we follow
Gross and Yellen [3] and for number theory we follow Burton [1]. We will give
brief summery of definitions which are useful for the present investigations.

Definition 1.1 If the vertices of the graph are assigned values, subject to
certain conditions is known as graph labeling.

For detail survey on graph labeling one can refer Gallian [2]. Vast amount
of literature is available on different types of graph labeling and more than
1000 research papers have been published so far in last four decades. Most
interesting labeling problems have three important ingredients.

• a set of numbers from which vertex labels are chosen.

• a rule that assigns a value to each edge.

• a condition that these values must satisfy.

The present work is aimed to discuss one such labeling known as triangular
sum labeling.
Definition 1.2 A triangular number is a number obtained by adding all
positive integers less than or equal to a given positive integer n. If nth trian-

gular number is denoted by Tn then Tn =
1

2
n(n+1). It is easy to observe that

there does not exist consecutive integers which are triangular numbers.

Definition 1.3 A triangular sum labeling of a graph G is a one-to-one
function f : V → N ( where N is the set of all non-negative integers) that
induces a bijection f+ : E(G) → {T1, T2, · · · , Tn} of the edges of G defined by
f+(uv) = f(u)+f(v), ∀e = uv ∈ E(G). The graph which admits such labeling
is called a triangular sum graph. This concept was introduced by Hegde and
Shankaran [4]. In the same paper they obtained a necessary condition for an
Eulerian graph to admit a triangular sum labeling. Moreover they investigated
some classes of graphs which can be embedded as an induced subgraph of a
triangular sum graph. In the present work we investigate some classes of graphs
which does not admit a triangular sum labeling.
Definition 1.4 The helm graph Hn is the graph obtained from a wheel
Wn = Cn + K1 by attaching a pendant edge at each vertex of Cn.
Definition 1.5 The graph G = < Wn : Wm > is the graph obtained by
joining apex vertices of wheels Wn and Wm to a new vertex x. ( A vertex
corresponding to K1 in Wn = Cn + K1 is called an apex vertex.)
Definition 1.6 A chord of a cycle Cn is an edge joining two non-adjacent
vertices of cycle Cn.
Definition 1.7 Two chords of a cycle are said to be twin chords if they
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form a triangle with an edge of the cycle Cn.

2. Main Results

Lemma 2.1 In every triangular sum graph G the vertices with label 0 and 1
are always adjacent.
Proof: The edge label T1 = 1 is possible only when the vertices with label 0
and 1 are adjacent.
Lemma 2.2 In any triangular sum graph G, 0 and 1 cannot be the label of
vertices of the same triangle contained in G.
Proof: Let a0, a1, and a2 be the vertices of a triangle. If a0 and a1 are
labeled with 0 and 1 respectively and a2 is labeled with some x ∈ N , where
x �= 0, x �= 1. Such vertex labeling will give rise to edge labels with 1, x, and
x + 1. In order to admit a triangular sum labeling, x and x + 1 must be
triangular numbers. But it is not possible as we have mentioned in Definition
1.2
Lemma 2.3 In any triangular sum graph G, 1 and 2 cannot be the labels of
vertices of the same triangle contained in G.
Proof: Let a0, a1, a2 be the vertices of a triangle. Let a0 and a1 are labeled with
1 and 2 respectively and a2 is labeled with some x ∈ N , where x �= 1, x �= 2.
Such vertex labeling will give rise to edge labels 3, x+1, and x+2. In order to
admit a triangular sum labeling, x + 1 and x + 2 must be triangular numbers,
which is not possible due to the fact mentioned in Definition 1.2.
Theorem 2.4 The Helm graph Hn is not a triangular sum graph.
Proof: Let us denote the apex vertex as c1, the consecutive vertices adjacent
to c1 as v1, v2, · · · , vn, and the pendant vertices adjacent to v1, v2, · · · , vn as
u1, u2, · · · , un respectively. If possible Hn admits a triangular sum labeling
f : V → N , then we consider following cases:

Case 1: f(c1) = 0.

Then according to Lemma 2.1, we have to assign label 1 to exactly one
of the vertices from v1, v2, · · · , vn. Then there is a triangle having the
vertices with labels 0 and 1 as adjacent vertices, which contradicts the
Lemma 2.2.

Case 2: Any one of the vertices from v1, v2, · · · , vn is labeled with 0. Without
loss of generality let us assume that f(v1) = 0. Then one of the vertices
from c1, v2, vn, u1 must be labeled with 1. Note that each of the vertices
from c1, v2, vn, u1 is adjacent to v1.

Subcase 1: If one of the vertices from c1, v2, vn is labeled with 1. In
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each possibility there is a triangle having two of the vertices with
labels 0 and 1, which contradicts the Lemma 2.2.

Subcase 2: If f(u1) = 1 then the edge label T2 = 3 can be obtained by
vertex labels 0, 3 or 1, 2. The vertex with label 1 and the vertex
with label 2 cannot be adjacent as u1 is a pendant vertex having
label 1 and it is adjacent to the vertex with label 0. Therefore one
of the vertices from v2, vn, c1 must receive the label 3. Thus there
is a triangle whose two of the vertices are labeled with 0 and 3. Let
the third vertex be labeled with x, with x �= 0 and x �= 3. To admit
a triangular sum labeling 3, x, x + 3 must be distinct triangular
numbers. i.e. x and x+3 are two distinct triangular numbers other
than 3 having difference 3, which is not possible.

Case 3: Any one of the vertices from u1, u2, · · · , un is labeled with 0. Without
loss of generality we may assume that f(u1) = 0. Then according to
Lemma 2.1, f(v1) = 1. The edge labels T2 = 3 can be obtained by
vertex labels 0, 3 or 1, 2. The vertex with label 0 and the vertex with
label 3 cannot be the adjacent vertices as u1 is a pendant vertex having
label 0 and it is adjacent to the vertex with label 1. Therefore one of the
vertices from v2, vn, c1 must be labeled with 2. Thus we have a triangle
having vertices with labels 1 and 2 which contradicts the Lemma 2.3.

Thus in each of the possibilities discussed above, Hn does not admits a trian-
gular sum labeling.
Theorem 2.5 If every edge of a graph G is an edge of a triangle then G is
not a triangular sum graph.
Proof: If G admits a triangular sum labeling then according to Lemma 2.1
there exists two adjacent vertices having labels 0 and 1 respectively. So there
is a triangle having two of the vertices labeled with 0 and 1, which contradicts
the Lemma 2.2. Thus G does not admit a triangular sum labeling.

Following are the immediate corollaries of the previous result.
Corollary 2.6 The wheel graph Wn is not a triangular sum graph.
Corollary 2.7 The fan graph fn = Pn−1 + K1 is not a triangular sum graph.
Corollary 2.8 The friendship graph Fn = nK3 is not a triangular sum graph.
Corollary 2.9 The graph gn (the graph obtained by joining all the vertices of
Pn to two additional vertices) is not a triangular sum graph.
Corollary 2.10 The flower graph (the graph obtained by joining all the pen-
dant vertices of helm graph Hn with the apex vertex) is not a triangular sum
graph.
Corollary 2.11 The graph obtained by joining apex vertices of two wheel
graphs and two apex vertices with a new vertex is not a triangular sum graph.
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Theorem 2.12 The graph < Wn : Wm > is not a triangular sum graph.
Proof: Let G =< Wn : Wm >. Let us denote the apex vertex of Wn by u0

and the vertices adjacent to u0 of the wheel Wn by u1, u2, · · · , un. Similarly
denote the apex vertex of other wheel Wm by v0 and the vertices adjacent to v0

of the wheel Wm by v1, v2, · · · , vm. Let w be the new vertex adjacent to apex
vertices of both the wheels. If possible let f : V → N be one of the possible
triangular sum labeling. According to the Lemma 2.1, 0 and 1 are the labels
of any two adjacent vertices of the graph G, we have the following cases:

Case 1: If 0 and 1 be the labels of adjacent vertices in Wn or Wm, then there
is a triangle having two of the vertices labeled with 0 and 1. Which
contradicts the Lemma 2.2.

Case 2: If f(w) = 0 then according to Lemma 2.1 one of the vertex from
u0 and v0 is labeled with 1. Without loss of generality we may assume
that f(u0) = 1. To have an edge label T2 = 3 we have the following
possibilities:

Subcase 2.1: One of the vertices from u1, u2, · · · , un is labeled with
2. Without loss of generality assume that f(ui) = 2, for some
i ∈ {1, 2, 3 · · · , n}. In this situation we will get a triangle having
two of its vertices are labeled with 1 and 2, which contradicts the
Lemma 2.3.

Subcase 2.2: Assume that f(v0) = 3. Now to get the edge label T3 = 6
we have the following subcases:

Subcase 2.2.1: Assume that f(ui) = 5, for some i ∈ {1, 2, 3, · · · , n}.
In this situation we will get a triangle with distinct vertex la-
bels 1, 5 and x. Then x + 5 and x + 1 will be the edge labels
of two edges with difference 4. It is possible only if x = 5, but
x �= 5 as we have f(ui) = 5.

Subcase 2.2.2: Assume that 2 and 4 are the labels of two adjacent
vertices from one of the two wheels. So there exists a triangle
whose vertex labels are either 1, 2, and 4 or 3, 2, and 4. In either
of the situation will give rise to an edge label 5 which is not a
triangular number.

Case 3: If f(w) = 1 then one of the vertex from u0 and v0 is labeled with 0.
Without loss of generality assume that f(u0) = 0. To have an edge label
3 we have the following possibilities:

Subcase 3.1: If f(ui) = 3 for some i ∈ {1, 2, 3, · · · , n}. Then there
is a triangle having vertex labels as 0, 3, x, with x �= 3. Thus we
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have two edge labels x + 3 and x which are two distinct triangular
numbers having difference 3. So x = 3, which is not possible as
x �= 3.

Subcase 3.2: Assume that f(v0) = 2. Now to obtain the edge label
T3 = 6 we have to consider the following possibilities:

(i) 6=6+0; (ii) 6=5+1; (iii) 6=4+2.

(i) If 6 = 6 + 0 then one of the vertices from u1, u2, · · · , un must
be labeled with 6. Without loss of generality we may assume
that f(ui) = 6 for some i ∈ {1, 2, 3, · · · , n}. In this situation
there are two distinct triangles having vertex labels 0, 6, x and
0, 6, y, for two distinct triangular numbers x and y each of which
are different from 0 and 6. Then x + 6 and x are two distinct
triangular numbers having difference 6. This is possible only
for x = 15. On the other hand y + 6 and y are two distinct
triangular numbers having difference 6. Then y = 15. ( The
x = y = 15 which is not possible as f is one-one)

(ii) If 6 = 5 + 1 and f(w) = 1, then in this situation label of one of
the vertex adjacent to w must be 5. This is not possible as w
is adjacent to the vertices whose labels are 0 and 2.

(iii) If 6 = 2+4. In this case one of the vertices from v1, v2, · · · , vm is
labeled with 4. Assume that f(vi) = 4, for some i ∈ {1, 2, 3, · · · , m}.
In this situation there is a triangle having vertex labels 2, 4 and
x (where x is a positive integer with x �= 2, x �= 4.)
Then 4+x and 2+x will be the edge labels of two edges i.e. 4+x
and 2 + x are two distinct triangular numbers with difference 2
which is not possible.

Thus we conclude that in each of the possibilities discussed above the graph
G under consideration does not admit a triangular sum labeling.

4. Embedding of some Triangular sum graphs

Theorem 4.1 Every cycle can be embedded as an induced subgraph of a
triangular sum graph.
Proof: Let G = Cn be a cycle with n vertices. We define labeling f : V (G) →
N as follows such that the induced function f+ : E(G) → {T1, T2, . . . Tq} is
bijective.
f(v1) = 0
f(v2) = 6
f(vi) = Ti+2 − f(vi−1); 3 ≤ i ≤ n − 1
f(vn) = Tf(vn−1)−1
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Now let A = {T1, T2 . . . Tr} be the set of missing edge labels. i.e. Elements
of set A are the missing triangular numbers between 1 and Tf(vn−1)−1. Now
add r pendent vertices which are adjacent to the vertex with label 0 and label
these new vertices with labels T1, T2 . . . Tr. This construction will give rise to
edges with labels T1, T2, . . . Tr such that the resultant supergraph H admits
triangular sum labeling. Thus we proved that every cycle can be embedded as
an induced subgraph of a triangular sum graph.
Example 4.2 In the following Figure 4.1 embedding of C5 as an induced
subgraph of a triangular sum graph is shown.
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Figure 4.1

Theorem 4.3 Every cycle with one chord can be embedded as an induced
subgraph of a triangular sum graph.

Proof: Let G = Cn be the cycle with one chord. Let e = v1vk be the chord of
cycle Cn.We define labeling as
We define labeling f : V (G) → N as follows such that the induced function
f+ : E(G) → {T1, T2, . . . Tq} is bijective.
f(v1) = 0
f(v2) = 6
f(vi) = Ti+2 − f(vi−1);3 ≤ i ≤ k − 1
f(vk) = Tf(vk−1)−1

f(vk+i−1) = Tf(vk−1)−1+i − f(vk+i−2);2 ≤ i ≤ n − k
f(vn) = Tf(vn−1)−1
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Now follow the procedure described in Theorem 4.1 and the resultant super-
graph H admits triangular sum labeling. Thus we proved that every cycle with
one chord can be embedded as an induced subgraph of a triangular sum graph.
Example 4.4 In the following Figure 4.2 embedding of C4 with one chord as
an induced subgraph of a triangular sum graph is shown.
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Figure 4.2

Theorem 4.5 Every cycle with twin chords can be embedded as an induced
subgraph of a triangular sum graph.

Proof: Let G = Cn be the cycle with twin chords. Let e1 = v1vk and
e1 = v1vk+1be two chords of cycle Cn.We define labeling f : V (G) → N
as follows such that the induced function f+ : E(G) → {T1, T2, . . . Tq} is bijec-
tive.
f(v1) = 0
f(v2) = 6
f(vi) = Ti+2 − f(vi−1);3 ≤ i ≤ k − 1
f(vk) = Tf(vk−1)−1

f(vk+1) = Tf(vk)−1

f(vk+i) = Tf(vk)−1+i − f(vk+i−1);2 ≤ i ≤ n − k − 1
f(vn) = Tf(vn−1)−1

Now following the procedure adapted in Theorem 4.1 the resulting supergraph
H admits triangular sum labeling.i.e.every cycle with twin chords can be em-
bedded as an induced sub graph of a triangular sum graph.
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Example 4.6 In the following Figure 4.3 embedding of C6 with twin chord
as an induced subgraph of a triangular sum graph is shown.
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Figure 4.3

5. Concluding Remarks
As every graph does not admit a triangular sum labeling, it is very interesting
to investigate classes of graphs which are not triangular sum graphs and to
embed classes of graphs as an induced subgraph of a triangular sum graph.
We investigate several classes of graphs which does not admit triangular sum
labeling. Moreover we show that cycle, cycle with one chord and cycle with
twin chords can be embedded as an induced subgraph of a triangular sum
graph. This work contribute several new result to the theory of graph labeling.

References

[1] D M Burton, Elementary Number Theory, Brown Publishers, Second Edi-
tion(1990).

[2] J A Gallian,A Dynamic Survey of Graph Labeling The Electronic Journal
of Combinatorics, 16(2009), #DS6.

[3] J. Gross and J Yellen, Handbook of Graph Theory, CRC Press.

[4] S M Hegde and P Shankaran, On Triangular Sum Labeling of Graphs in:
B D Acharya, S Arumugam, A Rosa Ed., Labeling of Discrete Structures
and Applications, Narosa Publishing House, New Delhi(2008) 109-115.



1772 S. K. Vaidya, U. M. Prajapati and P. L. Vihol

Received: November, 2008































www.ccsenet.org/mas                      Modern Applied Science                    Vol. 4, No. 8; August 2010 

Published by Canadian Center of Science and Education 119

Prime Cordial Labeling for Some Graphs 
S K Vaidya (Corresponding author) 

Department of Mathematics, Saurashtra University 
Rajkot 360 005, Gujarat, India 

E-mail: samirkvaidya@yahoo.co.in 
 

P L Vihol 
Mathematics Department, Government Polytechnic 

Rajkot 360 003, Gujarat, India 
E-mail: viholprakash@yahoo.com 

Abstract 
We present here prime cordial labeling for the graphs obtained by some graph operations on given graphs. 
Keywords: Prime cordial labeling, Total graph, Vertex switching 
1. Introduction 
We begin with simple, finite, connected and undirected graph G = (V(G),E(G)). For all standard terminology and 
notations we follow (Harary F., 1972). We will give brief summary of definitions which are useful for the 
present investigations. 
Definition 1.1 If the vertices of the graph are assigned values subject to certain conditions then it is known as 
graph labeling. 
For a dynamic survey on graph labeling we refer to (Gallian J., 2009). A detailed study on variety of applications 
of graph labeling is reported in (Bloom G. S., 1977, p. 562-570).  
Definition 1.2 Let G be a graph. A mapping f: V (G) → {0, 1} is called binary vertex labeling of G and f (v) is 
called the label of the vertex v of G under f.  
For an edge e = uv, the induced edge labeling f*: E (G) → {0, 1} is given by f*(e) =|f (u) − f (v)|. Let   vf (0), vf 
(1) be the number of vertices of G having labels 0 and 1 respectively under f while ef (0), ef (1) be the number of 
edges having labels 0 and 1 respectively under f*. 
Definition 1.3 A binary vertex labeling of a graph G is called a cordial labeling if |vf (0) −vf (1)| ≤ 1 and |ef (0) − 
ef (1)| ≤ 1. A graph G is cordial if it admits cordial labeling. 
The concept of cordial labeling was introduced by (Cahit I.,1987, p.201-207). After this many researchers have 
investigated graph families or graphs which admit cordial labeling. Some labeling schemes are also introduced 
with minor variations in cordial theme. Some of them are product cordial labeling, total product cordial labeling 
and prime cordial labeling. The present work is focused on prime cordial labeling. 
Definition 1.4 A prime cordial labeling of a graph G with vertex set V(G)  is a bijection f : V(G) → 
{1,2,3,…..⎜V(G)⎜}  defined by f (e = uv) = 1     ; if gcd (f(u), f(v)) = 1 
           = 0     ; otherwise   
and ⎜ef (0) - ef (1) ⎜ ≤  1. A graph which admits prime cordial labeling is called a prime cordial graph. 
Definition 1.5 Let G be a graph with two or more vertices then the total graph T(G) of a graph G is the graph 
whose vertex set is V(G) ∪ E(G) and two vertices are adjacent whenever they are either adjacent or incident in 
G. 
Definition 1.6  The composition of two graphs G1 and  G2 denoted by G1[G2] has vertex set V(G1[G2]) = V(G1) 
× V(G2) and edge set E(G1[G2]) = {(u1,v1) (u2,v2) /  u1u2 ∈ E(G1)  or  [u1 = u2 and v1v2 ∈ E(G2)] }   
Definition 1.7 A vertex switching Gv of a graph G is the graph obtain by taking a vertex v of G, removing all the 
edges incident to v and adding edges joining v to every other vertex which are not adjacent to v in G. 
2. Main Results 
Theorem 2.1 T(Pn) is prime cordial graph, ∀ n ≥ 5. 
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Proof : If v1, v2, v3,……… vn and e1, e2, e3,……… en be the vertices and edges of Pn then v1, v2, v3,……… vn , e1, e2, e3,……… en 
are vertices of T(Pn).  
We define vertex labeling  f: V (T (Pn)) → {1, 2, 3…⎜V(G)⎜} as follows. We consider following four cases. 
Case 1:  n = 3, 5 
For the graph T(P3) the possible pairs of labels of adjacent vertices are (1,2), (1,3), (1,4), (1,5), (2,3), (2,4), (2,5), 
(3,4), (3,5), (4,5). Then obviously ef (0) = 1, ef (1) = 6. That is, ⎜ef (0) - ef (1) ⎜ = 5 and in all other possible 
arrangement of vertex labels ⎜ef (0) - ef (1) ⎜ > 5. Therefore T(P3) is not a prime cordial graph.  
The case when n=5 is to be dealt separately. The graph T(P5) and its prime cordial labeling is shown in Fig 1. 
Case 2:  n odd, n ≥ 7 
f (v1) = 2, f (v2) = 4,  
f (vi +2) = 2( i + 3),  1 ≤  i ≤ ⎣n/2⎦ - 2 
f (v⎣n/2⎦ +1) = 3, f (v⎣n/2⎦ +2) = 1, f (v⎣n/2⎦ +3) = 7,  
f (v⎣n/2⎦ + 2 + i) = 4i + 9, 1 ≤  i  ≤  ⎣n/2⎦ - 2 
f (ei) = f (v⎣n/2⎦  ) + 2i, 1 ≤  i  ≤  ⎣n/2⎦ - 1,  
f (e⎣n/2⎦ ) = 6, f (e⎣n/2⎦ +1) = 9, f (e⎣n/2⎦ +2) = 5,  
f (e⎣n/2⎦ + i +1 ) = 4i+7, 1 ≤  i  ≤  ⎣n/2⎦ - 2 
In this case we have e f  (0) = e f  (1) + 1 = 2 (n-1) 
Case 3:  n = 2, 4, 6 
For the graph T(P2) the possible pairs of labels of adjacent vertices are (1,2), (1,3), (2,3). Then obviously ef (0) = 
0, ef (1) = 3. Therefore T(P2) is not a prime cordial graph. 
For the graph T(P4) the possible pairs of labels of adjacent vertices are (1,2), (1,3), (1,4), (1,5), (1,6), (1,7), (2,3), 
(2,4), (2,5), (2,6), (2,7), (3,4), (3,5), (3,6), (3,7), (4,5), (4,6), (4,7), (5,6), (5,7), (6,7).  Then obviously ef (0) = 4, 
ef (1) = 7. That is, ⎜ef (0) - ef (1) ⎜ = 3 and in all other possible arrangement of vertex labels ⎜ef (0) - ef (1) ⎜ > 3. 
Thus T(P4) is not a prime cordial graph. 
The case when n=6 is to be dealt separately. The graph T(P6) and its prime cordial labeling is shown in Fig 2.  
Case 4  n even, n ≥ 8  
f (v1) = 2, f (v2) = 4,  
f (vi +2) = 2( i + 3),  1 ≤  i ≤ n/2 - 3 
f (vn/2) = 6, f (vn/2+1) = 9, f (vn/2 +2) = 5,  
f (vn/2 + 2 + i) = 4i + 7, 1 ≤  i  ≤  n/2 - 2 
f (ei) = f (vn/2 - 1 ) + 2i, 1 ≤  i  ≤  n/2 - 1,  
f (en/2 ) = 3, f (en/2 +1) = 1, f (en/2 +2) = 7,  
f (en/2 +2+i) = 4i+ 9, 1 ≤  i  ≤  n/2 – 3 
In this case we have e f  (0) = e f  (1) + 1 = 2 (n-1) 
That is, T(Pn)  is a prime cordial graph, ∀ n ≥ 5. 
Illustration 2.2 Consider the graph T (P7). The labeling is as shown in Fig 3. 
Theorem 2.3 T (Cn) is prime cordial graph, ∀ n ≥ 5. 
Proof : If v1, v2, v3,……… vn and e1, e2, e3,……… en be the vertices and edges of Cn then v1, v2, v3,……… vn , e1, e2, e3,……… en 
are vertices of T(Cn).  
We define vertex labeling  f: V (T(Cn)) → {1, 2,3,…..⎜V(G)⎜} as follows. We consider following four cases. 
Case 1:  n =  4 
For the graph T(C4) the possible pair of labels of adjacent vertices are (1,2), (1,3), (1,4), (1,5), (1,6), (1,7), (1,8), 
(2,3), (2,4), (2,5), (2,6), (2,7), (2,8), (3,4), (3,5), (3,6), (3,7), (3,8), (4,5), (4,6), (4,7), (4,8), (5,6), (5,7), (5,8), 
(6,7), (6,8), (7,8) . Then obviously ef (0) = 6, ef (1) = 10. That is, ⎜ef (0) - ef (1) ⎜ = 4 and  all other possible 
arrangement of vertex labels will yield ⎜ef (0) - ef (1) ⎜ > 4. Thus T(C4) is not a prime cordial graph. 
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Case 2:  n even, n ≥ 6  
f (v1) = 2, f (v2) = 8,  
f (vi +2) = 4 i + 10,  1 ≤  i  ≤  n/2 - 3 
f (v n/2 ) = 12, f (vn/2 + 1) = 3, f (vn/2 + 2) = 9, f (vn/2 + 3) = 7, 
f (vn/2 + 2 + i) = 4i + 9, 1 ≤  i  ≤  n/2 – 3 
f (e1) = 4, f (e2) = 10,  
f (ei + 2) = 4(i + 3), 1 ≤   i  ≤  n/2 - 3,  
f (en/2 ) = 6, f (en/2 + 1) = 1, f (en/2 + 2) = 5,  
f (e n/2 + 1 + i) = 4i + 7, 1 ≤   i  ≤  n/2 – 2 
In view of the labeling pattern defined above we have 
e f  (0) = e f  (1) = 2n. 
Case 3:  n =  3 
For the graph T(C3) the possible pairs of labels of adjacent vertices are (1,2), (1,3), (1,4), (1,5), (1,6), (2,3), (2,4), 
(2,5), (2,6), (3,4), (3,5), (3,6), (4,5), (4,6), (5,6). Then obviously ef (0) = 4, ef (1) = 8. That is, ⎜ef (0) - ef (1) ⎜ = 4 
and  all other possible arrangement of vertex labels will yield ⎜ef (0) - ef (1) ⎜ > 4. Thus T(C3) is not a prime 
cordial graph. 
Case 4:  n odd, n ≥ 5  
f (v1) = 2,  
f (v1 + i) = 4( i + 1),  1 ≤  i ≤ ⎣n/2⎦ - 1 
f (v⎣n/2⎦ +1) = 6, f (v⎣n/2⎦ +2) = 9, f (v⎣n/2⎦ +3) = 5,  
f (v⎣n/2⎦ + 3 + i) = 4i + 7, 1 ≤ i  ≤  n - ⎣n/2⎦ - 3 
f (e1) = 4,  
f (e1 + i) = 4i + 6, 1 ≤ i  ≤  ⎣n/2⎦ - 1,  
f (e⎣n/2⎦  + 1) = 3, f (e⎣n/2⎦  + 2) = 1, f (e⎣n/2⎦  + 3) = 7,  
f (e⎣n/2⎦ +  3 + i) = 4i+9, 1 ≤ i  ≤ n -  ⎣n/2⎦  - 3 
In view of the labeling pattern defined above we have 
e f  (0) = e f  (1) = 2n. 
Thus  f  is a prime cordial labeling of T (Cn). 
Illustration 2.4 Consider the graph T (C6). The labeling is as shown in Fig 4. 
Theorem 2.5  P2  [ Pm]  is prime cordial graph ∀ m ≥ 5. 
Proof :  Let  u1, u2, u3,……… um    be the vertices of Pm and  v1 , v2  be the vertices of P2.  We define vertex 
labeling  f: V (P2  [ Pm] ) → {1, 2,3,…..⎜V(G)⎜} as follows. We consider following four cases. 
Case 1:  m = 2, 4 
For the graph P2  [ P2] the possible pairs of labels of adjacent vertices are (1,2), (1,3), (1,4), (2,3), (2,4), (3,4). 
Then obviously ef (0) = 1, ef (1) = 5. That is, ⎜ef (0) - ef (1) ⎜ = 4 and in all other possible arrangement of vertex 
labels we have ⎜ef (0) - ef (1) ⎜ > 4. Therefore P2  [ P2] is not a prime cordial graph. 
For the graph P2  [ P4] the possible pairs of labels of adjacent vertices are (1,2), (1,3), (1,4), (1,5), (1,6), (1,7), 
(1,8) (2,3), (2,4), (2,5), (2,6), (2,7), (2,8), (3,4), (3,5), (3,6), (3,7), (3,8), (4,5), (4,6), (4,7), (4,8), (5,6), (5,7), (5,8), 
(6,7), (6,8), (7,8) . Then obviously ef (0) = 7, ef (1) = 9. i.e. ⎜ef (0) - ef (1) ⎜ = 2 and in all other possible 
arrangement of vertex labels we have ⎜ef (0) - ef (1) ⎜ > 2. Thus P2  [ P4] is not a prime cordial graph. 
Case 2: m even, m ≥ 6  
f ( u1 ,v1 ) = 2, f ( u2 ,v1 ) = 8,  
f ( u 2 + i  , v1 ) = 4 i + 10,  1 ≤  i  ≤ m /2 – 3 
f (u m/2, v1 ) = 12, 
 f (u m/2 + i , v1 ) = 4i -3,  ,  1 ≤  i  ≤ m /2 
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f ( u1 ,v2 ) = 4, f ( u2,v2 ) = 10,  
f ( u 2 + i  , v2 ) = 4 i + 12,  1 ≤  i  ≤ m /2 – 3 
f (u m/2, v2 ) = 6, f (u m/2 + 1 , v2 ) = 3, 
f (u m/2 + 1 + i , v2 ) = 4i + 3,  1 ≤  i  ≤ m /2 – 1 
Using above pattern we have 
 e f  (0) = e f  (1) =  5 4

2
n −  

Case 3:  m =  3 
For the graph P2[P3] the possible pairs of labels of adjacent vertices are (1,2), (1,3), (1,4), (1,5), (1,6), (2,3), (2,4), 
(2,5), (2,6), (3,4), (3,5), (3,6), (4,5), (4,6), (5,6). Then obviously ef (0) = 4, ef (1) = 7. That is,⎜ef (0) - ef (1) ⎜ = 3 
and in all other possible arrangement of vertex labels we have ⎜ef (0) - ef (1) ⎜ > 3. Thus P2[P3] is not a prime 
cordial graph. 
Case 4:  m odd, m ≥ 5  
f ( u i  , v1 ) = 4 (1+ i ),  1 ≤  i  ≤ ⎣n /2⎦ – 1 
f (u ⎣n/2⎦ , v1 ) = 2,   
f (u ⎣n/2⎦ + 1 , v1 ) = 6,  f (u ⎣n/2⎦ + 2 , v1 ) = 9,  f (u ⎣n/2⎦ + 3 , v1 ) = 5, 
f (u ⎣n/2⎦ + 2 +  i  , v1 ) = 4i + 7,  1 ≤  i  ≤ ⎣n /2⎦ – 2     
f ( u1 ,v2 ) = 4,  
f ( u 1 + i  , v2 ) = 4 i + 6,  1 ≤  i  ≤  ⎣n /2⎦ – 1 
f (u ⎣n/2⎦ + 1 , v2 ) = 3,  f (u ⎣n/2⎦ + 2 , v2 ) = 1,  f (u ⎣n/2⎦ + 3 , v2 ) = 7, 
f (u ⎣n/2⎦ + 2 +  i  , v2 ) = 4i + 9,  1 ≤  i  ≤ ⎣n /2⎦ – 2  
Using above pattern we have 
 e f  (0) = e f  (1) + 1= 2n + ⎣n/2⎦ - 1. 
Thus in case 2 and case 4 the graph  P2 [Pm] satisfies the condition ⎜ e f  (0) - e f  (1) ⎜≤ 1. 
That is, P2 [Pm] is a prime cordial graph ∀ m ≥ 5. 
Illustration 2.6 Consider the graph P2 [P5]. The prime cordial labeling is as shown in Fig 5. 
Theorem 2.7 Two cycles joined by a path Pm is a prime cordial graph. 
Proof :  Let G be the graph obtained by joining two cycles Cn and C′

n by a path Pm. Let  v1, v2, v3,……… vn   , v′1, 
v′2 , v′3 ….. v′n  be the vertices of  Cn , C′

n  respectively.  Here u1, u2, u3,….. are the vertices of Pm. We define 
vertex labeling  f: V (G ) → {1, 2,3,…..⎜V(G)⎜} as follows. We consider following four cases. 
Case 1:  m odd, m ≥ 5  
f (u1) = f (v1) = 2, f (v2) = 4,  
f (vi +2) = 2( i + 3),  1 ≤  i  ≤  n – 2 
f (ui +1) = f ( vn)  +  2i,   1 ≤  i  ≤  ⎣m /2⎦ – 2 
f (u ⎣m/2⎦ ) = 6,  f (u ⎣m/2⎦ + 1) = 3,   f (u ⎣m/2⎦ + 2) = 1 
f (u ⎣m/2⎦ + 2 + i ) = 2i + 3,    1 ≤  i  ≤  ⎣m /2⎦ – 1 
 f ( v′1   ) = f (um),  f (v ′i + 1  ) = f ( v′1  ) + 2i,  1 ≤  i  ≤  n – 1 
In view of the above defined labeling pattern we have 
e f  (0) = e f  (1)  = n + ⎣m/2⎦ . 
Case 2:  m = 3   
f (u1) = f (v1) = 6, f (v2) = 2, f (v3) = 4,   
f (vi +3) = 2( i + 3),  1 ≤  i  ≤  n – 3 
f (u2)=3, f ( v′1   ) = f (u3)=1,  f ( v′2   ) = 5 
f ( v′2+ i

   ) = 2i+5, 1 ≤  i  ≤  n – 2 
In view of the above defined labeling pattern we have 
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e f  (0) = e f  (1)  = n + 1 
Case 3: m even, m ≥ 4  
f (u1) = f (v1) = 2, f (v2) = 4,  
f (vi +2) = 2( i + 3),  1 ≤  i  ≤  n – 2 
f (ui +1) = f (vn)  +  2i,   1 ≤  i  ≤  m /2 – 2 
f (u m/2 ) = 6,  f (u m/2 + 1) = 3,   f (u m/2 + 2) = 1 
f (u m/2 + 2 + i ) = 2i + 3,    1 ≤  i  ≤  m /2 – 2 
 f ( v′1   ) = f (um),  f (v ′i + 1  ) = f ( v′1 ) + 2i,  1 ≤  i  ≤  n – 1 
In view of the above defined labeling pattern we have 
e f  (0) = e f  (1) + 1 = n + m/2 
Case 4:  m = 2   
f (u1) = f (v1) = 2    
f (v1+i) = 2( i + 1),  1 ≤  i  ≤  n – 1 
 f ( v′1   ) = f (u2)=1 
f ( v′1+ i

   ) = 2i+1, 1 ≤  i  ≤  n – 1 
In view of the above defined labeling pattern we have 
e f  (0) + 1= e f  (1)  = n + 1. 
Thus in all cases graph G satisfies the condition ⎜ e f  (0) - e f  (1) ⎜≤ 1. 
That is G is a prime cordial graph. 
Illustration 2.8 Consider the graph joining to copies of  C5  by the path P7. The prime cordial labeling is as 
shown in Fig 6. 
Theorem 2.9 The graph obtained by switching of an arbitrary vertex in cycle Cn admits prime cordial labeling 
except n = 5. 
Proof : Let v1,v2,…..vn be the successive vertices of Cn and  Gv denotes the graph obtained by switching of a 
vertex v. Without loss of generality let the switched vertex be v1 and we initiate the labeling from the switched 
vertex v1. 

To define f: V (Gv1) → {1, 2, 3…⎜V(G)⎜} we consider following four cases. 
Case 1:  n = 4 
The case when n=4 is to be dealt separately. The graph Gv1 and its prime cordial labeling is shown in Fig 7.  
Case 2:  n even, n  ≥ 6  
f(v1) = 2, f(v2) = 1, f(v3) = 4 
f(v3 + i) = 2(i+3),  1 ≤ i ≤ n/2 – 3 
f(vn/2 + 1) = 6, f(vn/2 + 2) = 3 
f(vn/2 + 2 + i) = 2i + 3, 1 ≤ i ≤ n/2 – 2 
Using above pattern we have  
e f  (0) = e f  (1) + 1  = n - 2 
Case 3: n = 5 
For the graph Gv1 the possible pairs of labels of adjacent vertices are (1,2), (1,3), (1,4), (1,5), (2,3), (2,4), (2,5), 
(3,4), (3,5), (4,5). Then obviously ef (0) = 1, ef (1) = 4. That is, ⎜ef (0) - ef (1) ⎜ = 3 and in all other possible 
arrangement of vertex labels we have ⎜ef (0) - ef (1) ⎜ > 3. Thus, Gv1 is not a prime cordial graph. 
Case 4: n odd, n ≥ 7  
f(v1) = 2, f(v2) = 1, f(v3) = 4 
f(v3 + i) = 2(i+3),  1 ≤ i ≤ ⎣n/2⎦ – 3 
f(v⎣n/2⎦ + 1) = 6, f(v⎣n/2⎦ + 2) = 3 
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f(v⎣n/2⎦ + 2 + i) = 2i + 3, 1 ≤ i ≤ ⎣n/2⎦– 1 
Using above pattern we have  
e f  (0) + 1 = e f  (1) = n - 2 
Thus in cases 1, 2 and 4  f satisfies the condition for prime cordial labeling. That is, Gv1 is a prime cordial 
graph. 
Illustration 2.10 Consider the graph obtained by switching the vertex in C7 . The prime cordial labeling is as 
shown in Fig 8. 
3. Concluding Remarks 
It is always interesting to investigate whether any graph or graph families admit a particular type of graph 
labeling?  Here we investigate five results corresponding to prime cordial labeling. Analogous work can be 
carried out for other graph families and in the context of different graph labeling problems. 
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Figure 1. T(P5) and its prime cordial labeling 

 

Figure 2. T(P6) and its prime cordial labeling 

 

Figure 3. T(P7) and its prime cordial labeling 
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Figure 4. T(C6) and its prime cordial labeling 

 

Figure 5. P2 [P5] and its prime cordial labeling 

 

Figure 6. Two cycles C5  join by P7  and its prime cordial labeling 

 

Figure 7. Vertex switching in C4 and its prime cordial labeling 
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Figure 8. Vertex switching in C7 and its prime cordial labeling 
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Abstract

Let G = (V(G), E(G)) be a connected graph. For integers j ≥ k, L( j, k)-labeling of a graph G is an integer labeling of the

vertices in V such that adjacent vertices receive integers which differ by at least j and vertices which are at distance two

apart receive labels which differ by at least k. In this paper we discuss L(2, 1)-labeling (or distance two labeling) in the

context of some graph operations.

Keywords: Graph Labeling, λ- Number, λ
′
- Number

1. Introduction

We begin with finite, connected, undirected graph G = (V(G), E(G)) without loops and multiple edges. For standard

terminology and notations we refer to (West, D., 2001). We will give brief summary of definitions and information which

are prerequisites for the present work.

Definition 1.1 Duplication of a vertex vk of graph G produces a new graph G
′

by adding a vertex v′k with N(v′k) = N(vk).

In other words a vertex v′k is said to be duplication of vk if all the vertices which are adjacent to vk are now adjacent to v′k
also.

Definition 1.2 Let G be a graph. A graph H is called a supersubdivision of G if H is obtained from G by replacing every

edge ei of G by a complete bipartite graph K2,mi (for some mi and 1 ≤ i ≤ q) in such a way that the ends of each ei are

merged with the two vertices of 2-vertices part of K2,mi after removing the edge ei from graph G.

A new family of graph introduced in (Vaidya, S., 2008, p.54-64) defined as follows.

Definition 1.3 A graph obtained by replacing each vertex of a star K1,n by a graph G is called star of G denoted as G
′
.

The central graph in G
′

is the graph which replaces apex vertex of K1,n.

Definition 1.4 If the vertices of the graph are assigned values subject to certain conditions then it is known as graph
labeling.

The unprecedented growth of wireless communication is recorded but the available radio frequencies allocated to these

communication networks are not enough. Proper allocation of frequencies is demand of the time. The interference by

unconstrained transmitters will interrupt the communications. This problem was taken up in (Hale, W., 1980, p.1497-

1514) in terms of graph labeling. In a private communication with Griggs during 1988 Roberts proposed a variation

in channel assignment problem. According to him any two close transmitters must receive different channels in order

to avoid interference. Motivated by this problem the concept of L(2,1)-labeling was introduced by (Yeh, R., 1990) and
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(Griggs, J., and Yeh, R., 1992, p.586-595) which is defined as follows.

Definition 1.5 For a graph G, L(2, 1)-labeling (or distance two labeling) with span k is a function f : V(G) −→ {0, 1, . . . , k}
such that the following conditions are satisfied:

(1)| f (x) − f (y)| ≥ 2 if d(x, y) = 1

(2)| f (x) − f (y)| ≥ 1 if d(x, y) = 2

In otherwords the L(2, 1)-labeling of a graph is an abstraction of assigning integer frequencies to radio transmitters such

that (1) Transmitters that are one unit of distance apart receive frequencies that differ by at least two and (2) Transmitters

that are two units of distance apart receive frequencies that differ by at least one. The span of f is the largest number in

f (V). The minimum span taken over all L(2, 1)-labeling of G, denoted as λ(G) is called the λ-number of G. The minimum

label in L(2, 1)-labeling of G is assumed to be 0.

Definition 1.6 An injective L(2, 1)-labeling is called an L
′
(2, 1)-labeling and the minimum span taken over all such

L
′
(2, 1)-labeling is called λ

′
-number of the graph.

The L(2, 1)-labeling has been extensively studied in the recent past by many researchers (Georges, J., 1995, p.141-159),

(Georges, J.P., 2001, p.28-35),(Georges, J., 1996, p.47-57),(Georges, J., 1994, p.103-111),(Liu. D., 1997, p.13-22),(Shao.

Z., 2005, p.668-671). Practically it is observed that the interference might go beyond two levels. This observation

motivated (Chartrand. G., 2001, p.77-85) to introduce the concept of radio labeling which is the extension of L(2, 1)-

labeling when the interference is beyond two levels to the largest possible - the diameter of G. We investigate three results

corresponding to L(2, 1)-labeling and L
′
(2, 1)-labeling each.

2. Main Results

Theorem 2.1 Let C
′
n be the graph obtained by duplicating all the vertices of the cycle Cn at a time then λ(C

′
n) = 7. (where

n > 3)

Proof: Let v
′
1, v

′
2, . . . , v

′
n be the duplicated vertices corresponding to v1, v2, . . . , vn of cycle Cn.

To define f : V(C
′
n) −→ N

⋃{0}, we consider following four cases.

Case 1: n ≡ 0(mod 3) (where n > 5)

We label the vertices as follows.

f (vi) = 0, i = 3 j − 2, 1 ≤ j ≤ n
3

f (vi) = 2, i = 3 j − 1, 1 ≤ j ≤ n
3

f (vi) = 4, i = 3 j, 1 ≤ j ≤ n
3

f (v
′
i) = 7, i = 3 j − 2,1 ≤ j ≤ n

3

f (v
′
i) = 6, i = 3 j − 1, 1 ≤ j ≤ n

3

f (v
′
i) = 5, i = 3 j, 1 ≤ j ≤ n

3

Case 2: n ≡ 1(mod 3) (where n > 5)

We label the vertices as follows.

f (vi) = 0, i = 3 j − 2, 1 ≤ j ≤ � n
3
�

f (vi) = 2, i = 3 j − 1, 1 ≤ j ≤ � n
3
�

f (vi) = 4, i = 3 j, 1 ≤ j ≤ � n
3
�

f (vn−3) = 0, f (vn−2) = 3, f (vn−1) = 1, f (vn) = 4

f (v
′
i) = 7, i = 3 j − 2, 1 ≤ j ≤ � n

3
�

f (v
′
i) = 6, i = 3 j − 1, 1 ≤ j ≤ � n

3
�

f (v
′
i) = 5, i = 3 j, 1 ≤ j ≤ � n

3
�

f (v
′
n−3) = 7, f (v

′
n−2) = 7, f (v

′
n−1) = 6, f (v

′
n) = 5

Case 3: n ≡ 2(mod 3) (where n > 5)

We label the vertices as follows.

f (vi) = 0, i = 3 j − 2, 1 ≤ j ≤ � n
3
�

f (vi) = 2, i = 3 j − 1, 1 ≤ j ≤ � n
3
�

f (vi) = 4, i = 3 j, 1 ≤ j ≤ � n
3
�

f (vn−1) = 1, f (vn) = 3

f (v
′
1) = 6, f (v

′
n) = 7
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f (v
′
i) = 6, i = 3 j − 1, 1 ≤ j ≤ � n

3
�

f (v
′
i) = 5, i = 3 j, 1 ≤ j ≤ � n

3
�

f (v
′
i) = 7, i = 3 j + 1, 1 ≤ j ≤ � n

3
�

Case 4: n = 4, 5

These cases are to be dealt separately. The L(2, 1)-labeling for the graphs obtained by duplicating all the vertices at a time

in the cycle Cn when n = 4, 5 are as shown in Fig 1

Thus in all the possibilities Rf = {0, 1, 2 . . . , 7} ⊂ N
⋃{0}.

i.e. λ(C
′
n) = 7.

Remark The L(2, 1)-labeling for the graph obtained by duplicating all the vertices of the cycle C3 is shown in Fig 2
Thus Rf = {0, 1, 2 . . . , 6} ⊂ N

⋃{0}.
i.e. λ(C

′
3) = 6.

Illustration 2.2 Consider the graph C6 and duplicate all the vertices at a time. The L(2, 1)-labeling is as shown in Fig 3.

Theorem 2.3 Let C
′
n be the graph obtained by duplicating all the vertices at a time of the cycle Cn then λ

′
(C

′
n) = p − 1,

where p is the total number vertices in C
′
n (where n > 3).

Proof: Let v
′
1, v

′
2, . . . , v

′
n be the duplicated vertices corresponding to v1, v2, . . . , vn of cycle Cn.

To define f : V(C
′
n) −→ N

⋃{0}, we consider following two cases.

Case 1: n > 5

f (vi) = 2i − 7, 4 ≤ i ≤ n
f (vi) = f (vn) + 2, 1 ≤ i ≤ 3

f (v
′
i) = 2i − 2, 1 ≤ i ≤ n

Now label the vertices of C
′
n using the above defined pattern we have Rf = {0, 1, 2, . . . , p − 1} ⊂ N

⋃{0}
This implies that λ

′
(C

′
n) = p − 1.

Case 2: n = 4, 5

These cases to be dealt separately. The L
′
(2, 1)-labeling for the graphs obtained by duplicating all the vertices at a time in

the cycle Cn when n = 4, 5 are as shown in the following Fig 4.

Remark The L
′
(2, 1)-labeling for the graphs obtained by duplicating all the vertices at a time in the cycle C3 is shown in

the following Fig 5.

Thus Rf = {0, 1, 2 . . . , 6} ⊂ N
⋃{0}.

i.e. λ
′
(C

′
3) = 6.

Illustration 2.4 Consider the graph C6 and duplicating all the vertices at a time. The L
′
(2, 1)-labeling is as shown in Fig

6.

Theorem 2.5 Let C
′
n be the graph obtained by taking arbitrary supersubdivision of each edge of cycle Cn then

1 For n even

λ(C
′
n) = Δ + 2

2 For n odd

λ(C
′
n) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Δ + 2; i f s + t + r < Δ,
Δ + 3; i f s + t + r = Δ,
s + t + r + 2; i f s + t + r > Δ

where vk is a vertex with label 2,

s is number of subdivision between vk−2 and vk−1,

t is number of subdivision between vk−1 and vk,

r is number of subdivision between vk and vk+1,

Δ is the maximum degree of C
′
n.

Proof: Let v1, v2, . . . , vn be the vertices of cycle Cn. Let C
′
n be the graph obtained by arbitrary super subdivision of cycle

Cn.
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It is obvious that for any two vertices vi and vi+2, N(vi)
⋂

N(vi+2) = φ
To define f : V(C

′
n) −→ N

⋃{0}, we consider following two cases.

Case 1: Cn is even cycle

f (v2i−1) = 0, 1 ≤ i ≤ n
2

f (v2i)= 1, 1 ≤ i ≤ n
2

If Pi j is the number of supersubdivisions between vi and v j then for the vertex v1, |N(v1)| = P12 + Pn1. Without loss of

generality we assume that v1 is the vertex with maximum degree i.e. d(v1) = Δ. suppose u1, u2.....uΔ be the members of

N(v1). We label the vertices of N(v1) as follows.

f (ui) = 2 + i, 1 ≤ i ≤ Δ
As N(v1)

⋂
N(v3) = φ then it is possible to label the vertices of N(v3) using the vertex labels of the members of N(v1) in

accordance with the requirement for L(2, 1)-labeling. Extending this argument recursively upto N(vn−1) it is possible to

label all the vertices of C
′
n using the distinct numbers between 0 and Δ + 2.

i.e. Rf = {0, 1, 2, . . . ,Δ + 2} ⊂ N
⋃{0}

Consequently λ(C
′
n) = Δ + 2.

Case 2: Cn is odd cycle

Let v1, v2, . . . , vn be the vertices of cycle Cn.

Without loss of generality we assume that v1 is a vertex with maximum degree and vk be the vertex with minimum degree.

Define f (vk) = 2 and label the remaining vertices alternatively with labels 0 and 1 such that f (v1) = 0. Then either

f (vk−1) = 1 ; f (vk+1) = 0 OR f (vk−1) = 0 ; f (vk+1) = 1. We assign labeling in such a way that f (vk−1) = 1 ; f (vk+1) = 0.

Now following the procedure adapted in case (1) it is possible to label all the vertices except the vertices between vk−1

and vk. Label the vertices between vk−1 and vk using the vertex labels of N(v1) except the labels which are used earlier to

label the vertices between vk−2, vk−1 and between vk, vk+1.

If there are p vertices u1, u2...up are left unlabeled between vk−1 and vk then label them as follows,

f (ui)=max{labels of the vertices between vk−2 and vk−1, labels of the vertices between vk and vk+1} + i, 1 ≤ i ≤ p

Now if s is the number of subdivisions between vk−2 and vk−1

t is the number of subdivisions between vk−1 and vk

r is the number of subdivisions between vk and vk+1

then (1) Rf = {0, 1, 2, . . . ,Δ + 2} ⊂ N
⋃{0}, when s + t + r < Δ

i.e. λ(C
′
n) = Δ + 2

(2) Rf = {0, 1, 2, . . . ,Δ + 3} ⊂ N
⋃{0}, when s + t + r = Δ

i.e. λ(C
′
n) = Δ + 3

(3) Rf = {0, 1, 2, . . . , s + t + r + 2} ⊂ N
⋃{0}, when s + t + r > Δ

i.e. λ(C
′
n) = s + t + r + 2

Illustration 2.6 Consider the graph C8. The L(2, 1)-labeling of C
′
8 is shown in Fig 7.

Theorem 2.7 Let G
′

be the graph obtained by taking arbitrary supersubdivision of each edge of graph G with number of

vertices n ≥ 3 then λ
′
(G

′
) = p − 1, where p is the total number of vertices in G

′
.

Proof: Let v1, v2, . . . , vn be the vertices of any connected graph G and let G
′

be the graph obtained by taking arbitrary

supersubdivision of G. Let uk be the vertices which are used for arbitrary supersubdivision of the edge viv j where 1 ≤ i ≤
n, 1 ≤ j ≤ n and i < j

Here k is a total number of vertices used for arbitrary supersubdivision.

We define f : V(G
′
) −→ N

⋃{0} as

f (vi) = i − 1, where 1 ≤ i ≤ n

Now we label the vertices ui in the following order.

First we label the vertices between v1 and v1+ j, 1 ≤ j ≤ n then following the same procedure for v2, v3,...vn

f (ui) = f (vn) + i, 1 ≤ i ≤ k

Now label the vertices of G
′

using the above defined pattern we have Rf = {0, 1, 2, . . . , p − 1} ⊂ N
⋃{0}

112 ISSN 1916-9795 E-ISSN 1916-9809



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 2, No. 3; August 2010

This implies that λ
′
(G

′
) = p − 1.

Illustration 2.8 Consider the graph P4 and its supersubdivision. The L
′
(2, 1)-labeling is as shown in Fig 8.

Theorem 2.9 Let C
′
n be the graph obtained by taking star of a cycle Cn then λ(C

′
n) = 5.

Proof:Let v1, v2, . . . , vn be the vertices of cycle Cn and vi j be the vertices of cycle Cn which are adjacent to the ith vertex

of cycle Cn.

To define f : V(C
′
n) −→ N

⋃{0}, we consider following four cases.

Case 1: n ≡ 0(mod 3)

f (vi) = 0, i = 3 j − 2, 1 ≤ j ≤ n
3

f (vi) = 2, i = 3 j − 1, 1 ≤ j ≤ n
3

f (vi) = 4, i = 3 j, 1 ≤ j ≤ n
3

Now we label the vertices vi j of star of a cycle according to the label of f (vi).

(1) when f (vi) = 0, i = 3 j − 2, 1 ≤ j ≤ n
3

f (vik) = 3, k = 3p − 2, 1 ≤ p ≤ n
3

f (vik) = 5, k = 3p − 1, 1 ≤ p ≤ n
3

f (vik) = 1, k = 3p, 1 ≤ p ≤ n
3

(2) when f (vi) = 2, i = 3 j − 1, 1 ≤ j ≤ n
3

f (vik) = 5, k = 3p − 2, 1 ≤ p ≤ n
3

f (vik) = 3, k = 3p − 1, 1 ≤ p ≤ n
3

f (vik) = 1, k = 3p, 1 ≤ p ≤ n
3

(3) when f (vi) = 4, i = 3 j, 1 ≤ j ≤ n
3

f (vik) = 1, k = 3p − 2, 1 ≤ p ≤ n
3

f (vik) = 3, k = 3p − 1, 1 ≤ p ≤ n
3

f (vik) = 5, k = 3p, 1 ≤ p ≤ n
3

Case 2: n ≡ 1(mod 3)

f (vi) = 0, i = 3 j − 2, 1 ≤ j ≤ � n
3
�

f (vi) = 2, i = 3 j − 1, 1 ≤ j ≤ � n
3
�

f (vi) = 5, i = 3 j, 1 ≤ j ≤ � n
3
�

f (vn) = 3

Now we label the vertices of star of a cycle vi j according to label of f (vi).

(1) when f (vi) = 0, i = 3 j − 2, 1 ≤ j ≤ � n
3
�

f (vik) = 4, k = 3p − 2, 1 ≤ p ≤ � n
3
�

f (vik) = 2, k = 3p − 1, 1 ≤ p ≤ � n
3
�

f (vik) = 0, k = 3p, 1 ≤ p ≤ � n
3
� − 1

f (vi(n−1)) = 5,

f (vin) = 1

(2) when f (vi) = 2, i = 3 j − 1, 1 ≤ j ≤ � n
3
�

f (vik) = 4, k = 3p − 2, 1 ≤ p ≤ � n
3
�

f (vik) = 0, k = 3p − 1, 1 ≤ p ≤ � n
3
�

f (vik) = 2, k = 3p, 1 ≤ p ≤ � n
3
� − 1

f (vi(n−1)) = 3,

f (vin) = 1

(3) when f (vi) = 5, i = 3 j, 1 ≤ j ≤ � n
3
�
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f (vik) = 1, k = 3p − 2, 1 ≤ p ≤ � n
3
�

f (vik) = 3, k = 3p − 1, 1 ≤ p ≤ � n
3
�

f (vik) = 5, k = 3p, 1 ≤ p ≤ � n
3
� − 1

f (vi(n−1)) = 0,

f (vin) = 4

(4) when f (vi) = 3, i = n

f (vik) = 1, k = 3p − 2, 1 ≤ p ≤ � n
3
�

f (vik) = 5, k = 3p − 1, 1 ≤ p ≤ � n
3
�

f (vik) = 3, k = 3p, 1 ≤ p ≤ � n
3
� − 1

f (vi(n−1)) = 0

f (vin) = 4

Case 3: n ≡ 2(mod 3), n � 5

f (vi) = 1, i = 3 j − 2, 1 ≤ j ≤ � n
3
� − 1

f (vi) = 3, i = 3 j − 1, 1 ≤ j ≤ � n
3
� − 1

f (vi) = 5, i = 3 j, 1 ≤ j ≤ � n
3
� − 1

f (vn−4) = 0, f (vn−3) = 2, f (vn−2) = 5, f (vn−1) = 0, f (vn) = 4

Now we label the vertices vi j of star of a cycle according to the label of f (vi).

(1) when f (vi) = 1, i = 3 j − 2, 1 ≤ j ≤ � n
3
� − 1

f (vik) = 5, k = 3p − 2, 1 ≤ p ≤ � n
3
�

f (vik) = 3, k = 3p − 1, 1 ≤ p ≤ � n
3
�

f (vik) = 1, k = 3p, 1 ≤ p ≤ � n
3
�

f (vi(n−1)) = 4,

f (vin) = 0

(2) when f (vi) = 3, i = 3 j − 1, 1 ≤ j ≤ � n
3
� − 1

f (vik) = 0, k = 3p − 2, 1 ≤ p ≤ � n
3
�

f (vik) = 2, k = 3p − 1, 1 ≤ p ≤ � n
3
�

f (vik) = 4, k = 3p, 1 ≤ p ≤ � n
3
�

f (vi(n−1)) = 1,

f (vin) = 5

(3) when f (vi) = 5, i = 3 j, 1 ≤ j ≤ � n
3
� − 1 and i = n − 2

f (vik) = 1, k = 3p − 2, 1 ≤ p ≤ � n
3
�

f (vik) = 3, k = 3p − 1, 1 ≤ p ≤ � n
3
�

f (vik) = 5, k = 3p, 1 ≤ p ≤ � n
3
�

f (vi(n−1)) = 2,

f (vin) = 4

(4) when f (vi) = 0, i = n − 4, n − 1

f (vik) = 3, k = 3p − 2, 1 ≤ p ≤ � n
3
�

f (vik) = 5, k = 3p − 1, 1 ≤ p ≤ � n
3
�

f (vik) = 1, k = 3p, 1 ≤ p ≤ � n
3
� − 1

f (vi(n−2)) = 2,

f (vi(n−1)) = 4,

f (vin) = 1

(5) when f (vi) = 2, i = n − 3
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f (vik) = 4, k = 3p − 2, 1 ≤ p ≤ � n
3
�

f (vik) = 0, k = 3p − 1, 1 ≤ p ≤ � n
3
�

f (vik) = 2, k = 3p, 1 ≤ p ≤ � n
3
�

f (vi(n−1)) = 5,

f (vin) = 1

(6) when f (vi) = 4, i = n

f (vik) = 2, k = 3p − 2, 1 ≤ p ≤ � n
3
�

f (vik) = 0, k = 3p − 1, 1 ≤ p ≤ � n
3
�

f (vik) = 4, k = 3p, 1 ≤ p ≤ � n
3
�

f (vi(n−1)) = 1,

f (vin) = 5

Case 4: n = 5

This case is to be dealt separately. The L(2, 1)-labeling for the graph obtained by taking star of the cycle C5 is shown in

Fig 9. Thus in all the possibilities we have λ(C
′
n) = 5

Illustration 2.10 Consider the graph C7, the L(2, 1)-labeling is as shown in Fig 10.

Theorem 2.11 Let G
′

be the graph obtained by taking star of a graph G then λ
′
(G

′
) = p − 1, where p be the total number

of vertices of G
′
.

Proof: Let v1, v2, . . . , vn be the vertices of any connected graph G. Let vi j be the vertices of a graph which is adjacent to

the ith vertex of graph G. By the definition of a star of a graph the total number of vertices in a graph G
′

are n(n + 1).

To define f : V(G
′
) −→ N

⋃{0}
f (vi1) = i − 1, 1 ≤ i ≤ n

for 1 ≤ i ≤ n do the labeling as follows:

f (vi) = f (vni) + 1

f (v1(i+1)) = f (vi) + 1

f (v( j+1)(i+1)) = f (v j(i+1)) + 1, 1 ≤ j ≤ n − 1

Thus λ
′
(G

′
) = p − 1 = n2 + n − 1

Illustration 2.12 Consider the star of a graph K4, the L
′
(2, 1)-labeling is shown in Fig 11.

3 Concluding Remarks

Here we investigate some new results corresponding to L(2, 1)-labeling and L
′
(2, 1)-labeling. The λ-number is completely

determined for the graphs obtained by duplicating the vertices altogether in a cycle, arbitrary supersubdivision of a cycle

and star of a cycle. We also determine λ
′
-number for some graph families. This work is an effort to relate some graph

operations and L(2, 1)-labeling. All the results reported here are of very general nature and λ-number as well as λ
′
-number

are completely determined for the larger graphs resulted from the graph operations on standard graphs which is the salient

features of this work. It is also possible to investigate some more results corresponding to other graph families.
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Figure 6. vertex duplication in C6 and L
′
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Figure 7. L(2, 1)-labeling of C
′
8

Figure 8. L
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(2, 1)-labeling of P
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4

Figure 9. L(2, 1)-labeling for star of cycle C5
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Figure 10. L(2, 1)-labeling for star of cycle C7

Figure 11. L
′
(2, 1)-labeling for star of a complete graph K4
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Fibonacci and Super Fibonacci Graceful Labeling of 
Some Graphs* 

S.K.Vaidya1 

P.L.Vihol2 

Abstract:  In the present work we discuss the existence and non-existence of Fibonacci and super 
Fibonacci graceful labeling for certain graphs. We also show that the graph obtained by switching 

a vertex in cycle Cn, (where 6n  ) is not super Fibonacci graceful but it can be embedded as an 
induced subgraph of a super Fibonacci graceful graph. 

Key words: Graceful Labeling; Fibonacci Graceful Labeling; Super Fibonacci Graceful 
Labeling 

 

1.  INTRODUCTION 

Graph labeling where the vertices are assigned values subject to certain conditions. The problems arising 
from the effort to study various labeling schemes of the elements of a graph is a potential area of challenge. 
Most of the labeling techniques found their origin with 'graceful labeling' introduced by Rosa (1967). The 
famous graceful tree conjecture and many illustrious works on graceful graphs brought a tide of different 
graph labeling techniques. Some of them are Harmonious labeling, Elegant labeling, Edge graceful labeling, 
Odd graceful labeling etc. A comprehensive survey on graph labeling is given in Gallian (2010). The 
present work is aimed to provide Fibonacci graceful labeling of some graphs. 

 Throughout this work graph = ( ( ), ( ))G V G E G  we mean a simple, finite, connected and undirected 

graph with p  vertices and q  edges. For standard terminology and notations in graph theory we follow 

Gross and Yellen (1998) while for number theory we follow Niven and Zuckerman (1972). We will give 
brief summary of definitions and other information which are useful for the present investigations.  

Definition 1.1 A vertex switching vG  of a graph G  is obtained by taking a vertex v  of G , removing 

all edges incidence to v  and adding edges joining v  to every vertex which are not adjacent to v  in G . 

Definition 1.2 Consider two copies of fan ( 1=n nF P K ) and define a new graph known as joint sum 

of nF  is the graph obtained by connecting a vertex of first copy with a vertex of second copy. 

                                                 
1 Department of Mathematics, Saurashtra University, Rajkot-360005, Gujarat (India) Email: 
samirkvaidya@yahoo.co.in 
2 Department of Mathematics, Government Polytechnic, Rajkot-360003, Gujarat (India) 
*AMS Subject classification number(2010): 05C78 
*Received December 12, 2010; accepted April 19, 2011 



S.K.Vaidya; P.L.Vihol /Studies in Mathematical Sciences  Vol.2 No.2, 2011 

     25

Definition 1.3 A function f  is called graceful labeling of graph if : ( ) {0,1,2,......... }f V G q  is 

injective and the induced function : ( ) {1,2,......... }f E G q   defined as 

( = ) =| ( ) ( ) |f e uv f u f v   is bijective. A graph G is called graceful if it admits graceful labeling.  

Definition 1.4 The Fibonacci numbers 0 1 2, , .....F F F
are defined by 0 1 2, , .....F F F

 and 

1 1= .n n nF F F 
 

Definition 1.5 The function : ( ) {0,1, 2,......... }qf V G F  (where qF  is the thq  Fibonacci 

number) is said to be Fibonacci graceful if 1 2: ( ) { , ,...... }qf E G F F F   defined by 

( ) =| ( ) ( ) |f uv f u f v   is bijective. 

Definition 1.6 The function 1 2: ( ) {0, , ,......... }qf V G F F F  (where qF  is the thq  Fibonacci 

number) is said to be Super Fibonacci graceful if the induced edge labeling 

1 2: ( ) { , ,...... }qf E G F F F   defined by ( ) =| ( ) ( ) |f uv f u f v   is bijective. 

 Above two concepts were introduced by Kathiresen and Amutha [5]. Deviating from the definition 

1.1 they assume that 1 2 3 41, 2, 3, 5.....F F F F     and proved that 

• nK  is Fibonacci graceful if and only if 3n  .  

• If G  is Eulerian and Fibonacci graceful then 0( 3)q mod .  

• Every path nP  of length n  is Fibonacci graceful.  

• 2
nP  is a Fibonacci graceful graph.  

• Caterpillars are Fibonacci graceful.  

• The bistar ,m nB  is Fibonacci graceful but not Super Fibonacci graceful for 5n  .  

• nC  is Super Fibonacci graceful if and only if 0( 3)n mod .  

• Every fan nF  is Super Fibonacci graceful.  

• If G  is Fibonacci or Super Fibonacci graceful then its pendant edge extension G  is Fibonacci 

graceful.  

 • If 1G  and 2G  are Super Fibonacci graceful in which no two adjacent vertices have the labeling 1 

and 2 , then their union 1 2G G  is Fibonacci graceful.  

 • If 1G , 2G , ......., nG  are super Fibonacci graceful graphs in which no two adjacent vertices are 

labeled with 1 and 2  then amalgamation of 1G , 2G , ......., nG  obtained by identifying the vertices having 

labels 0  is also a super Fibonacci graceful.  

In the present work we prove that   

• Trees are Fibonacci graceful.  

• Wheels are not Fibonacci graceful.  

• Helms are not Fibonacci graceful.  
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The graph obtained by  

• Switching of a vertex in a cycle nC  is Fibonacci graceful.  

• Joint Sum of two copies of fan is Fibonacci graceful.  

• Switching of a vertex in a cycle nC  is super Fibonacci graceful except 6n  .  

• Switching a vertex of cycle nC  for 6n   can be embeded as an induced subgraph of a super 

Fibonacci graceful graph.  

Observation 1.7 If in a triangle edges receives Fibonacci numbers from vertex labels than they are 
always consecutive.  

 

2.  MAIN RESULTS 

Theorem 2.1 Trees are Fibonacci graceful. 

Proof: Consider a vertex with minimum eccentricity as the root of tree T. Let this vertex be v . Without 
loss of generality at each level of tree T we initiate the labeling from left to right. Let 

1 2 3, , ,.......... nP P P P  be the children of v . 

Define : ( ) {0,1, 2...... }qf V T F  in the following manner. 

( ) = 0f v , 1
1( ) =f P F  

Now if 1
1 (1 )iP i t   are children of 1P  then 

1 1
1 1( ) = ( )i if P f P F 

, 1 i t   

If there are r  vertices at level two of 1P  and out of these r  vertices, 1r  be the children of 1
11P  then 

label them as follows, 

1 1
11 11 1( ) = ( )i t if P f P F  

, 11 i r 
 

Let there are 2r  vertices, which are children of 1
12P  then label them as follows, 

1 1
12 12 1 1

( ) = ( )i t r if P f P F   
, 21 i r   

Following the same procedure to label all the vertices of a subtree with root as 1P . 

we can assign label to each vertex of the subtree with roots as 2 3 1, ,.......... nP P P   and define 
1

1( ) =i
fi

f P F
 , where fi

F  is the th
if  Fibonacci number assign to the last edge of the tree rooted at iP . 

Now for the vertex nP . Define ( ) =n
qf P F

    

Let us denote n
ijP , where i is the level of vertex and j is number of vertices at thi  level. 
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At this stage one has to be cautious to avoid the repeatation of vertex labels in right most branch. For 

that we first assign vertex label to that vertex which is adjacent to qF  and is a internal vertex of the path 

whose length is largest among all the paths whose origin is qF  (That is, qF  is a root). Without loss of 

generality we consider this path to be a left most path to qF  and continue label assignment from left to right 

as stated erlier.  

If 1 (1 )n
iP i s   be the children of nP  then define 

1( ) = ( )n n
i q if P f P F 

, 1 i s   

If there are 2 (1 )n
iP i b    vertices at level two of nP  and out of these b  vertices, 1b  be the children 

of 11
nP . Then label them as follows. 

2 11( ) = ( )n n
i q s if P f P F  

, 11 i b   

If there are 2b  vertices, which are children of 12
nP  then label them as follows, 

1
2( ) 121 1

( ) = ( )n
b i q s b if P f P F   

, 21 i b   

We will also consider the situation when all the vertices of subtree rooted at Fq is having all the vertices 

of degree two after thi  level then we define labeling as follows. 

1
1 ( 1)1 ( )( ) = ( ) ( 1)n n i

i i q labeled vertices in the branchf P f P F
  

 

Continuing in this fashion unless all the vertices of a subtree with root as nP  are labeled. 

Thus we have labeled all the vertices of each level. That is, T admits Fibonacci Graceful Labeling. 

That is, trees are Fibonacci Graceful. 

The following Figure 1 will provide better under standing of the above defined labeling pattern. 

 
Figure 1: A Tree And its Fibonacci Graceful Labeling 

Theorem 2.2  Wheels are not Fibonacci graceful. 

Proof: Let v  be the apex vertex of the wheel nW  and 1 2, ....... nv v v  be the rim vertices. 

Define 
: ( ) {0,1, 2...... }n qf V W F

 

We consider following cases. 

Case 1: Let ( ) = 0f v  
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so, the vertices 1 2, ....... nv v v  must be label with Fibonacci numbers. 

Let 1( ) = qf v F
 then 2( )f v  = 1qF   or 2( )f v  = 2qF  . 

If 2 2( ) = qf v F   then 1( ) =n qf v F   is not possible as 1 2 2( ) = ( ) =n qf v v f vv F  . 

If 2 1( ) = qf v F   then 2( )n qf v F 
 otherwise 1 2 1( ) = ( ) =n qf v v f vv F  . 

If 
( ) =n pf v F

 be the Fibonacci number other then 1qF   and 2qF   then 

1| ( ) ( ) |=| |n p qf v f v F F 
 can not be Fibonacci number for | |> 2p q  

Case 2: If 1v
 is a rim vertex then define 1( ) = 0f v

 

If 2( ) = qf v F
 then the apex vertex must be labeled with 1qF   or 2qF  . 

Sub Case 1: Let 1( ) = qf v F   

Now ( )nf v  must be labeled with either by 2qF   or by 3qF  . 

If 2( ) =n qf v F   then 1 2 2( ) = ( ) =n qf v v f vv F   

and if 3( ) =n qf v F   then 2 2( ) = ( ) =n qf vv f vv F   

Sub Case 2: Let 2( ) = qf v F   

Now ( )nf v  must be label with either by 1qF   or by 3qF   or by 4qF  . 

if 1( ) =n qf v F   then 1 2 1( ) = ( ) =n qf v v f vv F   

if 3( ) =n qf v F   then  

1 2( ) = qf v v F
 

1 2( ) = qf vv F   

2 1( ) = qf vv F   

1 3( ) =n qf v v F   

4( ) =n qf vv F   

For 3W , 2 3( )f v v  can not be Fibonacci number. Now for > 3n  let us assume that 3( ) =f v k  

which is not Fibonacci number because for 3 1( ) = qf v F  , we have 1 2 3 2( ) = ( ) = qf vv f v v F  . 

now we have following cases. (1)  2 < <q qF k F  , (2)  2< <q qk F F  
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In (1)  we have..... 

=q sF k F
 

2 '=q s
k F F

 

2 =q q s sF F F F  
   1 =q s s

F F F 
  is possible only when = 2s q   and = 3s q  ,  

then 2 3 1( ) = ( )f v v f vv
 and 3 1( ) = ( )nf vv f v v

 

In (2) we have..... 

=q sF k F
 

2 =q sF k F  
 

2 =q q s sF F F F  
   1 =q s sF F F  

 is possible only when = 2s q   and = 3s q  , 

then 2 3 1( ) = ( )f v v f vv
 and 3 1( ) = ( )nf vv f v v

 

Thus, we can not find a number 3( ) =f v k
 for which 2 3( )f v v

 and 3( )f vv
 are the distinct 

Fibonacci numbers. 

For 4( ) =n qf v F   we can argue as above. 

Sub Case 3: If 
( ) = qf v F

 

Then we do not have two Fibonacci numbers corresponding to 1( )f v
 and 

( )nf v
 such that the edges 

will receive distinct Fibonacci numbers. 

Thus we conclude that wheels are not Fibonacci graceful. 

Theorem 2.3 Helms are not Fibonacci graceful. 

Proof: Let Hn be the helm and 1v
, 2v

, 3v
......... nv

 be the pendant vertices corresponding to it. If 0  
is the label of any of the rim vertices of wheel corresponding to Hn then all the possibilities to admit 
Fibonacci graceful labeling is ruled out as we argued in above Theorem 2.2 . Thus possibilities of 0  being 
the label of any of the pendant vertices is remained at our disposal. 

Define 
: ( ) {0,1, 2...... }n qf V H F

 

Without loss of generality we assume 1( ) = 0f v
 then 1( ) = qf v F  

Let 2( ) =f v p
 and ( ) =f v r  

In the following Figures 2(1)  to 2(3)  the possible labeling is demonstrated. In first two 

arrangements the possibility of 3H  being Fibonacci graceful is washed out by the similar arrangements for 

wheels are not Fibonacci graceful held in Theorem 2.2 . For the remaining arrangement as shown in Figure 

2(3)  we have to consider following two possibilities. 
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Figure 2: Ordinary Labeling in H3 

Case 1: 
< < qp r F

 

=q sF p F
 

=q sF r F 
 

= sr p F 
 then  

= 0s s sF F F  
   

=s s sF F F 
 

Case 2: 
< < qr p F

 

=q sF p F
 

=q sF r F 
 

'=
s

p r F 
 then  

= 0s s sF F F  
   

=s s sF F F 
 

Now let 3( ) =f v t  then consider the case 
< < < qp r t F

, 

=s s sF F F 
 

=s r rF F F 
 

From these two equations we have... 

= =s r r s sF F F F F   
 

so we have < < < <r r s s sF F F F F    and they are consecutive Fibonacci numbers according to 

Observation 1.7 . 

For ,r p t  we have =s s sF F F   and =r s rF F F   so we have 

=s s sF F F 
 and 

=s r rF F F 
 which is not possible. 

similar argument can be made for ,r p t . 
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i.e. we have either < <p r t  or < <t r p . 

As < <s s sF F F  , so we can say that with 2( ) = sf vv F   the edges of the triangle with vertices 

( )f v , 2( )f v  and 3( )f v  will not have Fibonacci numbers such that sF  = sum of two Fibonacci 

numbers. 

Similar arguments can also be made for 
< < < qt r p F

. 

Hence Helms are not Fibonacci graceful graphs. 

Theorem 2.4 The graph obtained by switching of a vertex in cycle nC  admits Fibonacci graceful 

labeling. 

Proof: Let 1 2 3, , ,....... nv v v v
 be the vertices of cycle nC

 and nC
 be the graph resulted from 

switching of the vertex 1v
. 

Define 
: ( ) {0,1,2...... }n qf V C F 

 as follows. 

1( ) = 0f v
 

2( ) = 1qf v F 
 

3( ) = qf v F
 

3 2( ) =i q if v F  , 1 3i n    

Above defined function f admits Fibonacci graceful labeling. 

Hence we have the result. 

Illustration 2.5 Consider the graph 8C . The Fibonacci graceful labeling is as shown in Figure 3. 

 

Figure 3: Fibonacci Graceful Labeling of 8C
 

Theorem 2.6  The graph obtained by joint sum of two copies of fans 1( = )n nF P K  is Fibonacci 

graceful. 
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Proof: Let 1 2, ,...... nv v v
 and 1v

, 2v
, 3v

......... mv
 be the vertices of 

1
nF

 and 
2

mF
 respectively. Let 

v  be the apex vertex of 
1

nF
 and v  be the apex vertex of 

2
mF

 and let G  be the joint sum of two fans. 

Define 
: ( ) {0,1, 2...... }qf V G F

 as follows. 

( ) = 0f v  

( ) = qf v F
 

2 1( ) =i if v F  , 1 i n   

1 2 1( ) = q nf v F F  
 

2 2 2( ) = q nf v F F  
 

2 2 2 2( ) = ,1 2i q n if v F F i m      
  

In view of the above defined pattern the graph G  admits Fibonacci graceful labeling. 

Illustration 2.7 Consider the Joint Sum of two copies of 4F . The Fibonacci graceful labeling is as 

shown in Figure 4. 

 

Figure 4: Fibonacci Graceful Labeling of Joint Sum of 4F  

Theorem 2.8 The graph obtained by Switching of a vertex in a cycle nC  is super Fibonacci graceful 

except 6n  . 

Proof: We consider here two cases. 

case 1: = 3,4,5n  

For = 3n  the graph obtained by switching of a vertex is a disconnected graph which is not desirable 
for the Fibonacci graceful labeling. 

Super Fibonacci graceful labeling of switching of a vertex in nC  for = 4,5n  is as shown in Figure 5. 
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Figure 5: Switching of a Vertex in 4C
 
and 5C

 
and Super Fibobacci Graceful Labeling  

case 2: 6n   The graph shown in Figure 6  will be the subgraph of all the graphs obtained by 

switching of a vertex in ( 6)nC n  . 

 

Figure 6: Switching of a Vertex in 6C  

In Figure 7  all the possible assignment of vertex labels is shown which demonstrates the repetition of 
edge labels. 

 

Figure 7: Possible Label Assignment for the Graph Obtained by Vertex Switching in C6 

(1)  In Fig8(a) edge label 1qF   is repeated as 
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2 1| |=q q qF F F   & 1 1| 0 |=q qF F   

(2)  In Fig8(b) edge label 1qF   is repeated as 

2 1| |=q q qF F F   & 1 1| 0 |=q qF F   

(3)  In Fig8(c) edge label pF  is repeated as 1 1| |=p p pF F F   & | 0 |=p pF F , 

 where pF  is any Fibonacci number. 

(4)  In Fig8(d) edge label pF  is repeated as 2 1| |=p p pF F F   & | 0 |=p pF F , 

 where pF  is any Fibonacci number. 

(5)  In Fig8(e) edge label 1pF   is repeated as 2 1| |=p p pF F F   & 1| 0 |=pF    

 1pF  , where pF  is any Fibonacci number. 

(6)  In Fig8(f) edge label 2qF   is repeated as  

1 3 2| |=q q qF F F    & 1 2| |=q q qF F F   

(7)  In Fig8(g) edge label 1qF   is repeated as 

 2 1| |=q q qF F F   & 1 1| 0 |=q qF F   

(8)  In Fig8(h) edge label 1qF   is repeated as 

 2 1| |=q q qF F F   & 1 1| 0 |=q qF F   

Theorem 2.9 The graph obtained by Switching of a vertex in cycle nC  for 6n   can be embedded as 

an induced subgraph of a super Fibonacci graceful graph. 

Proof: Let 1 2 3, , ......... nv v v v  be the vertices of nC  and 1v  be the switched vertex. 

Define 1 2 3: ( ) {0, , ...... }qf V G F F F   

1( ) = 0f v  

1 2 1( ) =i if v F  , 1 1i n    

Now it remains to assign Fibonacci numbers 1F , 2qF   and 3qF  . Put 3  vertices in the graph. Join 

first vertex v  labeled with 2F  to the vertex 3v . Now join second vertex v  labeled with 3qF   to the 

vertex 1v  and vertex v  labeled with 2qF   to the vertex v . 

Thus the resultant graph is a super Fibonacci graceful graph. 

Illustration 2.10 In the following Figure 8 the graph obtained by switching of a vertex in cycle 6C  and 

its super Fibonacci graceful labeling of its embedding is shown. 
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 Figure 8: A Super Fibonacci Graceful Embedding 

 

3.  CONCLUDING REMARKS 

Here we have contributed seven new results to the theory of Fibonacci graceful graphs. It has been proved  

that trees, vertex switching of cycle nC , joint sum of two fans are Fibonacci graceful while wheels and 

helms are not Fibonacci graceful. We have also discussed super Fibonacci graceful labeling and show that 

the graph obtained by switching of a vertex in cycle ( 6)nC n   does not admit super Fibonacci graceful 

labeling but it can be embedded as an induced subgraph of a super Fibonacci graceful graph. 
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Introduction 

 We begin with simple, finite and undirected graph 

= ( ( ), ( ))G V G E G
. In the present work 

| ( ) |V G
 and 

| ( ) |E G
 denote the number of vertices and edges in the graph 

G  respectively. For all other terminology and notations we 

follow Harary[1]. We will give brief summary of definitions 

which are useful for the present investigations. 

Definition 1.1−  : If the vertices of the graph are assigned values 

subject to certain conditions then is known as graph labeling. An 

extensive survey on graph labeling we refer to Gallian[2]. 

According to Beineke and Hegde[3] graph labeling serves as a 

frontier between number theory and structure of graphs. A 

detailed study of variety of applications of graph labeling is 

reported in Bloom and Golomb[4]. 

Definition 1.2−  :  Let G  be a graph. A mapping 

: ( )f V G →
{0,1} is called binary vertex labeling of G  and 

( )f v
 is called the label  of the vertex v  of G  under 

f
. 

  For an edge =e uv , the induced edge labeling 

: ( ) {0,1}f E G
∗

→
 is given by 

( )f e
∗

=
| ( ) ( ) |f u f v−

. 

Let 
(0)

f
v

, 
(1)

f
v

 be the number of vertices of G  having 

labels 0 and 1 respectively under 
f

 and let 
(0)

f
e

,
(1)

f
e

 be 

the number of edges having labels 0 and 1 respectively under 

f
∗

. 

Definition 1.3−  :   A binary vertex labeling of a graph G  is 

called a cordial labeling if 
| (0) (1) | 1

f f
v v− ≤

 and 

| (0) (1) | 1
f f

e e− ≤
. A graph G  is cordial if it admits cordial 

labeling. 

The concept of cordial labeling was introduced by Cahit[5] 

and he proved that every tree is cordial. In the same paper he 

proved that nK
 is cordial if and only if 3n ≤ . Ho et al.[6] 

proved that unicyclic graph is cordial unless it is 4 2kC
+ . Andar 

et al.[7] has discussed cordiality of multiple shells. Vaidya et 

al.[8],[9],[10],[11] have also discussed the cordiality of various 

graphs. 

Definition 1.4−  : The middle graph M(G) of a graph G  is the 

graph whose vertex set is 
( ) ( )V G E G∪

 and in which two 

vertices are adjacent if and only if either they are adjacent edges 

of G  or one is a vertex of G  and the other is an edge incident 

with it. 

  In the present investigations we prove that the middle graphs of 

path, crown(The Crown 1( )nC K�
 is obtained by joining a 

single pendant edge to each vertex of  nC
), star and tadpole 

(Tadpole 
( , )T n l

 is a graph in which path lP
 is attached to any 

one vertex of cycle nC
) admit cordial labeling. 

Main Results 

Theorem - 2.1: The middle graph 
( )M G

 of an Eulerian graph 

G  is Eulerian and 

2

=1
( ) 2

| ( ( )) |=
2

n

ii
d v e

E M G
+∑

. 

Proof: Let G  be an Eulerian graph. If 1v
, 2v

, 3v
.... nv

 are 

vertices of G  and 1e
, 2e

, 3e
...... qe

 are edges of G  then 1v
, 
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2v
, 3v

.... nv
, 1e

, 2e
...... qe

 are the vertices of 
( )M G

. Then it 

is obvious that if 
( )id v

 is even in G  then it remains even in 

( )M G
. 

 Now it remains to show that 
( )id e

 is even in 
( )M G

. For that if 'v  and ''v  are the vertices adjacent to any vertex ie
 then 

( ) = ( ( ') 1) ( ( '') 1)
i

d e d v d v− + −  

          =  ( ') ( '') 2d v d v+ −   which is even as both 
( ')d v

 and 

( '')d v
 are even for 

1 i q≤ ≤
. 

Therefore 
( )M G

 is an Eulerian graph. It is also obvious that 

the 
( )id v

 number of edges are incident with each vertex iv
 of 

G   which forms a complete graph ( )id vK
 in 

( )M G
. 

Now if the total number of edges in 
( )M G

 be denoted as 

| ( ( )) |E M G
 then 

1 2 3 ( ) ( ) ( ) ( )
1 2 3

| ( ( ))|= ( ) ( ) ( ) ...... ( ) | ( )| | ( )| | ( )| ........ | ( )|
n dv dv dv dv

n
EMG dv dv dv dv EK EK EK EK+ + + + + + + + +

1 1 2 2
1 2 3

( )( ( ) 1)( )( ( ) 1) ( )( ( ) 1)
( ) ( ) ( ) ...... ( ) ...........

2 2 2

n n

n

d v d vd v d v d v d v
d v d v d v d v

−− −
= + + + + + + + +

22 2

1 2 1 2
( ) ( )( ) ( ) ( ) ( )

..... .........
2 2 2 2 2 2

n n
d v d vd v d v d v d v

= + + + + + + +  

= 

2

1 1

( ) ( )

2

n n

i i

i i

d v d v
= =

+∑ ∑
 

But    
1

( ) = 2
n

i

i

d v e
=

∑ ,   Hence   

2

1

( ) 2

| ( ( )) |=
2

n

i

i

d v e

E M G =

+∑
  

proved. 

Corollary - 2.2 : The middle graph 
( )M G

 of any graph G  is 

not cordial when 
2

1

( ) 2

| ( ( )) |=
2

n

i

i

d v e

E M G =

+∑
 

2( 4)mod≡
. 

Proof : By Theorem 2.1 , for 
( )M G

 of any graph G , 

2

1

( ) 2

| ( ( )) |=
2

n

i

i

d v e

E M G =

+∑
. 

Then as proved by Cahit[5] an Eulerian graph with 

2( 4)e mod≡
 is not cordial. 

Theorem - 2.3 : M( nP
) is a cordial graph. 

Proof: If 1v
, 2v

, ..., nv
 and 1e

, 2e
, ..., ne

 are respectively the 

vertices and edges of nP
 then 1v

, 2v
, ..., nv

, 1e
, 2e

, ..., ne
 are 

the vertices of 
( )nM P

. 

To define 
: ( ( )) {0,1}nf V M P →

, we consider following 

four cases. 

Case 1:  n  is odd, = 2 1n k + , k=1,3,5,7..... 

In this case | ( ( )) |= 2 1nV M P n − , | ( ( )) |= 2 2 3nE M P n k+ −  

We label the vertices as follows. 

                      2 1( ) = 0if v
−  for 1 1

2

n
i

 
≤ ≤ + 

 
 

                      2( ) = 1if v
 for 1

2

n
i

 
≤ ≤  

 
  

 

               

4 3

4 2

( ) = 1
1 1

( ) = 1 4

i

i

f e n
i

f e

−

−

  
≤ ≤ +  

 



 

                                    

4 1

4

( ) = 0
1

( ) = 0 4

i

i

f e n
i

f e

−
  

≤ ≤  
 




 

 In view of the above defined labeling pattern we have 

(0) 1 = (1) =f fv v n+
, 

(0) = (1) 1 = 1f fe e n k+ + −
 

Case 2:  n  odd, = 2 1n k + , k=2,4,6..... 

In this case | ( ( )) |= 2 1nV M P n − , 
| ( ( )) |= 2 2 3nE M P n k+ −

 

We label the vertices as follows. 

                    2 1( ) = 0if v
−  for 1 1

2

n
i

 
≤ ≤ + 

 
 

                   2( ) = 1if v
 for 

1
2

n
i

 
≤ ≤      

 

            

4 3

4 2

4 1

4

( ) = 0

( ) = 0
1

( ) = 1 4

( ) = 1

i

i

i

i

f e

f e n
i

f e

f e

−

−

−




  ≤ ≤  
 





 

 In view of the above defined labeling pattern we have 

(0) = (1) 1 =f fv v n+
, 

(0) = (1) 1 = 1f fe e n k+ + −
 

Case 3: n  even, = 2n k  k=1,3,5,7..... 

In this case
| ( ( )) |= 2 1nV M P n −

, 
| ( ( )) |= 2 2 4nE M P n k+ −

 

We label the vertices as follows. 

 

                  

2 1

2

( ) = 0
1

( ) = 1 2

i

i

f v n
i

f v

−


≤ ≤




 

                                 4 3( ) = 0if e
−  for 1 1

4

n
i

 
≤ ≤ + 

 
 

                4 2( ) = 0if e
−  for 

1
4

n
i

 
≤ ≤      

                

4 1

4

( ) = 1
1

( ) = 1 4

i

i

f e n
i

f e

−
  

≤ ≤   

  

 Case 4: n  even, = 2n k  k=2,4,6..... 
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In this case 
| ( ( )) |= 2 1nV M P n −

, 

| ( ( )) |= 2 2 4nE M P n k+ −
 

We label the vertices as follows. 

2 1

2

( ) = 0
1

( ) = 1 2

i

i

f v n
i

f v

−


≤ ≤


  

                                 

4 3

4 2

( ) = 0
1

( ) = 0 4

i

i

f e n
i

f e

−

−


≤ ≤



  

                                4 1( ) = 1if e
−  for 

1
4

n
i≤ ≤

 

                4( ) = 1if e
 for 

1 1
4

n
i≤ ≤ −

  

In above two cases we have 
(0) = (1) 1 =f fv v n+

, 

(0) = (1) = 2f fe e n k+ −
 

Thus in all the four cases 
f

 satisfies the condition for cordial 

labeling. That is, 
( )nM P

 is a cordial graph. 

Illustration - 2.4 : In the following Figure 2.1  7( )M P
 and its 

cordial labeling is shown. 

 
Figure 2.1 

7( )M P  and its cordial labeling  

Theorem - 2.5 : The middle graph of crown is a cordial graph. 

Proof:  Consider the crown  1nC K�
 in which 1v

, 2v
, ..., nv

 

be the vertices of cycle nC
 and 1'v

, 2'v
, ..., 

'nv
 be the 

pendant vertices attached at each vertex of nC
. Let 1e

, 2e
, ..., 

ne
 and 1'e

, 2'e
, ..., 

'ne
 are vertices corresponding to edges of  

1nC K�
 in 1( )nM C K�

. 

To define , 1: ( ( )) {0,1}nf V M C K →�
 we consider 

following three cases. 

Case 1:  n  is odd, = 2 1n k + , k=2,4,6,..... 

In this case  1( ( )) 4nV M C K n=�
 and 

1( ( )) 6 2 1
2

n

n
E M C K n

 
= + +  

�

,  

We label the vertices as follows. 

 

 

2 1

2

( ) = 0
1

( ) = 1 2

i

i

f v n
i

f v

−
  

≤ ≤   

  

                
( ) = 1nf v

 

                2 1( ' ) = 1if v
−  for 

1 1
4

n
i

 
≤ ≤ +    

                2( ' ) = 0if v
 for 

1
4

n
i

 
≤ ≤      

                

2 2
4

2 2 1
4

( ' ) = 1

1
( ' ) = 0 4

n
i

n
i

f v
n

i
f v

 +

 + +


  

≤ ≤   


  

                               

2 1

2

( ) = 1
1

( ) = 0 2

i

i

f e n
i

f e

−
  

≤ ≤   

  

               
( ) = 0nf e

 

              
'

2 1( ) = 0if e
−  for 

1 1
2

n
i

 
≤ ≤ +    

               
'

2( ) = 1if e
 for 

1
2

n
i

 
≤ ≤      

In view of the above defined pattern 

(0) = (1) = 2f fv v n
, 

(0) 1 = (1) = 3 1
2

f f

n
e e n

 
+ + +    

Case 2: n  is odd, = 2 1n k + , k=1,3,5,7..... 

In this case 1( ( )) 4nV M C K n=�
 and 

1( ( )) 6 2 1
2

n

n
E M C K n

 
= + +  

�

,  

We label the vertices as follows. 

 

 

2 2
4

2 2 1
4

( ' ) = 1

1 1
( ' ) = 0 4

n
i

n
i

f v
n

i
f v

 +

 + +


  

≤ ≤ +   


  

 Now label the remaining vertices as in case 1. 

In view of the above defined pattern we have 

(0) = (1) = 2f fv v n
, 

(0) = (1) 1 = 3 1
2

f f

n
e e n+ +   +

 

Case 3: n  is even, = 2n k , 
= 2,3,.....k

 

In this case 1( ( )) 3nV M C K n=�
 and 

1( ( )) 7nE M C K n=�
,  



S.K. Vaidya et al./ Elixir Dis. Math. 34C (2011) 2468-2476 

 

2471 

We label the vertices as follows. 

 

 

2 1

2

( ) = 0
1

( ) = 1 2

i

i

f v n
i

f v

−


≤ ≤


  

                 
( ' ) = 1if v

 for 1 i n≤ ≤  

                
( ) = 0if e

 for 1 i n≤ ≤  

                

2 1

2

( ' ) = 1
1

( ' ) = 0 2

i

i

f e n
i

f e

−


≤ ≤


  

In view of the above defined pattern we have 

3
(0) = (1) =

2
f f

n
v v

, 

(0) = (1) = 3
2

f f

n
e e n +

 

Thus in all the cases described above
f

admits cordial labeling 

for the graph under consideration. That is, middle graph of the 

crown is a cordial graph. 

Illustration - 2.6 : In the following Figure 2.2  cordial labeling 

for  7 1( )M C K�
is shown. 

 

Figure 2.2  7 1( )M C K�
and its cordial labeling 

Theorem - 2.7 : 1,( )nM K
 is a cordial graph. 

Proof: Let v , 1v
, 2v

, ..., nv
 be the vertices of star 1,nK

 with 

v  as an apex vertex and 1e
, 2e

, ..., ne
 be the vertices in 

1,( )nM K
 corresponding to the edges 1e

, 2e
, ..., ne

 in 1,nK
. 

To define 1,: ( ( )) {0,1}nf V M K →
, we consider following 

two cases. 

Case 1: 
= 2 1, = 2,3, 4,....n k k+

 

In this case 1,| ( ( )) |= 2 1nV M K n +
, 

1,| ( ( )) |= 2 ( 1)
2

n

k
E M K n

 
+    or 

1,| ( ( )) |= 2 ( 1) 2 1
2

n

k
E M K n k

 
+ + +    depending upon 

= 2, 4,6,8....k
 or 

= 3,5,7,9....k
 

2 1( ) = 0, 1 1
2

i

n
f e i

−

 
≤ ≤ +    

2( ) = 1, 1
2

i

n
f e i

 
≤ ≤     

( ) =n i if v p
− , where 

= 1ip
, if i  is even, 

                = 0 , if i  is odd, 

0 1
2

k
i

 
≤ ≤ −    

               2 2

( ) = ( )
k k

n i n i

f v f e
   

− − − −       , 

0 1
2

k
i n

 
≤ ≤ − −    

( ) = 1f v
 

Using above pattern if 
= 2,3,6,7....k

 then 

(0) 1 = (1) = 1f fv v n+ +
 and if 

= 4,5,8,9....k
 then 

(0) = (1) 1 = 1f fv v n+ +
. 

If 
= 2, 4,6,8....k

 then 

(0) = (1) = ( 1)
2

f f

k
e e n

 
+    and if 

= 3,5,7,....k
 then 

(0) = (1) 1 = ( 1) 1
2

f f

k
e e n k

 
+ + + +    

Case 2: 
= 2 , = 2,3, 4,....n k k

 

In this case 1,| ( ( )) |= 2 1nV M K n +
, 

1,| ( ( )) |= 2 ( 1)
2

n

k
E M K n k+ −

 or 

1,
| ( ( )) |= 2 ( 1) 2 1

2 2
n

k k
E M K n

   
+ + −        depending upon 

= 2, 4,6,8....k
 or 

= 3,5,7,9....k
 

2 1( ) = 0, 1
2

i

n
f e i

−
≤ ≤

 

2( ) = 1, 1
2

i

n
f e i≤ ≤

 

( ) =n i if v p
− , where 

= 0ip
, if i  is even, 

                = 1 , if i  is odd, 

0 1
2

k
i

 
≤ ≤ −    

2 2

( ) = ( )
k k

n i n i

f v f e
   

− − − −       , 

0 1
2

k
i n

 
≤ ≤ − −    

( ) = 1f v
 

Using above pattern if 
= 2,3,6,7....k

 then 

(0) = (1) 1 = 1f fv v n+ +
 and if 

= 4,5,8,9....k
 then 

(0) 1 = (1) = 1f fv v n+ +
. 

If 
= 2, 4,6,8....k

 then 

(0) = (1) = ( 1)
2 2

f f

k k
e e n + −

 and 

if 
= 3,5,7,....k

 then 

(0) = (1) 1 = ( 1) .
2 2

f f

k k
e e n

   
+ + +        
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Also note that for = 2n  we have 
(0) = (1) 1 = 3f fv v +

 and 

(0) 1 = (1) = 3f fe e+
. 

Thus in all the cases described above
f

 admits cordial labeling 

for 1,( )nM K
. That is, 1,( )nM K

 admits cordial labeling. 

Illustration - 2.8 : In the following Figure 2.3  cordial labeling 

of 1,6( )M K
 is shown. 

 

Figure 2.3 1,6( )M K
 and its cordial labeling 

Theorem - 2.9 : M(
( , 1)T n l +

) is a cordial graph. 

Proof: Consider the tadpole 
( , 1)T n l +

 in which 1v
, 2v

, ..., 

nv
 be the vertices of cycle nC

 and 1'v
, 2'v

, 3'v
, ..., 

'lv
 be 

the vertices of the path attached to the cycle nC
. Also let 1e

, 

2e
, ..., ne

 and 1'e
, 2'e

, ..., 
'le

 be the vertices in 

( ( , 1))M T n l +
 corresponding to the edges of cycle nC

 and 

path nP
 respectively in 

( , 1)T n l +
. 

To define 
: ( ( ( , 1))) {0,1}f V M T n l + →

, we consider the 

following cases. 

Case 1: n is odd 

Subcase 1: = 2 1n k + , 
= 2, 4,6,....k

 and 
= 2l j

, 

= 2, 4,6,.....j
 

In this subcase | ( ( ( , 1))) |= 2 2V M T n l n l+ + , 

| ( ( ( , 1))) |= 2 2 2 6
2

n
E M T n l n l

 
+ + + +    

 

2 1

2

( ) = 1
1

( ) = 0 2

i

i

f v n
i

f v

−
  

≤ ≤   

  

                4 3( ) = 0if e
− , 

1 1
4

n
i

 
≤ ≤ +    

               4 2( ) = 0if e
− , 

1
4

n
i

 
≤ ≤     

               

4 1

4

( ) = 1
1

( ) = 1 4

i

i

f e n
i

f e

−
  

≤ ≤   

  

              1( ) = ( ' ) = 1nf v f v
(when 1'v

 is attached to nv
) 

             

2

2 1

( ' ) = 0
1

( ' ) = 1 2

i

i

f v l
i

f v
+

  
≤ ≤   


  

        

4 3 4 2

4 1 4

( ' ) = ( ' ) = 0
1

( ' ) = ( ' ) = 1 4

i i

i i

f e f e l
i

f e f e

− −

−

  
≤ ≤   


  

In view of the above defined labeling pattern 

(0) = (1) =f fv v n l+
, 

(0) = (1) = 3
2

f f

n
e e n l

 
+ + +    

Subcase 2: = 2 1n k + , 
= 2, 4,6,....k

 and 
= 2l j

, 

= 3,5,7,.....j
 

In this subcase 
| ( ( ( , 1))) |= 2 2V M T n l n l+ +

, 

| ( ( ( , 1))) |= 2 2 2 8
2

n
E M T n l n l

 
+ + + +    

           1( ' ) = 0, ( ' ) = 1n nf e f e
−  

          1( ) = 1, ( ' ) = 1nf v f v
(when 1'v

 is attached to 1v
) 

remaining vertices are labeled as in subcase 1. 

In view of the above defined labeling pattern 

(0) = (1) =f fv v n l+
, 

(0) = (1) = 4
2

f f

n
e e n l

 
+ + +    

For = 2l  we have 
(0) = (1) = 11f fe e

. 

Subcase 3: = 2 1n k + , 
= 2, 4,6,....k

 and 
= 2 1l j +

, 

= 1,3,5,7,.....j
 

In this subcase 
| ( ( ( , 1))) |= 2 2V M T n l n l+ +

, 

| ( ( ( , 1))) |= 2 2 2 5
2

n
E M T n l n l

 
+ + + +    

         1( ) = ( ' ) = 1nf v f v
(when 1'v

 is attached to nv
) 

        2( ' ) = 0if v
, 

1 1
2

l
i

 
≤ ≤ +    

        2 1( ' ) = 1if v
+ , 1

2

l
i

 
≤ ≤  

 
 

                  

4 3 4 2

4 1

( ' ) = ( ' ) = 1
1 1

( ' ) = 0 4

i i

i

f e f e l
i

f e

− −

−

  
≤ ≤ +   




 

        4( ' ) = 0if e
, 1

4

l
i

 
≤ ≤  
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remaining vertices are labeled as in subcase 1. 

Using above pattern we have 

(0) = (1) =f fv v n l+
, 

(0) 1 = (1) = 3
2

f f

n
e e n l

 
+ + + +    

For = 1l  we have 
(0) 1 = (1) = 10f fe e+

. 

Subcase 4: = 2 1n k + , 
= 2, 4,6,....k

 and 
= 2 1l j +

, 

= 2, 4,6, ,.....j
 

In this subcase 
| ( ( ( , 1))) |= 2 2V M T n l n l+ +

, 

| ( ( ( , 1))) |= 2 2 2 7
2

n
E M T n l n l

 
+ + + +    

      1( ) = ( ' ) = 1nf v f v
(when 1'v

 is attached to nv
) 

      2( ' ) = 0if v
, 

1 1
2

l
i

 
≤ ≤ +    

      2 1( ' ) = 1if v
+ , 

1
2

l
i

 
≤ ≤     

    4 3( ' ) = 1if e
− , 

1 1
4

l
i

 
≤ ≤ +    

               

4 2

4 1 4

( ' ) = 1
1

( ' ) = ( ' ) = 0 4

i

i i

f e l
i

f e f e

−

−

  
≤ ≤   


  

remaining vertices are labeled as in subcase 1. 

Using above pattern we have 

(0) = (1) =f fv v n l+
, 

(0) 1 = (1) = 4
2

f f

n
e e n l

 
+ + + +    

Subcase 5: = 2 1n k + , 
= 1,3,5,7,....k

 and 
= 2l j

, 

= 2, 4,6,.....j
 

In this subcase 
| ( ( ( , 1))) |= 2 2V M T n l n l+ +

, 

| ( ( ( , 1))) |= 2 2 2 6
2

n
E M T n l n l

 
+ + + + 

 
 

         

2 1

2

( ) = 1
1

( ) = 0 2

i

i

f v n
i

f v

−
  

≤ ≤  
 




 

                   

4 3 4 2

4 1

( ) = ( ) = 0
1 1

( ) = 1 4

i i

i

f e f e n
i

f e

− −

−

  
≤ ≤ +  

 



 

        4( ) = 1if e
, 1

4

n
i

 
≤ ≤  

 
 

       1( ) = ( ' ) = 1nf v f v
(when 1'v

 is attached to nv
) 

 

  

2

2 1

( ' ) = 1
1

( ' ) = 0 2

i

i

f v l
i

f v
+

  
≤ ≤   


  

  

4 3 4 2

4 1 4

( ' ) = ( ' ) = 0
1

( ' ) = ( ' ) = 1 4

i i

i i

f e f e l
i

f e f e

− −

−


≤ ≤



  

Using above pattern we have 

(0) = (1) =f fv v n l+
, 

(0) = (1) = 3
2

f f

n
e e n l

 
+ + +    

Subcase 6: = 2 1n k + , 
= 1,3,5,7,....k

 and 
= 2l j

, 

= 3,5,7,.....j
 

In this subcase | ( ( ( , 1))) |= 2 2V M T n l n l+ + , 

| ( ( ( , 1))) |= 2 2 2 8
2

n
E M T n l n l

 
+ + + + 

 
 

          1( ) = ( ' ) = 1nf v f v
(when 1'v

 is attached to nv
) 

     

2

2 1

( ' ) = 0
1

( ' ) = 1 2

i

i

f v l
i

f v
+


≤ ≤



  

    

4 3 4 2

4 1 4

( ' ) = ( ' ) = 0
1

( ' ) = ( ' ) = 1 4

i i

i i

f e f e l
i

f e f e

− −

−

  
≤ ≤   


  

         1( ' ) = 0, ( ' ) = 1n nf e f e
−  

remaining vertices are labeled as in subcase 5 . 

Using above pattern we have 

(0) = (1) =f fv v n l+
, 

(0) = (1) = 4
2

f f

n
e e n l

 
+ + +    

For = 2l  we have 
(0) = (1) = 8f fe e

. 

Subcase 7: = 2 1n k + , 
= 1,3,5,7,....k

 and 
= 2 1l j +

, 

= 1,3,5,.....j
 

In this subcase 
| ( ( ( , 1))) |= 2 2V M T n l n l+ +

, 

| ( ( ( , 1))) |= 2 2 2 5
2

n
E M T n l n l

 
+ + + +    

             1( ) = ( ' ) = 1nf v f v
(when 1'v

 is attached to nv
) 

             2( ' ) = 0if v
, 

1 1
2

l
i

 
≤ ≤ +    

           2 1( ' ) = 1if v
+ , 

1
2

l
i

 
≤ ≤     
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4 3 4 2

4 1

( ' ) = ( ' ) = 1
1 1

( ' ) = 0 4

i i

i

f e f v l
i

f e

− −

−

  
≤ ≤ +   


  

           4( ' ) = 0if e
, 

1
4

l
i

 
≤ ≤     

remaining vertices are labeled as in subcase 5 . 

Using above pattern we have 

(0) = (1) =f fv v n l+
, 

(0) = (1) 1 = 3
2

f f

n
e e n l+   + + +

 

For = 1l  we have 
(0) = (1) 1 = 7f fe e +

. 

Subcase 8: = 2 1n k + , 
= 1,3,5,7,....k

 and 
= 2 1l j +

, 

= 2, 4,6,.....j
 

In this subcase | ( ( ( , 1))) |= 2 2V M T n l n l+ + , 

| ( ( ( , 1))) |= 2 2 2 7
2

n
E M T n l n l

 
+ + + +    

                         1( ) = ( ' ) = 1nf v f v
(when 1'v

 is attached to 

nv
) 

                        2( ' ) = 0if v
, 

1 1
2

l
i

 
≤ ≤ +    

       2 1( ' ) = 1if v
+ ,1

2

l
i

 
≤ ≤  

 
 

       4 3( ' ) = 1if e
− , 

1 1
4

l
i

 
≤ ≤ +    

  

4 2

4 1 4

( ' ) = 1
1

( ' ) = ( ' ) = 0 4

i

i i

f e l
i

f e f e

−

−

  
≤ ≤   




 

remaining vertices are labeled as in subcase 5 . 

Using above pattern we have 

(0) = (1) =f fv v n l+
, 

(0) = (1) 1 = 4
2

f f

n
e e n l

 
+ + + +    

Case 2: n is even 

Subcase 1: = 2n k , 
= 2, 4,6,....k

 and 
= 2l j

, 

= 2, 4,6,.....j
 

In this subcase 
| ( ( ( , 1))) |= 2 2V M T n l n l+ +

, 

| ( ( ( , 1))) |= 3 2 5E M T n l n l+ + +
 

     

2 1

2

( ) = 1
1

( ) = 0 2

i

i

f v n
i

f v

−


≤ ≤


  

              

4 3 4 2

4 1 4

( ) = ( ) = 0
1

( ) = ( ) = 1 4

i i

i i

f e f e n
i

f e f e

− −

−


≤ ≤



  

     1( ' ) = 1f v
(when 1'v

 is attached to 1v
) 

     

2

2 1

( ' ) = 0
1

( ' ) = 1 2

i

i

f v l
i

f v
+


≤ ≤



  

               

4 3 4 2

4 1 4

( ' ) = ( ' ) = 0
1

( ' ) = ( ' ) = 1 4

i i

i i

f e f e l
i

f e f e

− −

−


≤ ≤



  

Using above pattern we have 

(0) = (1) =f fv v n l+
, 

3
(0) = (1) 1 = 3

2
f f

n
e e l+ + +

 

Subcase 2: = 2n k , 
= 2, 4,6,....k

 and 
= 2l j

, 

= 3,5,7,.....j
 

In this subcase 
| ( ( ( , 1))) |= 2 2V M T n l n l+ +

, 

| ( ( ( , 1))) |= 3 2 7E M T n l n l+ + +
 

   1( ' ) = 1f v
(when 1'v

 is attached to 1v
) 

             

4 3 4 2

4 1 4

( ' ) = ( ' ) = 0
1

( ' ) = ( ' ) = 1 4

i i

i i

f e f e l
i

f e f e

− −

−

  
≤ ≤   


  

   1( ' ) = 0nf e
− , 

( ' ) = 1nf e
 

remaining vertices are labeled as in subcase 1 of case
(2)

. 

Using above pattern we have 

(0) = (1) =f fv v n l+
, 

3
(0) 1 = (1) = 4

2
f f

n
e e l+ + +

 

For = 2l  we have 
(0) 1 = (1) = 10f fe e+

. 

Subcase 3: = 2n k , 
= 2, 4,6,....k

 and 
= 2 1l j +

, 

= 1,3,5,7,.....j
 

In this subcase | ( ( ( , 1))) |= 2 2V M T n l n l+ + , 

| ( ( ( , 1))) |= 3 2 4E M T n l n l+ + +
 

1( ' ) = 1f v
(when 1'v

 is attached to 1v
) 

2( ' ) = 0if v
, 

1 1
2

l
i

 
≤ ≤ +    

2 1( ' ) = 1if v
+ , 

1
2

l
i

 
≤ ≤     

          

4 3 4 2

4 1

( ' ) = ( ' ) = 1
1 1

( ' ) = 0 4

i i

i

f e f e l
i

f e

− −

−

  
≤ ≤ +   
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4( ' ) = 0if e
, 

1
4

l
i

 
≤ ≤     

remaining vertices are labeled as in subcase 1 of case
(2)

. 

Using above pattern we have 

(0) = (1) =f fv v n l+
, 

3
(0) = (1) = 2

2
f f

n
e e l+ +

 

For = 1l  we have 
(0) = (1) = 8f fe e

. 

Subcase 4: = 2n k , 
= 2, 4,6,....k

 and 
= 2 1l j +

, 

= 2, 4,6,.....j
 

In this subcase | ( ( ( , 1))) |= 2 2V M T n l n l+ + , 

| ( ( ( , 1))) |= 3 2 6E M T n l n l+ + +
 

1( ' ) = 1f v
(when 1'v

 is attached to 1v
) 

2( ' ) = 0if v
, 1 1

2

l
i

 
≤ ≤ + 

 
 

2 1( ' ) = 1
i

f v
+

, 1
2

l
i

 
≤ ≤  

 
 

4 3( ' ) = 1if e
− , 

1 1
4

l
i

 
≤ ≤ +    

          

4 2

4 1 4

( ' ) = 1
1

( ' ) = ( ' ) = 0 4

i

i i

f e l
i

f e f e

−

−

  
≤ ≤   




 

remaining vertices are labeled as in subcase 1 of case
(2)

. 

Using above pattern we have 

(0) = (1) =f fv v n l+
, 

3
(0) = (1) = 3

2
f f

n
e e l+ + . 

Subcase 5: = 2n k , 
= 3,5,7,....k

 and 
= 2l j

, 

= 2, 4,6,.....j
 

In this subcase 
| ( ( ( , 1))) |= 2 2V M T n l n l+ +

, 

| ( ( ( , 1))) |= 3 2 5E M T n l n l+ + +
 

2 1

2

( ) = 1
1

( ) = 0 2

i

i

f v n
i

f v

−


≤ ≤


  

        

4 3 4 2

4 1 4

( ) = ( ) = 0
1

( ) = ( ) = 1 4

i i

i i

f e f e n
i

f e f e

− −

−

  
≤ ≤   


  

              1( ) = 0, ( ) = 1n nf e f e
−  

             
'

1( ) = 1f v
(when 

'

1v
 is attached to 1v

) 

             

2

2 1

( ' ) = 0
1

( ' ) = 1 2

i

i

f v l
i

f v
+


≤ ≤



  

        

4 3 4 2

' '

4 1 4

( ' ) = ( ' ) = 0
1

( ' ) = ( ' ) = 1 4

i i

i i

f e f e l
i

f e f e

− −

−


≤ ≤



  

Using above pattern we have 

(0) = (1) =f fv v n l+
, 

3
(0) 1 = (1) = 3

2
f f

n
e e l+ + +

 

Subcase 6: = 2n k , 
= 3,5,7,....k

 and 
= 2l j

, 

= 3,5,7,.....j
 

In this subcase 
| ( ( ( , 1))) |= 2 2V M T n l n l+ +

, 

| ( ( ( , 1))) |= 3 2 7E M T n l n l+ + +
 

                          1( ' ) = 1f v
(when 1'v

 is attached to 1v
) 

      

4 3 4 2

4 1 4

( ' ) = ( ' ) = 0
1

( ' ) = ( ' ) = 1 4

i i

i i

f e f e l
i

f e f e

− −

−

  
≤ ≤   


  

          1( ' ) = 1nf e
− , 

( ' ) = 0nf e
 

remaining vertices are labeled as in subcase 5  of case
(2)

. 

Using above pattern we have 

(0) = (1) =f fv v n l+
, 

3
(0) 1 = (1) = 4

2
f f

n
e e l+ + +

 

For = 2l  we have 
(0) 1 = (1) = 13f fe e+

 

Subcase 7: = 2n k , 
= 3,5,7,....k

 and 
= 2 1l j +

, 

= 1,3,5,7,.....j
 

In this subcase 
| ( ( ( , 1))) |= 2 2V M T n l n l+ +

, 

| ( ( ( , 1))) |= 3 2 4 4
2

j
E M T n l n l

 
+ + + +     

    1( ' ) = 0f v
(when 1'v

 is attached to 2v
) 

       2( ' ) = 1if v
, 

1 1
2

l
i

 
≤ ≤ +     

     2 1( ' ) = 0if v
+ , 

1
2

l
i

 
≤ ≤     

4 3 4 2

4 1

( ' ) = ( ' ) = 0
1 1

( ' ) = 1 4

i i

i

f e f e l
i

f e

− −

−

  
≤ ≤ +  

 



 

     4( ' ) = 1if e
, 

1
4

l
i

 
≤ ≤     

remaining vertices are labeled as in subcase 5  of case
(2)

. 

Using above pattern we have 

(0) = (1) =f fv v n l+
, 

3
(0) = (1) = 2 2

2 2
f f

n j
e e l

 
+ + +   
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For = 1l  we have 
(0) = (1) = 11f fe e

 

 

Subcase 8: = 2n k , 
= 3,5,7,....k

 and 
= 2 1l j +

, 

= 2, 4,6,.....j
 

In this subcase | ( ( ( , 1))) |= 2 2V M T n l n l+ + , 

| ( ( ( , 1))) |= 3 2 2 4
2

j
E M T n l n l

 
+ + + +     

    1( ' ) = 0f v
(when 1'v

 is attached to 2v
) 

    2( ' ) = 1if v
, 

1 1
2

l
i

 
≤ ≤ +     

    2 1( ' ) = 0if v
+ , 

1
2

l
i

 
≤ ≤     

    4 3( ' ) = 0if e
− , 

1 1
4

l
i

 
≤ ≤ +     

            

4 2

4 1 4

( ' ) = 0
1

( ' ) = ( ' ) = 1 4

i

i i

f e l
i

f e f e

−

−

  
≤ ≤   


  

remaining vertices are labeled as in subcase 5  of case
(2)

. 

Using above pattern we have 

(0) = (1) =f fv v n l+
, 

3
(0) = (1) = 1 2

2 2
f f

n j
e e l

 
+ + +     

Thus in all the cases described above 
f

 admits cordial labeling 

for M(
( , 1)T n l +

). That is, M(
( , 1)T n l +

) admits cordial 

labeling. 

Illustration - 2.10 : In the following Figure 2.4  cordial 

labeling of 
( (6,5))M T

 is shown. 

 

Figure 2.4 
( (6,5))M T

 and its cordial labeling 

Concluding Remarks 
Labeling of discrete structure is a potential area of research 

due to its diversified applications. We discuss here cordial 

labeling in the context middle graph of a graph. We contribute 

six new results to the theory of cordial labeling. It is possible to 

investigate analogous results for various families of graph and in 

the context of different graph labeling problems which is the 

open area of research. 
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Abstract 

 
We present here some important results in connection with 3-equitable graphs. We prove that any 

graph G can be embedded as an induced subgraph of a 3-equitable graph. We have also discussed 

some properties which are invariant under embedding. This work rules out any possibility of obtaining 
any forbidden subgraph characterization for 3-equitable graphs. 
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1. INTRODUCTION 
We begin with simple, finite, connected and undirected graph = ( ( ), ( ))G V G E G , where ( )V G  is 

called set of vertices and ( )E G  is called set of edges of a graph G. For all other terminology and 

notations in graph theory we follow West [1] and for number theory we follow Niven and Zuckerman 
[2]. 
 
Definition 1.1 The assignment of numbers to the vertices of a graph with certain condition(s) is called 
graph labeling. 
 
For detailed survey on graph labeling we refer to Gallian [3]. Vast amount of literature is available on 
different types of graph labeling and more than 1200 papers have been published in past four 
decades. As stated in Beineke and Hegde [4] graph labeling serves as a frontier between number 
theory and structure of graphs. Most of the graph labeling techniques trace there origin to that one 
introduced by Rosa [5]. 

 
Definition 1.2   

Let = ( ( ), ( ))G V G E G  be a graph with p  vertices and q  edges. Let : {0,1, 2, , }f V q→ …  be an 

injection. For each edge uv E∈ , define ( ) =| ( ) ( ) | .f uv f u f v
∗

−  If ( ) = {1,2, , }f E q
∗

…  then f  is 

called β -valuation. Golomb [6] called such labeling as a graceful labeling and this is now the familiar 

term. 
 
Definition 1.3   

For a mapping : ( ) {0,1, 2,... 1}f V G k→ −  and an edge =e uv  of G , we define 

( ) =| ( ) ( ) |f e f u f v− . The labeling f  is called a k  - equitable labeling if the number of vertices 

with the label i  and the number of vertices with the label j  differ by atmost 1 and the number of 

edges with the label i  and the number of edges with label j  differ by atmost 1. By ( )fv i  we mean 

the number of vertices with the label i  and by ( )fe i  we mean the number of edges with the label i . 
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Thus for k - equaitable labeling we must have | ( ) ( ) | 1f fv i v j− ≤  and | ( ) ( ) | 1f fe i e j− ≤ ,  

where 0 , 1i j k≤ ≤ − . 

For = 2k , f  is called cordial labeling and for = 3k , f  is called 3-equitable labeling. We focus on 

3-equitable labeling. 
 

A graph G  is 3-equitable if it admits a 3-equitable labeling. This concept was introduced by Cahit [7]. 

There are four types of problems that can be considered in this area. 
(1) How 3-equatability is affected under various graph operations. 
(2) Construct new families of 3-equitable graphs by finding suitable labeling. 
(3) Given a graph theoretic property P characterize the class of graphs with property P that 

are 3-equitable. 

(4) Given a graph G  having the graph theoretic property P, is it possible to embed G  as an 

induced subgraph of a 3-equitable graph G , having the property P ? 

 
The problems of first three types are largely investigated but the problems of last type are of great 
importance. Such problems are extensively explored recently by Acharya et al [8] in the context of 
graceful graphs. We present here an affirmative answer for planar graphs, trianglefree graphs and 
graphs with given chromatic number in the context of 3-equitable graphs. As a consequence we 

deduce that deciding whether the chromatic number is less then or equal to k , where 3k ≥ , is NP-

complete even for 3-equitable graphs. We obtain similar result for clique number also. 
 

2. Main Results 
 

Theorem 2.1  

Any graph G  can be embedded as an induced subgraph of a 3-equitable graph. 

Proof: Let G  be the graph with n vertices. Without loss of generality we assume that it is always 

possible to label the vertices of any graph G  such that the vertex conditions for 3-equitable graphs 

are satisfied. i.e. | ( ) ( ) | 1f fv i v j− ≤ , 0 , 2i j≤ ≤ . Let 0V  , 1V  and 2V  be the set of vertices with label 

0  ,1 and 2  respectively. Let 
0E , 

1E  and 
2E  be the set of edges with label 0,1 and 2 respectively. 

Let 
0( )n V  ,

1( )n V and 
2( )n V  be the number of elements in sets 

0V  ,
1V  and 

2V  respectively. Let 

0( )n E , 
1( )n E  and 

2( )n E  be the number of elements in sets 
0E  , 

1E  and 
2E  respectively. 

Case 1: 0( 3)n mod≡   

Subcase 1: 0 1 2( ) ( ) ( )n E n E n E≠ ≠ . 

Suppose 0 1 2( ) < ( ) < ( )n E n E n E .Let 2 0| ( ) ( ) |= > 1n E n E r−  and 2 1| ( ) ( ) |= > 1n E n E s− .The new 

graph H  can be obtained by adding r s+  vertices to the graph G . 

Define =r s p+  and consider a partition of p  as =p a b c+ +  with | | 1a b− ≤ , | | 1b c− ≤  and 

| | 1c a− ≤ . 

Now out of new p  vertices label a  vertices with 0, b  vertices with 1 and c  vertices with 2.i.e. label 

the vertices 1u , 2u ,... , au  with 0, 1v , 2v ,... , bv  with 1 and 1w , 2w ,... , cw  with 2.Now we adapt the 

following procedure. 
Step 1: To obtain required number of edges with label 1.   

• Join s  number of elements iv  to the arbitrary element of 0V .  

• If <b s  then join ( s b− ) number of elements 1u , 2u ,... , s bu
−

 to the arbitrary element of 1V .  

• If <a s b−  then join ( s a b− − ) number of vertices 1w , 2w ,... , s b aw
− −

 to the arbitrary element of 

1V .  

Above construction will give rise to required number of edges with label 1. 
 Step 2: To obtain required number of edges with label 0.   

 • Join remaining number of iu 's (which are left at the end of step 1) to the arbitrary element of 0V .  
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• Join the remaining number of iv 's(which are left at the end of step 1) to the arbitrary element of 1V .  

• Join the remaining number of iw 's(which are left at the end of step 1) to the arbitrary element of 2V .  

As a result of above procedure we have the following vertex conditions and edge conditions. 

 
0 1| (0) (1) |= | ( ) ( ) | 1f fv v n V a n V b− + − − ≤ , 

1 2| (1) (2) |= | ( ) ( ) | 1f fv v n V b n V c− + − − ≤  , 

 
2 0| (2) (0) |= | ( ) ( ) | 1f fv v n V c n V a− + − − ≤  

 and 

 0 2 0 1 2 1| (0) (1) |= | ( ) ( ) ( ) ( ) ( ) ( ) |= 0f fe e n E n E n E n E n E n E− + − − − + , 

 1 2 1 2| (1) (2) |= | ( ) ( ) ( ) ( ) |= 0f fe e n E n E n E n E− + − − , 

 2 0 2 0| (2) (0) |=| ( ) ( ) ( ) ( ) |= 0f fe e n E n E n E n E− − − + . 

 Similarly one can handle the following cases. 

 0 2 1( ) < ( ) < ( )n E n E n E , 

 2 0 1( ) < ( ) < ( )n E n E n E , 

 1 2 0( ) < ( ) < ( )n E n E n E , 

 2 1 0( ) < ( ) < ( )n E n E n E , 

 1 0 2( ) < ( ) < ( )n E n E n E . 

Subcase 2: ( ) = ( ) < ( ), ,0 , , 2i j kn E n E n E i j k i j k≠ ≠ ≤ ≤  

Suppose 
0 1 2( ) = ( ) < ( )n E n E n E  

 
2 0| ( ) ( ) |=n E n E r−  

 
2 1| ( ) ( ) |=n E n E r−  

The new graph H  can be obtained by adding 2r  vertices to the graph G . 

Define 2 =r p  and consider a partition of p  as =p a b c+ +  with | | 1a b− ≤ , | | 1b c− ≤  and 

| | 1c a− ≤ . 

 Now out of new p  vertices, label a  vertices with 0, b  vertices with 1 and c  vertices with 2.i.e. label 

the vertices 
1u ,

2u ,... ,
au  with 0, 

1v ,
2v ,... ,

bv  with 1 and 
1w ,

2w ,... ,
cw  with 2.Now we adapt the 

following procedure. 
 
Step 1:  

To obtain required number of edges with label 0 .   

• Join r  number of elements 'iu s  to the arbitrary element of 0V .  

• If <a r  then join ( r a− ) number of elements 1v , 2v ,... , r av
−

 to the arbitrary element of 1V .  

• If <b r a−  then join ( r a b− − ) number of vertices 1w , 2w ,... , r b aw
− −

 to the arbitrary element of 

2V .  

Above construction will give rise to required number of edges with label 0 . 

 
Step 2:  

To obtain required number of edges with label 1.   

• Join remaining number of iw 's (which are not used at the end of step 1)to the arbitrary element of 

1.V   

• Join the remaining number of 'iv s (which are not used at the end of step 1) to the arbitrary element 

of 0V .  

• Join the remaining number of 'iu s (which are not used at the end of step 1) to the arbitrary element 
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of 1V .  

Similarly we can handle the following possibilities. 

1 2 0( ) = ( ) < ( )n E n E n E  

0 2 1( ) = ( ) < ( )n E n E n E  

Subcase 3 : ( ) < ( ) = ( ), ,0 , , 2i j kn E n E n E i j k i j k≠ ≠ ≤ ≤  

Suppose 2 0 1( ) < ( ) = ( )n E n E n E  

Define 2 0| ( ) ( ) |=n E n E r−  

The new graph H  can be obtained by adding r  vertices to the graph G  as follows . 

 Consider a partition of r  as =r a b c+ +  with | | 1a b− ≤ , | | 1b c− ≤  and | | 1c a− ≤ . 

Now out of new r  vertices label a  vertices with 0 , b  vertices with 1 and c vertices with 2 .i.e. label 

the vertices 1u , 2u ,... , au  with 0 , 1v , 2v ,... , bv  with 1 and 1w , 2w ,... , cw  with 2 . Now we adapt the 

following procedure. 
 
Step 1:  
To obtain required number of edges with label 2.   

 • Join r number of vertices 'iw s  to the arbitrary element of 0V .  

 • If <c r  then join r c−  number of elements 1u , 2u ,... , r cu
−

 to the arbitrary element of 2V .  

Above construction will give rise to required number of edges with label 2 . 

At the end of this step if the required number of 2  as edge labels are generated then we have done. 

If not then move to step 2 . This procedure should be followed in all the situations described earlier 

when 2 0( ) < ( )n E n E  or 2 1( ) < ( )n E n E . 

 
Step 2:  

To obtain the remaining (at the end of step 1) number of edges with label 2 .   

• If k  number of edges are required after joining all the vertices with label 0  and 2  then add k  

number of vertices labeled with 0 , k  number of vertices labeled with 1 and k  number of vertices 

labeled with 2 . Then vertex conditions are satisfied.  

• Now we have k  number of new vertices with label 2 , k  number of new vertices with label 0  and 

2k  number of new vertices with label 1.  

 • Join k  new vertices with label 2  to the arbitrary element of the set 
0V .  

• Join k  new vertices with label 0  to the arbitrary element of the set 
2V .  

• Join k  new vertices with label 1 to the arbitrary element of set 
0V .  

• Join k  new vertices with label 1 to the arbitrary element of the set 
1V .  

Case 2: 1( 3)n mod≡ . 

Subcase 1: ( ) ( ) ( ), ,0 , , 2i j kn E n E n E i j k i j k≠ ≠ ≠ ≠ ≤ ≤ . 

Suppose 0 1 2( ) < ( ) < ( )n E n E n E  Let 2 0| ( ) ( ) |= > 1n E n E r−  and 2 1| ( ) ( ) |= > 1n E n E s−  . 

Define =r s p+  and consider a partition of p  such that =p a b c+ +  with  

 0 1| ( ) ( ) | 1n V a n V b+ − − ≤  

 1 2| ( ) ( ) | 1n V b n V c+ − − ≤  

 0 2| ( ) ( ) | 1n V a n V c+ − − ≤ . 

Now we can follow the procedure which we have discussed in case-1. 

Case 3: 2( 3)n mod≡   

We can proceed as case-1 and case-2. 

Thus in all the possibilities the graph H  resulted due to above construction satisfies the conditions 

for 3-equitable graph. That is, any graph G  can be embedded as an induced subgraph of a 3-
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equitable graph. 
For the better understanding of result derived above consider following illustrations. 
 
Illustration 2.2  

For a Graph 9=G C  we have 0( ) = 0n E , 1( ) = 6n E , 2( ) = 3n E . 

Now 1 0| ( ) ( ) |= 6 =n E n E r− , 1 2| ( ) ( ) |= 3 =n E n E s− . 

This is the case related to subcase (1)  of case (1) . 

 
   

FIGURE 1:
9C  and its 3-equitable embedding 

 

Procedure to construct H  : 
Step 1:   

• Add = = 6 3 = 9p r s+ +  vertices in G and partition p  as = = 3 3 3.p a b c+ + + +   

• Label 3  vertices with 0  as = 3.a   

• Label 3  vertices with 1 as = 3.b   

• Label 3  vertices with 2  as = 3.c   

Step 2:   

• Join the vertices with 0  and 1 to the arbitrary element of the set 0V  and 1V  respectively.  

• Join the vertices with label 2  to the arbitrary element of set 0V .  

The resultant graph H  is shown in Figure 1  is 3 -equitable. 

 
Illustration 2.3  

Consider a Graph 4=G K  as shown in following Figure 2 for which 0( ) = 1n E , 1( ) = 4n E , 

2( ) = 1n E . 

Here 1 0| ( ) ( ) |= 3 =n E n E r− , 1 2| ( ) ( ) |= 3 =n E n E s−  i.e. =r s . 

This is the case related to subcase (2)  of case (2) . 

 
 

FIGURE 2: 4K  and its 3-equitable embedding 
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Procedure to construct H  : 
Step 1:   

• Add = 2 = 3 3 = 6p r +  vertices in G and partition p  as = = 2 1 3.p a b c+ + + +   

• Label 2  vertices with 0  as = 2a .  

• Label 1 vertex with 1 as = 1b .  

• Label 3  vertices with 2  as = 2c .  

 
Step 2:   

• Join the vertices with label 0  to the arbitrary element of the set 
0V  and join one vertex with label 2  

to the arbitrary element of 
2V .  

• join the remaining vertices with label 2  with the arbitrary element of set 
0V .  

 
Step 3:   

• Now add three more vertices and label them as 0 ,1 and 2  respectively.  

• Now join the vertices with label 0  and 2  with the arbitrary elements of 2V  and 0V  respectively.  

• Now out of the remaining two vertices with label 1 join one vertex with arbitrary element of set 0V  

and the other with the arbitrary element of set 1V .  

The resultant graph H  shown in Figure 2  is 3 -equitable. 

Corollary 2.4 Any planar graph G  can be embedded as an induced subgraph of a planar 3-equitable 

graph. 

Proof: If G  is planar graph. Then the graph H  obtained by Theorem 2.1  is a planar graph. 

Corollary 2.5 Any triangle-free graph G  can be embedded as an induced subgraph of a triangle free 

3-equitable graph. 

Proof: If G  is triangle-free graph. Then the graph H  obtained by Theorem 2.1  is a triangle-free 

graph. 

Corollary 2.6 The problem of deciding whether the chromatic number kχ ≤ , where 3k ≥  is NP-

complete even for 3-equitable graphs. 

Proof: Let G  be a graph with chromatic number ( ) 3Gχ ≥ . Let H  be the 3-equitable graph 

constructed in Theorem 2.1 , which contains G  as an induced subgraph.Since H  is constructed by 

adding only pendant vertices to G . We have ( ) = ( )H Gχ χ . Since the problem of deciding whether 

the chromatic number kχ ≤ , where 3k ≥  is NP-complete [9]. It follows that deciding whether the 

chromatic number kχ ≤ , where 3k ≥ , is NP-complete even for 3-equitable graphs. 

Corollary 2.7 The problem of deciding whether the clique number ( )G kω ≥  is NP-complete even 

when restricted to 3-equitable graphs. 

Proof: Since the problem of deciding whether the clique number of a graph ( )G kω ≥  is NP-

complete [9] and ( ) = ( )H Gω ω  for the 3-equitable graph H  constructed in Theorem 2.1,the above 

result follows. 
 

3. Concluding Remarks  
In this paper, we have considered the general problem. Given a graph theoretic property P and a 

graph G  having P, is it possible to embed G  as an induced subgraph of a 3-equitable graph H  

having the property P ? As a consequence we derive that deciding whether the chromatic number 

kχ ≤ , where 3k ≥ , is NP-complete even for 3-equitable graphs. We obtain similar result for clique 

number. Moreover this work rules out any possibility of forbidden subgraph characterization for 3-
equitable graph. Analogous work for other graph theoretic parameters like domination number, total 
domination number, fractional domination number etc. and graphs admitting various other types of 
labeling can be carried out for further research. 
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