4 research outputs found

    3ๆฌกๅ…ƒ็”ปๅƒใฎ้ซ˜็”ป่ณชๅŒ–ใƒป้ซ˜ๆฉŸ่ƒฝๅŒ–ใซๅ‘ใ‘ใŸ่งฃๅƒๅบฆๅค‰ๆ›ๅ‡ฆ็†ใฎ็ ”็ฉถ

    Get PDF
    ๅญฆไฝใฎ็จฎๅˆฅ:่ชฒ็จ‹ๅšๅฃซUniversity of Tokyo(ๆฑไบฌๅคงๅญฆ

    Super-resolution:A comprehensive survey

    Get PDF

    ์›€์ง์ด๋Š” ๋‹จ์ผ ์นด๋ฉ”๋ผ๋ฅผ ์ด์šฉํ•œ 3์ฐจ์› ๋ณต์›๊ณผ ๋””๋ธ”๋Ÿฌ๋ง, ์ดˆํ•ด์ƒ๋„ ๋ณต์›์˜ ๋™์‹œ์  ์ˆ˜ํ–‰ ๊ธฐ๋ฒ•

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2013. 8. ์ด๊ฒฝ๋ฌด.์˜์ƒ ๊ธฐ๋ฐ˜ 3์ฐจ์› ๋ณต์›์€ ์ปดํ“จํ„ฐ ๋น„์ „์˜ ๊ธฐ๋ณธ์ ์ธ ์—ฐ๊ตฌ ์ฃผ์ œ ๊ฐ€์šด๋ฐ ํ•˜๋‚˜๋กœ ์ตœ๊ทผ ๋ช‡ ๋…„๊ฐ„ ๋งŽ์€ ๋ฐœ์ „์ด ์žˆ์–ด์™”๋‹ค. ํŠนํžˆ ์ž๋™ ๋กœ๋ด‡์„ ์œ„ํ•œ ๋„ค๋น„๊ฒŒ์ด์…˜ ๋ฐ ํœด๋Œ€ ๊ธฐ๊ธฐ๋ฅผ ์ด์šฉํ•œ ์ฆ๊ฐ• ํ˜„์‹ค ๋“ฑ์— ๋„๋ฆฌ ํ™œ์šฉ๋  ์ˆ˜ ์žˆ๋Š” ๋‹จ์ผ ์นด๋ฉ”๋ผ๋ฅผ ์ด์šฉํ•œ 3์ฐจ์› ๋ณต์› ๊ธฐ๋ฒ•์€ ๋ณต์›์˜ ์ •ํ™•๋„, ๋ณต์› ๊ฐ€๋Šฅ ๋ฒ”์œ„ ๋ฐ ์ฒ˜๋ฆฌ ์†๋„ ์ธก๋ฉด์—์„œ ๋งŽ์€ ์‹ค์šฉ ๊ฐ€๋Šฅ์„ฑ์„ ๋ณด์—ฌ์ฃผ๊ณ  ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๊ทธ ์„ฑ๋Šฅ์€ ์—ฌ์ „ํžˆ ์กฐ์‹ฌ์Šค๋ ˆ ์ดฌ์˜๋œ ๋†’์€ ํ’ˆ์งˆ์˜ ์ž…๋ ฅ ์˜์ƒ์— ๋Œ€ํ•ด์„œ๋งŒ ์‹œํ—˜๋˜๊ณ  ์žˆ๋‹ค. ์›€์ง์ด๋Š” ๋‹จ์ผ ์นด๋ฉ”๋ผ๋ฅผ ์ด์šฉํ•œ 3์ฐจ์› ๋ณต์›์˜ ์‹ค์ œ ๋™์ž‘ ํ™˜๊ฒฝ์—์„œ๋Š” ์ž…๋ ฅ ์˜์ƒ์ด ํ™”์†Œ ์žก์Œ์ด๋‚˜ ์›€์ง์ž„์— ์˜ํ•œ ๋ฒˆ์ง ๋“ฑ์— ์˜ํ•˜์—ฌ ์†์ƒ๋  ์ˆ˜ ์žˆ๊ณ , ์˜์ƒ์˜ ํ•ด์ƒ๋„ ๋˜ํ•œ ์ •ํ™•ํ•œ ์นด๋ฉ”๋ผ ์œ„์น˜ ์ธ์‹ ๋ฐ 3์ฐจ์› ๋ณต์›์„ ์œ„ํ•ด์„œ๋Š” ์ถฉ๋ถ„ํžˆ ๋†’์ง€ ์•Š์„ ์ˆ˜ ์žˆ๋‹ค. ๋งŽ์€ ์—ฐ๊ตฌ์—์„œ ๊ณ ์„ฑ๋Šฅ ์˜์ƒ ํ™”์งˆ ํ–ฅ์ƒ ๊ธฐ๋ฒ•๋“ค์ด ์ œ์•ˆ๋˜์–ด ์™”์ง€๋งŒ ์ด๋“ค์€ ์ผ๋ฐ˜์ ์œผ๋กœ ๋†’์€ ๊ณ„์‚ฐ ๋น„์šฉ์„ ํ•„์š”๋กœ ํ•˜๊ธฐ ๋•Œ๋ฌธ์— ์‹ค์‹œ๊ฐ„ ๋™์ž‘ ๋Šฅ๋ ฅ์ด ์ค‘์š”ํ•œ ๋‹จ์ผ ์นด๋ฉ”๋ผ ๊ธฐ๋ฐ˜ 3์ฐจ์› ๋ณต์›์— ์‚ฌ์šฉ๋˜๊ธฐ์—๋Š” ๋ถ€์ ํ•ฉํ•˜๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๋ณด๋‹ค ์ •ํ™•ํ•˜๊ณ  ์•ˆ์ •๋œ ๋ณต์›์„ ์œ„ํ•˜์—ฌ ์˜์ƒ ๊ฐœ์„ ์ด ๊ฒฐํ•ฉ๋œ ์ƒˆ๋กœ์šด ๋‹จ์ผ ์นด๋ฉ”๋ผ ๊ธฐ๋ฐ˜ 3์ฐจ์› ๋ณต์› ๊ธฐ๋ฒ•์„ ๋‹ค๋ฃฌ๋‹ค. ์ด๋ฅผ ์œ„ํ•˜์—ฌ ์˜์ƒ ํ’ˆ์งˆ์ด ์ €ํ•˜๋˜๋Š” ์ค‘์š”ํ•œ ๋‘ ์š”์ธ์ธ ์›€์ง์ž„์— ์˜ํ•œ ์˜์ƒ ๋ฒˆ์ง๊ณผ ๋‚ฎ์€ ํ•ด์ƒ๋„ ๋ฌธ์ œ๊ฐ€ ๊ฐ๊ฐ ์  ๊ธฐ๋ฐ˜ ๋ณต์› ๋ฐ ์กฐ๋ฐ€ ๋ณต์› ๊ธฐ๋ฒ•๋“ค๊ณผ ๊ฒฐํ•ฉ๋œ๋‹ค. ์˜์ƒ ํ’ˆ์งˆ ์ €ํ•˜๋ฅผ ํฌํ•จํ•œ ์˜์ƒ ํš๋“ ๊ณผ์ •์€ ์นด๋ฉ”๋ผ ๋ฐ ์žฅ๋ฉด์˜ 3์ฐจ์› ๊ธฐํ•˜ ๊ตฌ์กฐ์™€ ๊ด€์ธก๋œ ์˜์ƒ ์‚ฌ์ด์˜ ๊ด€๊ณ„๋ฅผ ์ด์šฉํ•˜์—ฌ ๋ชจ๋ธ๋ง ํ•  ์ˆ˜ ์žˆ๊ณ , ์ด๋Ÿฌํ•œ ์˜์ƒ ํ’ˆ์งˆ ์ €ํ•˜ ๊ณผ์ •์„ ๊ณ ๋ คํ•จ์œผ๋กœ์จ ์ •ํ™•ํ•œ 3์ฐจ์› ๋ณต์›์„ ํ•˜๋Š” ๊ฒƒ์ด ๊ฐ€๋Šฅํ•ด์ง„๋‹ค. ๋˜ํ•œ, ์˜์ƒ ๋ฒˆ์ง ์ œ๊ฑฐ๋ฅผ ์œ„ํ•œ ๋ฒˆ์ง ์ปค๋„ ๋˜๋Š” ์˜์ƒ์˜ ์ดˆํ•ด์ƒ๋„ ๋ณต์›์„ ์œ„ํ•œ ํ™”์†Œ ๋Œ€์‘ ์ •๋ณด ๋“ฑ์ด 3์ฐจ์› ๋ณต์› ๊ณผ์ •๊ณผ ๋™์‹œ์— ์–ป์–ด์ง€๋Š”๊ฒƒ์ด ๊ฐ€๋Šฅํ•˜์—ฌ, ์˜์ƒ ๊ฐœ์„ ์ด ๋ณด๋‹ค ๊ฐ„ํŽธํ•˜๊ณ  ๋น ๋ฅด๊ฒŒ ์ˆ˜ํ–‰๋  ์ˆ˜ ์žˆ๋‹ค. ์ œ์•ˆ๋˜๋Š” ๊ธฐ๋ฒ•์€ 3์ฐจ์› ๋ณต์›๊ณผ ์˜์ƒ ๊ฐœ์„  ๋ฌธ์ œ๋ฅผ ๋™์‹œ์— ํ•ด๊ฒฐํ•จ์œผ๋กœ์จ ๊ฐ๊ฐ์˜ ๊ฒฐ๊ณผ๊ฐ€ ์ƒํ˜ธ ๋ณด์™„์ ์œผ๋กœ ํ–ฅ์ƒ๋œ๋‹ค๋Š” ์ ์—์„œ ๊ทธ ์žฅ์ ์„ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์‹คํ—˜์  ํ‰๊ฐ€๋ฅผ ํ†ตํ•˜์—ฌ ์ œ์•ˆ๋˜๋Š” 3์ฐจ์› ๋ณต์› ๋ฐ ์˜์ƒ ๊ฐœ์„ ์˜ ํšจ๊ณผ์„ฑ์„ ์ž…์ฆํ•˜๋„๋ก ํ•œ๋‹ค.Vision-based 3D reconstruction is one of the fundamental problems in computer vision, and it has been researched intensively significantly in the last decades. In particular, 3D reconstruction using a single camera, which has a wide range of applications such as autonomous robot navigation and augmented reality, shows great possibilities in its reconstruction accuracy, scale of reconstruction coverage, and computational efficiency. However, until recently, the performances of most algorithms have been tested only with carefully recorded, high quality input sequences. In practical situations, input images for 3D reconstruction can be severely distorted due to various factors such as pixel noise and motion blur, and the resolution of images may not be high enough to achieve accurate camera localization and scene reconstruction results. Although various high-performance image enhancement methods have been proposed in many studies, the high computational costs of those methods prevent applying them to the 3D reconstruction systems where the real-time capability is an important issue. In this dissertation, novel single camera-based 3D reconstruction methods that are combined with image enhancement methods is studied to improve the accuracy and reliability of 3D reconstruction. To this end, two critical image degradations, motion blur and low image resolution, are addressed for both sparse reconstruction and dense 3D reconstruction systems, and novel integrated enhancement methods for those degradations are presented. Using the relationship between the observed images and 3D geometry of the camera and scenes, the image formation process including image degradations is modeled by the camera and scene geometry. Then, by taking the image degradation factors in consideration, accurate 3D reconstruction then is achieved. Furthermore, the information required for image enhancement, such as blur kernels for deblurring and pixel correspondences for super-resolution, is simultaneously obtained while reconstructing 3D scene, and this makes the image enhancement much simpler and faster. The proposed methods have an advantage that the results of 3D reconstruction and image enhancement are improved by each other with the simultaneous solution of these problems. Experimental evaluations demonstrate the effectiveness of the proposed 3D reconstruction and image enhancement methods.1. Introduction 2. Sparse 3D Reconstruction and Image Deblurring 3. Sparse 3D Reconstruction and Image Super-Resolution 4. Dense 3D Reconstruction and Image Deblurring 5. Dense 3D Reconstruction and Image Super-Resolution 6. Dense 3D Reconstruction, Image Deblurring, and Super-Resolution 7. ConclusionDocto

    Super-resolution of 3-dimensional scenes

    Full text link
    Super-resolution is an image enhancement method that increases the resolution of images and video. Previously this technique could only be applied to 2D scenes. The super-resolution algorithm developed in this thesis creates high-resolution views of 3-dimensional scenes, using low-resolution images captured from varying, unknown positions
    corecore