6,088 research outputs found

    Edge-Fault Tolerance of Hypercube-like Networks

    Full text link
    This paper considers a kind of generalized measure λs(h)\lambda_s^{(h)} of fault tolerance in a hypercube-like graph GnG_n which contain several well-known interconnection networks such as hypercubes, varietal hypercubes, twisted cubes, crossed cubes and M\"obius cubes, and proves λs(h)(Gn)=2h(nh)\lambda_s^{(h)}(G_n)= 2^h(n-h) for any hh with 0hn10\leqslant h\leqslant n-1 by the induction on nn and a new technique. This result shows that at least 2h(nh)2^h(n-h) edges of GnG_n have to be removed to get a disconnected graph that contains no vertices of degree less than hh. Compared with previous results, this result enhances fault-tolerant ability of the above-mentioned networks theoretically

    Distributed Symmetry Breaking in Hypergraphs

    Full text link
    Fundamental local symmetry breaking problems such as Maximal Independent Set (MIS) and coloring have been recognized as important by the community, and studied extensively in (standard) graphs. In particular, fast (i.e., logarithmic run time) randomized algorithms are well-established for MIS and Δ+1\Delta +1-coloring in both the LOCAL and CONGEST distributed computing models. On the other hand, comparatively much less is known on the complexity of distributed symmetry breaking in {\em hypergraphs}. In particular, a key question is whether a fast (randomized) algorithm for MIS exists for hypergraphs. In this paper, we study the distributed complexity of symmetry breaking in hypergraphs by presenting distributed randomized algorithms for a variety of fundamental problems under a natural distributed computing model for hypergraphs. We first show that MIS in hypergraphs (of arbitrary dimension) can be solved in O(log2n)O(\log^2 n) rounds (nn is the number of nodes of the hypergraph) in the LOCAL model. We then present a key result of this paper --- an O(Δϵpolylog(n))O(\Delta^{\epsilon}\text{polylog}(n))-round hypergraph MIS algorithm in the CONGEST model where Δ\Delta is the maximum node degree of the hypergraph and ϵ>0\epsilon > 0 is any arbitrarily small constant. To demonstrate the usefulness of hypergraph MIS, we present applications of our hypergraph algorithm to solving problems in (standard) graphs. In particular, the hypergraph MIS yields fast distributed algorithms for the {\em balanced minimal dominating set} problem (left open in Harris et al. [ICALP 2013]) and the {\em minimal connected dominating set problem}. We also present distributed algorithms for coloring, maximal matching, and maximal clique in hypergraphs.Comment: Changes from the previous version: More references adde

    Further topics in connectivity

    Get PDF
    Continuing the study of connectivity, initiated in §4.1 of the Handbook, we survey here some (sufficient) conditions under which a graph or digraph has a given connectivity or edge-connectivity. First, we describe results concerning maximal (vertex- or edge-) connectivity. Next, we deal with conditions for having (usually lower) bounds for the connectivity parameters. Finally, some other general connectivity measures, such as one instance of the so-called “conditional connectivity,” are considered. For unexplained terminology concerning connectivity, see §4.1.Peer ReviewedPostprint (published version
    corecore