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Abstract

Vision-based 3D reconstruction is one of the fundamental problems in computer

vision, and it has been researched intensively significantly in the last decades. In

particular, 3D reconstruction using a single camera, which has a wide range of ap-

plications such as autonomous robot navigation and augmented reality, shows great

possibilities in its reconstruction accuracy, scale of reconstruction coverage, and com-

putational efficiency. However, until recently, the performances of most algorithms

have been tested only with carefully recorded, high quality input sequences. In prac-

tical situations, input images for 3D reconstruction can be severely distorted due to

various factors such as pixel noise and motion blur, and the resolution of images may

not be high enough to achieve accurate camera localization and scene reconstruction

results. Although various high-performance image enhancement methods have been

proposed in many studies, the high computational costs of those methods prevent

applying them to the 3D reconstruction systems where the real-time capability is

an important issue.

In this dissertation, novel single camera-based 3D reconstruction methods that

are combined with image enhancement methods is studied to improve the accuracy

and reliability of 3D reconstruction. To this end, two critical image degradations,

motion blur and low image resolution, are addressed for both sparse reconstruction

and dense 3D reconstruction systems, and novel integrated enhancement methods
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for those degradations are presented. Using the relationship between the observed

images and 3D geometry of the camera and scenes, the image formation process in-

cluding image degradations is modeled by the camera and scene geometry. Then, by

taking the image degradation factors in consideration, accurate 3D reconstruction

then is achieved. Furthermore, the information required for image enhancement,

such as blur kernels for deblurring and pixel correspondences for super-resolution,

is simultaneously obtained while reconstructing 3D scene, and this makes the image

enhancement much simpler and faster. The proposed methods have an advantage

that the results of 3D reconstruction and image enhancement are improved by each

other with the simultaneous solution of these problems. Experimental evaluations

demonstrate the effectiveness of the proposed 3D reconstruction and image enhance-

ment methods.

Keywords: Vision-based 3D reconstruction, Visual SLAM, Image enhancement,

Image deblurring, Image super-resolution.

Student Number: 2006-21271

ii



Contents

Abstract i

Contents iii

List of Figures ix

List of Tables xvi

1 Introduction 1

1.1 3D Reconstruction using a single camera . . . . . . . . . . . . . . . . 1

1.2 Image Enhancement for 3D Reconstruction . . . . . . . . . . . . . . 4

1.2.1 Image quality problem in 3D reconstruction . . . . . . . . . . 4

1.2.2 Proposed approach: Simultaneous 3D Reconstruction and Im-

age Enhancement . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Dissertation Goal and Contributions . . . . . . . . . . . . . . . . . . 8

1.4 Organization of Dissertation . . . . . . . . . . . . . . . . . . . . . . . 10

2 Sparse 3D Reconstruction and Image Deblurring 13

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

iii



2.3 Motion Blur and 3D Geometry . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 Motion blur in visual SLAM . . . . . . . . . . . . . . . . . . 17

2.3.2 Motion deblurring . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.3 Motion blur and 3D geometry . . . . . . . . . . . . . . . . . . 20

2.3.4 Blur kernel from 3D geometry . . . . . . . . . . . . . . . . . . 22

2.3.5 Reconstruction error and blur kernel error . . . . . . . . . . . 25

2.4 Visual SLAM and Deblurring . . . . . . . . . . . . . . . . . . . . . . 28

2.4.1 Blur-robust data association . . . . . . . . . . . . . . . . . . . 29

2.4.2 Deblurring for SLAM . . . . . . . . . . . . . . . . . . . . . . 32

2.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.5.1 Performances of visual SLAM . . . . . . . . . . . . . . . . . . 36

2.5.2 Deblurring qualities . . . . . . . . . . . . . . . . . . . . . . . 41

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3 Sparse 3D Reconstruction and Image Super-Resolution 43

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Patch-based Image Super-Resolution . . . . . . . . . . . . . . . . . . 46

3.3 Simultaneous Landmark Pose and High-Resolution Patch Estimation 48

3.3.1 Particle filtering framework for simultaneous landmark pose

and high-resolution patch estimation . . . . . . . . . . . . . . 49

3.3.2 Kalman filter-based high-resolution patch estimation . . . . . 50

3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4.1 Improvement of SLAM performance . . . . . . . . . . . . . . 52

3.4.2 Super-resolution quality . . . . . . . . . . . . . . . . . . . . . 54

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

iv



4 Dense 3D Reconstruction and Image Deblurring 59

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2 3D Geometry and Deblurring . . . . . . . . . . . . . . . . . . . . . . 62

4.3 Blur-Aware Depth Reconstruction . . . . . . . . . . . . . . . . . . . 64

4.3.1 Motion blur estimation from two images . . . . . . . . . . . . 64

4.3.2 Motion blur estimation to depth estimation . . . . . . . . . . 69

4.3.3 Depth reconstruction using multiple images . . . . . . . . . . 72

4.4 Variational Optimization for Depth Reconstruction . . . . . . . . . . 73

4.5 Deblurring by using Estimated Depth . . . . . . . . . . . . . . . . . 74

4.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.6.1 Analysis of the initial depth value . . . . . . . . . . . . . . . 76

4.6.2 Analysis of the number of input images . . . . . . . . . . . . 77

4.6.3 Comparison of depth reconstruction results . . . . . . . . . . 78

4.6.4 Comparison of optical flow results . . . . . . . . . . . . . . . 78

4.6.5 Comparison of deblurring results . . . . . . . . . . . . . . . . 81

4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5 Dense 3D Reconstruction and Image Super-Resolution 85

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.2.1 3D reconstruction and image super resolution . . . . . . . . . 86

5.2.2 Primal-dual algorithm for 3D reconstruction and super-resolution 87

5.3 Energy Model for Simultaneous Estimation of Depth and Super-Resolution

Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.3.1 Data cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

v



5.3.2 Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.4 Solution of Energy Function . . . . . . . . . . . . . . . . . . . . . . . 93

5.4.1 Initial depth estimation . . . . . . . . . . . . . . . . . . . . . 93

5.4.2 High-resolution image and depth estimation . . . . . . . . . . 94

5.5 Implementation of 3D Reconstruction . . . . . . . . . . . . . . . . . 97

5.5.1 Camera localization . . . . . . . . . . . . . . . . . . . . . . . 97

5.5.2 Map management . . . . . . . . . . . . . . . . . . . . . . . . 98

5.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.6.1 Results on simulated data . . . . . . . . . . . . . . . . . . . . 99

5.6.2 Results on real sequence . . . . . . . . . . . . . . . . . . . . . 104

5.6.3 Camera localization performance . . . . . . . . . . . . . . . . 105

5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6 Dense 3D Reconstruction, Image Deblurring, and Super-Resolution107

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.2 Energy Model for Simultaneous Estimation of Depth and Recovered

Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.3 Analysis of Energy Function . . . . . . . . . . . . . . . . . . . . . . . 112

6.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.4.1 Synthesized data . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.4.2 Real data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7 Conclusion 121

7.1 Summary of Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

vi



Bibliography 124

국문 초록 137

감사의 글 139

vii





List of Figures

1.1 Various image quality degradations that cause difficulties in corre-

spondence between two images for 3D reconstruction. . . . . . . . . 4

1.2 Example of 3D reconstruction of a scene and its synthesized observa-

tion images for different virtual viewpoints. . . . . . . . . . . . . . . 7

2.1 Motion blurs and detected Harris corner points [1] with different frame

rates. (a) Negligible camera motion with frame rate of 15Hz for a com-

parison. (b) Fast camera motion with frame rate of 30Hz, 15Hz, and

7.5Hz, respectively. As motion blur becomes severer by decreasing

frame rate, the number of detected corner points rapidly decreases. . 17

2.2 Estimated blur kernels at different 3D positions and deblurred regions

by estimated kernels. (a) Original blurred image and kernels from two

3D points, K1 and K2. (b, c) Deblurring results by kernels K1 and

K2, respectively. The kernel from other point gives poor deblurring

result. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Movement of the projected point by camera motion. . . . . . . . . . 20

ix



2.4 Trajectories of projected point by camera rotation with different axes.

(a) x-axis rotation (pitching). (b) z-axis rotation (rolling). (c) y-axis

rotation (yawing). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5 Overall procedure of the proposed algorithm. . . . . . . . . . . . . . 25

2.6 The worst case that estimated blur kernel has maximum error with

given reprojection errors. . . . . . . . . . . . . . . . . . . . . . . . . 26

2.7 Results of deblurring in a presence of kernel error. (a) A blurred

image. (b) Deblurred images by kernels with translation and direction

error. (c) Sharp (unblurred) image taken at different moment for

comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.8 Example of deblurred patches. (a) Blur kernels at each landmark.

(b) Partially deblurred image. (c) Close-up of patches (left: input,

right: deblurred) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.9 Extracted FAST-10 corners from the blurred (left) and deblurred

(right) image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.10 Data association and mapping of SLAM systems with (bottom row)

and without (top row) the blur handling for translation-dominant

camera motion. Data association results of selected frames (a ∼ f).

Results of mapping by each system (g, h). The colors of landmarks in

the scenes and the map represent the different levels of image pyra-

mids where the landmarks are extracted. . . . . . . . . . . . . . . . . 36

x



2.11 Data association and mapping of SLAM systems with (bottom row)

and without (top row) the blur handling for rotation-dominant cam-

era motion. Data association results of selected frames (a ∼ f). Re-

sults of mapping by each system (g, h). The colors of landmarks in the

scenes and the map represent the different levels of image pyramids

where the landmarks are extracted. . . . . . . . . . . . . . . . . . . . 37

2.12 Comparison of the numbers of total landmarks in maps, and the num-

bers of currently tracked landmarks in each frame. . . . . . . . . . . 38

2.13 Comparison of the reprojection error. . . . . . . . . . . . . . . . . . . 39

2.14 Comparison of image deblurring results for fast camera translation.

(a) Blurred input image. (b) Deblurred by the proposed method. (c)

Uniform deblurring [2]. (d) Non-uniform deblurring [3]. . . . . . . . 40

2.15 Comparison of image deblurring results for fast camera rotation. (a)

Blurred input image. (b) Deblurred by the proposed method. (c)

Uniform deblurring [2]. (d) Non-uniform deblurring [3]. . . . . . . . 41

3.1 Illustration of similarity between landmark patches. Using the high-

resolution template can provide higher similarity than using low-

resolution patches by reducing the sensitivity of pixel noise and quan-

tization error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2 EKF steps for super-resolution of landmark template and example

images for each step. . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3 High-resolution updates of landmark templates for selected frames.

The leftmost templates correspond to initial states obtained by up-

scaling the original template with bicubic interpolation. . . . . . . . 51

xi



3.4 3D reconstruction result by the proposed method. Left: Input images

shown with estimated landmark poses. Right: Estimated camera

trajectory and landmark poses in 3D map. . . . . . . . . . . . . . . . 53

3.5 Projected landmarks after camera pose estimation (white dotted lines)

and observed landmarks (red solid rectangles), which indicate the ac-

curacy of SLAM results indirectly. . . . . . . . . . . . . . . . . . . . 53

3.6 Plot of the average landmark projection error with and without the

proposed super-resolution. . . . . . . . . . . . . . . . . . . . . . . . . 55

3.7 Super-resolution results for building sequence. Left: Low-resolution

patches tracked in input images. Right: Super-resolution patches

(×3) by the proposed method. . . . . . . . . . . . . . . . . . . . . . 56

3.8 Super-resolution results for poster sequence. Left: Low-resolution

patches tracked in input images. Right: Super-resolution patches

(×3) by the proposed method. . . . . . . . . . . . . . . . . . . . . . 57

3.9 Similarity between landmark patches. The super-resolution patches

provide higher NCC measures than low-resolution patches. . . . . . . 58

4.1 Depth reconstruction from five blurry images: (a) Sample from real

input images. (b) Result of the conventional variational depth recon-

struction. (c) Result of the proposed blur-aware depth reconstruc-

tion. (d) Deblurred image by using the estimated depth-dependent

blur kernel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

xii



4.2 Commutative property of blur kernels. Top and middle: Synthe-

sized input images In−1 and In, the estimated blur kernels represented

by motion vectors, and their commutative convolution results. Bot-

tom: Unblurred reference image, ground truth motion vectors of In−1

with a color map, and the root-mean-square (RMS) error between

W−1
0,n−1(In−1) ∗ Kn and W−1

0,n(In) ∗ Kn−1 scaled by 10. . . . . . . . . . 65

4.3 Proposed motion blur model: The colored dots represent the pixel

positions of a 3D scene point X for each time n, and the intensities

at these positions are represented by L. The convolution of pixel

intensities along with the thick arrows corresponds to the blurred

kernels K which results in the blurred intensity I. The blur kernel K

corresponds to a part of pixel motion v in an exposure time. . . . . 67

4.4 Depth maps for synthesized image set by using different initial depth

values d̄ at the coarsest level. The arbitrary initial values yield almost

the similar depth results. . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.5 Improvement of depth map accuracy for real sequence by increasing

the number of input blurry images. . . . . . . . . . . . . . . . . . . . 78

4.6 Depth reconstruction for synthetic and real sequences respectively

comprises six unblurred (a, c) and blurred (b, d) images. From top to

bottom: Input images, variational depth reconstruction without blur

handling, and the proposed blur-robust reconstruction. . . . . . . . . 79

4.7 Comparison of optical flow and deblurring results. (a) Input image

and ground truth motion vector of synthetic data and two input im-

ages of real data. (b) Blur-robust optical flow method in [4]. (c)

Proposed method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

xiii



4.8 Deblurring results for real image: (a, b) Sample images from input

sequence. (c) Single image deblurring [5]. (d) Video deblurring [6].

(e) Deblur using optical flow [4]. (f) Proposed method. . . . . . . . . 82

5.1 The relationship between the low-resolution input sequence Ij and the

super-resolution image g, induced by the depth map d: The photo-

metric consistency should hold for Ij and the simulated low-resolution

image D ∗B ∗ g. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.2 The shape of data cost ρ(g,d) for textured (left) and untextured

(right) region. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.3 Depth map estimation and super-resolution results on the synthesized

low-resolution image sequences Bull, Poster, Sawtooth, and Venus

in [7]. (a) Original images. (b) Synthesized low-resolution images.

(c) Super resolution images. (d) Ground truth depth. (e) Depth map

without super-resolution. (f) Depth map with super-resolution. . . . 99

5.4 Comparison of super-resolution results (× 4) on the synthesized Venus

sequence with other super-resolution methods. . . . . . . . . . . . . 100

5.5 Comparison of super-resolution results (× 4) on the synthesized Bull

sequence with other super-resolution methods. . . . . . . . . . . . . 101

5.6 Depth map estimation and super-resolution results on the real image

sequences. (a) Input images. (b) Super resolution images. (c) Depth

map without super-resolution. (d) Depth map with super-resolution. 103

5.7 Comparison of super-resolution results on the real image sequences. . 104

5.8 Plot of registration error for camera localization with high-resolution

and low-resolution image and depth map for outdoor sequence. . . . 105

xiv



6.1 The relationship between the blurred low-resolution input sequence Ij

and the sharp high-resolution image L. The photometric consistency

should hold for Ij and the simulated low-resolution image D∗B∗Kj ∗L.108

6.2 The modified model to formulate a energy function with respect to g

and d. The photometric consistency should hold for the cumulatively

blurred image K1 ∗ Ij and the simulated low-resolution image D ∗B ∗

Kj ∗ g. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.3 An example of the shape of pixel-wise data cost ρ(g, d) at an image

edge (indicated by the yellow circle). . . . . . . . . . . . . . . . . . . 113

6.4 High-resolution depth and image estimation on synthetic data Bull :

(a) Low-resolution blurred input images. (b) Ground truth depth

map and image. (c) Low-resolution depth map without motion blur

model and upscaled image using bicubic interpolation. (d) Results by

the proposed method. . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.5 High-resolution depth and image estimation on synthetic data Cloth:

(a) Low-resolution blurred input images. (b) Ground truth depth

map and image. (c) Low-resolution depth map without motion blur

model and upscaled image using bicubic interpolation. (d) Results by

the proposed method. . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.6 Depth map without consideration of motion blur is not improved

although the smoothness parameter λ is tuned. . . . . . . . . . . . . 117

6.7 Comparison of high-resolution depth and image estimation by the

sequential methods (Seq. DB-SR Seq. SR-DB) and the proposed

simultaneous method. . . . . . . . . . . . . . . . . . . . . . . . . . . 117

xv



6.8 High-resolution depth and image estimation on real image sequence

Desk : (a) Low-resolution blurred input images. (b) Depth map

and deblurred image using original high-resolution images. (c) Low-

resolution depth map without motion blur model and upscaled image

using bicubic interpolation. (d) Results by the proposed method. . . 118

6.9 High-resolution depth and image estimation on real image sequence

House: (a) Low-resolution blurred input images. (b) Depth map

and deblurred image using original high-resolution images. (c) Low-

resolution depth map without motion blur model and upscaled image

using bicubic interpolation. (d) Results by the proposed method. . . 119

xvi



List of Tables

1.1 Chapter organization for the dissertation. . . . . . . . . . . . . . . . 10

2.1 Comparison of conventional and blur-handled system. . . . . . . . . 39

5.1 PSNR (in dB), SSIM (Structural similarity, closer to 1 is better), and

computation time (in second) of various super-resolution algorithm. 102

xvii





Chapter 1

Introduction

1.1 3D Reconstruction using a single camera

Understanding the three dimensional (3D) structure of a scene and an object has an

important role in the human visual perception system as well as the machine vision

system. Visual tasks of human, such as navigation, recognition of object and people,

are greatly aided by 3D visual information. Thus, people prefer digital contents made

by 3D videos or graphics rather than 2D original images, and producing 3D digital

contents receives great attention in the last decades. To generate 3D contents from

the real world, methods for acquiring and analyzing 3D geometry information from

images or videos are crucial.

In Augmented Reality (AR), which overlays related objects or contents of a scene

onto images, 3D geometry information composed of a structure of environment and a

camera pose is very useful to improve the reality of AR systems. For example, over-

laid objects in the AR view should change its appearance according to camera view

changes. Only estimation of both 3D scene structure and camera pose can realize

1



such AR system. 3D geometry estimation is also important for a self-localization of

autonomous robots or vehicles. A mobile robot that moves automatically should use

a Simultaneous Localization and Mapping (SLAM) system which estimate a map

of environment and a trajectory of mobile robot simultaneously, and estimating 3D

geometry is a key part of the SLAM system.

Obtaining 3D geometry can be achieved by various sensors. In particular, ob-

taining 3D geometry from images is referred to as image-based 3D reconstruction,

and it is a fundamental problem in computer vision research. Various types of

image-based 3D reconstruction approaches, such as reconstruction using stereopsis,

multiple static camera, and single moving camera, have been developed for the last

decades. In particular, the single camera-based reconstruction is widely applied to

systems for AR and autonomous robot systems where the cameras for reconstruction

move dynamically.

The single camera-based 3D reconstruction has two primary objectives. The first

one is to generate a 3D structural model of environment or objects as a form of sparse

point cloud, dense depth map, or surface using mesh model. The second objective

is to estimate a pose of camera which is generally represented by 3D translation

with 3D rotation. Given that the two objectives have to be solved simultaneously,

the problem does not have a closed form solution, and thus it is difficult to solve.

Two different approaches have been developed to solve this problem: filtering-based

approach [8–11] and optimization-based approach [12–14]. Filtering-based 3D re-

construction, which uses Extended Kalman Filter (EKF) or Particle Filter (PF) to

simultaneously estimate a map and a camera motion, were initially studied in SLAM

literature for autonomous mobile robots, and then it is applied to vision-based re-

construction systems where camera is used as an observation sensor. On the other
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hand, optimization-based 3D reconstruction, which solves the geometry problems of

scene and camera using optimization method such as bundle adjustment [15], was

addressed by computer vision researchers to reconstruct a model of object, and then

it is extended to the large scale reconstruction for a navigation purpose.

In the last decade, 3D Reconstruction using a single camera has been received

much attention and studied extensively both in robotics research and computer

vision research. For the intelligent robotics, 3D Reconstruction with a single mov-

ing camera which is often referred as visual SLAM, plays a key role for the self-

localization of mobile robots. Visual SLAM has many advantages over other range

sensor-based SLAM such as SLAM using laser scanner or sonar. A camera used

in visual SLAM is much smaller and cheaper than other range sensors, and it can

provide more information on surrounding environment such as colors and textures.

One drawback of visual SLAM is relatively higher computational cost than other

SLAM systems due to its bearing-only property, but with the development of both

algorithms and computation hardware, great improvement has been conducted in

the visual SLAM performances, and attempts to utilize visual SLAM for practi-

cal applications are now begun by the industries. Augmented reality is another

representative application of 3D Reconstruction using a single camera. With the

widespread of portable computing devices equipped with a camera, such as smart

phones, tablet PCs, and wearable PCs, augmented reality shows its potentials for

various applications.

3
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Figure 1.1: Various image quality degradations that cause difficulties in correspon-

dence between two images for 3D reconstruction.

1.2 Image Enhancement for 3D Reconstruction

1.2.1 Image quality problem in 3D reconstruction

Although 3D Reconstruction using a single camera shows its great feasibility for

challenging scenarios such as large scale operation [10,13] and frequent camera pose

drift [9,16] which should be addressed for practical applications, still there are many

remaining practical issues on this method. One of the most important issues is

various distortions of input images which make it difficult to match pixels or fea-

tures across the input images that is essential step for the scene point reconstruction

and the camera localization. In laboratory experiments, high-performance cameras

which can provide high-resolution and high frame rate images are used and the cam-

eras are carefully controlled by skilled researcher to capture proper input images.

However, in a practical situation, the image quality can be degraded by various fac-
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tors including pixel noise, camera motion blur, and resolution decrement. Figure 1.1

shows examples of those three image degradations which make matching problems

for 3D reconstruction difficult. Therefore, methods for securing the image quality

are essential to utilize 3D Reconstruction using a single camera in practical purposes.

There have been various image enhancement algorithms for removing those im-

age degradation factors. However, most algorithms solve the image enhancement

problem independently from the geometry of camera and scene, instead they rely

on the input images only and use a prior knowledge on image properties. Recent

image-only-based image enhancement algorithms can recover high quality images

without any geometric information, but they require high computational cost to

solve the problem. Therefore, those methods are inadequate to 3D reconstruction

using a single camera where the real-time capability is important.

Few studies have been conducted on the image enhancement methods special-

ized for improving the single camera-based 3D reconstruction. Most 3D reconstruc-

tion methods robust to image quality degradation focus on handling of degradation

factors in a reconstruction step instead of enhancing the input images. For ex-

ample, [17] and [16] presented blur-robust methods for 3D reconstruction. In [17],

the point spread function (PSF) is estimated for segmented image regions, and the

estimated PSF is utilized to minimize an undesired effect of the motion blur in ex-

tracting interest points and building image descriptors. Although this method does

not deblur input images, the computation time is not adequate for real-time opera-

tion. [16] tried to solve blurring effect in visual SLAM using detected edge features.

They utilized the blur-invariance of edge features to obtain correspondences between

images. In this method, however, edge features are not registered to a map when

the motion blur exists. It can be a problem when motion blur continues for many
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frames in unmapped region, since no point or edge for localization will be available

in the map. On the other hand, if we recover the input images in advance of the

reconstruction step, then mapping scene point can be always performed and motion

blur can be handled more effectively. The drawback of explicit image enhancement

is high computational time, but it can be solved by utilizing geometric information

from 3D reconstruction process.

For the resolution problem of 3D reconstruction, the relationship between image

super-resolution and 3D scene structure is studied in several works [18–20]. In [18],

the super-resolution is formulated with the calibrated 3D geometry and solved using

MAP-MRF framework. Occlusions are effectively handled in their super resolution

method using depth information, but super-resolution does not contribute to depth

map estimation in this method. In [20], a method for increasing the accuracy of

3D video reconstruction is present. The 3D video is composed of texture images

and 3D shapes, and increasing their accuracy is achieved by simultaneous super-

resolution using MRF formulation and its optimization. This work has differences

with the proposed reconstruction-combined method in that this work uses multi-

ple static cameras to reconstruct moving object, and does not perform full frame

super-resolution. Recently, the authors of [19] formulate a full frame super resolution

problem combined with a depth map estimation problem, and attempt to enhancing

results of both problems. However, their solution is not fully simultaneous but fol-

lows EM-style method, i.e., they fix the current high resolution image and estimate

the depth map, and vice versa. For each iteration, MRF optimization is applied

to depth estimation, and iterated conditional modes (ICM) is used for image esti-

mation, thus the computation cost is inevitably large in this method. More related

works on 3D reconstruction and image enhancement will be discussed in the later
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Reconstructed 3D scene

Synthesized observation images

Figure 1.2: Example of 3D reconstruction of a scene and its synthesized observation

images for different virtual viewpoints.

sections.

1.2.2 Proposed approach: Simultaneous 3D Reconstruction and

Image Enhancement

The image formation process can be interpreted as a camera projection from a

scene point to an image plane. If we have a geometry information composed of 3D

scene structure and camera motion, then we can model the image formation process

with the geometry information. In other words, given with a 3D structure of scene

and a camera motion as shown in Figure 1.2, the observed images for any camera

pose can be synthesized. The geometric information can be effectively utilized for

image enhancement, for example, a blurred appearance of a pixel can be predicted

from the camera motion and 3D position of the pixel. Many image enhancement
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problem is ill-posed, but ambiguities of image enhancement can be resolved by the

geometry information. Reversely, enhancing the quality of input image enables

enhancing the result of 3D reconstruction. The key of accurate 3D reconstruction is

to found correspondences of pixels or feature points across input images as accurate

as possible. It is obvious that applying image enhancement to input images of 3D

reconstruction improves the reconstruction qualities.

The results of 3D reconstruction and image enhancement can improve each other

since the two problems are closely correlated. However, solving two problems sep-

arately takes much computational cost and may produce worse results than the

original results of each algorithm. Therefore, the simultaneous solutions for two

problems are addressed in this dissertation. By utilizing the dependency of images

and 3D geometry, these two problems are combined and solved by a single optimiza-

tion framework. As a result, the computational cost for image enhancement can

be saved by using of geometric information from 3D Reconstruction. Furthermore,

we can overcome the limitation of other geometry-free algorithms, i.e., image-only-

based algorithms, and can expect better enhancement result than those algorithms.

These are the main motivations of this study, and this approach is referred as geo-

metric image enhancement. In particular, two types of image enhancement, motion

deblurring and super-resolution are addressed in this dissertation.

1.3 Dissertation Goal and Contributions

The 3D reconstruction system developed for this study is equipped with a single cam-

era and controlled by human hand, i.e., the camera has 6 degrees of freedom (DOF)

motion. Two types of single camera-based 3D reconstruction approach that have
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different purposes are addressed. The first type is sparse point-based reconstruction,

and the second type is dense depth reconstruction. The sparse point-based recon-

struction requires a relatively small computational cost than the dense reconstruc-

tion because only selected feature points are reconstructed with its 3D positions. On

the other hand, dense reconstruction that estimates depth values of all pixels in an

image requires more computation cost than the sparse point-based reconstruction,

but it provides more complete reconstruction results. Thus, the sparse point-based

reconstruction is regarded as localization oriented, whereas dense reconstruction is

regarded as reconstruction oriented. The goal of the dissertation is to apply mo-

tion deblurring and image super-resolution to both reconstruction methods. The

contribution of the dissertation is summarized as follows:

• A 3D reconstruction method robust to image degradation is proposed. Com-

bining the deblurring method with 3D reconstruction using a single camera

allows fast camera motion, which should be addressed for a practical use espe-

cially under low light condition, by robustly performing a data association for

a blurred image. The super-resolution improves the quality of 3D reconstruc-

tion with low-resolution images and helps robust data association for severe

scale changes of observed scene.

• An efficient image enhancement is proposed. The information required for

image enhancement can be easily obtained from 3D reconstruction. Blur ker-

nels for deblurring and pixel correspondences for super-resolution are directly

related to camera motion and scene depth, thus those can be simultaneously

estimated with the estimation of 3D geometry. This geometry-aware image

enhancement has advantages in the computational speed and the robustness
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to severe scene structure variation.

• An analysis of the relationship between geometry and image enhancement is

presented. There are few studies on the 3D geometries for the image enhance-

ment. In this dissertation the theoretical and experimental analysis of 3D

geometries in the image deblurring and super-resolution is discussed. Their

relationship can be utilized not only in the proposed single camera-based 3D

reconstruction, but also in other sensor-based 3D reconstruction systems where

3D geometry is estimated.

1.4 Organization of Dissertation

The main body of this dissertation is composed of five chapters. The first two chap-

ters deal with the methods for sparse point-based 3D reconstruction, combined with

deblurring and image super-resolution, respectively. Chapter 4 and 5 address the

dense reconstruction method combined with deblurring and image super-resolution,

respectively, and chapter 6 presents unified deblurring and image super-resolution

method for dense reconstruction. Table 5.1 summarizes the chapter organization of

the dissertation.

Table 1.1: Chapter organization for the dissertation.

Deblurring Super-resolution

Sparse point-based reconstruction Chapter 2 Chapter 3

Dense reconstruction
Chapter 4 Chapter 5

Chapter 6
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• Chapter 2 and 3: Among two 3D reconstruction approaches for sparse point-

based reconstruction, optimization-based reconstruction method is combined

with image deblurring and filtering-based reconstruction is combined with im-

age super-resolution because each reconstruction approach has its own advan-

tages in each image enhancement method. More 3D scene points are recon-

structed in the optimization-based method compared with the filtering-based

method, and then we can obtain more blur kernels for non-uniform deblur-

ring. On the other hand, the proposed image super-resolution is achieved via

Kalman filter, thus we can effectively combined the super-resolution method

with 3D reconstruction in a single filtering framework.

The motion deblurring method for sparse point-based reconstruction is stud-

ied in Chapter 2. The proposed algorithm achieves fast blur kernel estimation

using camera geometry. The blur kernel is modeled by a trajectory of pro-

jected pixel in image during exposure time, and this trajectory can be easily

calculated from the the reconstructed 3D scene point and the camera motion

and exposure time. Image super-resolution for sparse point-based reconstruc-

tion using the Rao-Blackwellized particle filter-based formulation [21] is then

studied in Chapter 3. During the update of 3D landmark poses and a camera

pose through the particle filter iteration [22], a high resolution template of

each landmark is also updated by Kalman filter simultaneously.

• Chapter 4, 5, and 6: The basic idea of image enhancement applied to sparse

point-based reconstruction is extended to the dense depth reconstruction al-

gorithms in Chapter 4, 5, and 6. The dense reconstruction, which is extended

from the sparse point-based reconstruction, also suffers from various image
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distortions, and thus image enhancement is needed. The goal is to estimate

depth of all pixels in an image as well as their deblurred and high resolution

pixel values.

Chapter 4 presents the deblurring combined reconstruction, where a blur ker-

nel for each pixel is parameterized with its depth and solved by variational

method [23–25] using camera motion. In Chapter 5, the super-resolution com-

bined reconstruction is presented. The image correspondences for input im-

age sequence is parameterized with pixel depth and also solved by variational

method using camera motion. Since the proposed approaches are not an al-

ternating method but a simultaneous method of depth estimation and image

enhancement, it does not require huge amount of computational cost. The

final goal of this study is to incorporate those two enhancement methods in a

unified framework, and this is discussed in Chapter 6.
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Chapter 2

Sparse 3D Reconstruction and

Image Deblurring

2.1 Introduction

To make a more practical 3D reconstruction system for mobile robots or augmented

reality, handling rapid camera motion is very essential problem. If the camera motion

is fast and unpredictable, then observed landmark positions in image also change

fast and unpredictably, and sometimes the appearances of landmarks can change,

which caused by motion blur.

Motion blur is usually regarded as an undesired phenomenon in recoding images

or videos. Especially in SLAM, where a camera keeps moving by human hands or

autonomous robots, failure of localization or reconstruction is often caused by severe

motion blur. The motion blur makes it difficult to perform data association for

reconstructed landmarks, as well as reconstruction of new landmarks for detected

features. We can reduce motion blur by recoding images with high frame rate,
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equivalently shorten the exposure time, but enough exposure time is inevitable under

low light condition and motion blur occurs.

Many recent vision-based SLAM systems can handle localization failures caused

by motion blur by applying the relocalization (global localization) algorithms [9,26]

after localization failure. However, when the camera explores through a region that

the camera has not visited and reconstruction has not been done, the relocaliza-

tion becomes useless since no landmarks to be matched is available in that region.

Therefore, the motion blur in unmapped region can be handled only if the sys-

tem can continuously run the normal map reconstruction processes, including data

association as well as mapping new landmark under motion blur.

In sparse point-based reconstruction, many tasks on images are performed with

detected point features, such as registering a new feature as a landmark, or finding

matching features for reconstructed landmarks. General point feature detectors used

in sparse point-based reconstruction, however, cannot give enough features from a

blurred image. With a blurred image, moreover, feature matching between frames is

difficult and the accuracy of matching decreases. To solve these problems, deblurring

an image can improve the performance of visual SLAM by giving enough interest

points detected and images that are easy to match. High-quality methods to remove

the motion blur have been developed in recent decades [2,3,27,28], but most require

a large computational budget. Thus it is hard to use those methods to recover

images for image-based reconstruction.

In this chapter, the sparse point-based reconstruction algorithm, especially visual

SLAM framework combined with fast image deblurring is proposed. By consider-

ing motion blur, data association of visual SLAM can be enhanced, and camera

localization can be performed robustly even a scene is blurred. The information
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obtained from visual SLAM are used to estimate a motion blur kernels, then the

estimated kernels are used in deblurring input image. With the restored image, it is

possible to extract more good features to track and register them as new landmarks,

which is difficult with a blurred image. As a result, localization and mapping can

be performed successfully under motion blur.

2.2 Related Work

Although motion blur is an important factor for the visual SLAM performance,

there have been few studies on the methods for handling motion blur. In [17], the

point spread function (PSF) is estimated for a number of segmented image regions,

and the estimated PSF is used to minimize an undesired effect of the motion blur in

both extracting interest points and building image descriptors based on SIFT [29].

Although their method does not require explicit deblurring, the computation time

is not adequate for real-time operation (one second per frame). They pointed out

that deblurring based on deconvolution might worsen the image quality, and is not

an adequate solution for handling motion blur in visual SLAM, because the quality

of the restored image strongly depends on the accuracy of the estimated PSF. In the

proposed approaches, however, we can see that small errors in blur kernel estimation

due to image measurement noise are acceptable in the proposed deblurring method.

In [16], the motion blur problem in visual SLAM is solved by using edgelets.

Edgelet means “a very short, locally straight segment of what may be a longer,

possibly curved, line”. Their observation is that the edgelet may remain intact even

in a heavily blurred image if the directions of edge and motion blur are parallel.

Motivated by this observation, they presented a tracking method using edgelets,
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and made their visual SLAM system to be robust to motion blur. However, this

edge-preserving property can not be applied to motion blur by in-plane camera

rotation. In [16], edgelets are not registered to a map while the motion blur exists.

It can be a problem when motion blur continues for many frames in unmapped

region, since no point feature or edgelet for localization will be available in the map,

while the proposed explicit deblurring enables continuous mapping of landmarks in

unmapped region.

For the 3D reconstruction purpose, there have been some studies on relationship

between motion blur and scene depth. In [30] and [31], the dependency of scene

depth on the blur kernel estimation is pointed out, and simultaneous estimation of

scene depth and blur kernel is proposed. When a camera motion is pure translation

and parallel to the image plane, the magnitude of blur kernel is inverse proportional

to the scene depth, and a pixel-wise blur kernel can be parameterized by depth and

camera motion. In the proposed method, a full camera calibration is available from

visual SLAM, thus the blur kernel estimation for arbitrary camera motion including

rotation is possible.

2.3 Motion Blur and 3D Geometry

In this section, the motion blur and its relationship with the camera motion and

3D structure of the scene is discussed. In an ideal case where the exposure time is

infinitesimal, the image projection is a one-to-one function between 3D real point

and 2D pixel position. In real cases, however, lights from 3D point are projected

to the image plane as a ‘line’ according to a motion of camera or object during the

camera exposure. This results in a blurred image. Thus, to capture a sharp image,
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(a) Negligible camera motion (b) Fast camera motion with frame rate 30Hz, 15Hz, and 7.5Hz, respectively.

Figure 2.1: Motion blurs and detected Harris corner points [1] with different frame

rates. (a) Negligible camera motion with frame rate of 15Hz for a comparison.

(b) Fast camera motion with frame rate of 30Hz, 15Hz, and 7.5Hz, respectively.

As motion blur becomes severer by decreasing frame rate, the number of detected

corner points rapidly decreases.

at least one of following two conditions should be satisfied: exposure time is almost

infinitesimal, or no camera motion and no object motion exists in the scene. Motion

blur is generated if both conditions are violated.

2.3.1 Motion blur in visual SLAM

We can reduce motion blur in image by using a high frame rate camera. However, if

the light source is not enough, then exposure time of the camera should increase to

obtain images for SLAM and motion blur is inevitably generated. Figure 2.1 shows

the motion blurs with different frame rate (exposure time) and extracted corner

points using same feature extractor and same parameters. The results in Figure 2.1

show that although enough frame rate is secured, motion blur occurs inevitavely and

image quality is degraded. In [32], studies on the influence of motion blur in feature

detection and tracking were conducted, and it shows that most feature detectors and

descriptors have severe performance degradation under motion blur. Since most fea-

ture detector algorithms rely on the cornerness or edgeness responses based on the
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Figure 2.2: Estimated blur kernels at different 3D positions and deblurred regions

by estimated kernels. (a) Original blurred image and kernels from two 3D points,

K1 and K2. (b, c) Deblurring results by kernels K1 and K2, respectively. The kernel

from other point gives poor deblurring result.

pixel intensities or derivatives, the number of detected features rapidly decreases as

the blur effect increases. In feature matching, motion blur changes feature appear-

ance severely or removes high frequency component of feature appearance, which

results in low matching performance.

2.3.2 Motion deblurring

Blurred image Ib can be modeled by convolution of blur kernel K and sharp image

Is, as Ib = Is ∗ K, where ∗ is convolution operator. Deblurring is inverse process of

blurring, thus we can remove this blur by estimating a blur kernel and recover the

image by deconvolution. Once the blur kernel is accurately estimated, conventional
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deconvolution algorithms such as Weiner filter or Lucy Richardson filter [33] can

recover the image with satisfactory quality. Therefore, the most important problem

is to estimate an accurate blur kernel. A simple but efficient approach to estimate a

blur kernel is to assume a spatially uniform kernel for the entire image [2,27]. How-

ever, this assumption is valid only if the scene has a planar structure and the camera

has no rotational motion. When a blur is non-uniform, we have to estimate blur

kernels for divided image parts and deblur each part, but it is very computationally

expensive.

To handle non-uniform blur, some methods for a single image deblurring based

on image properties (e.g., α-channel [34], transparency [35]) are proposed, but those

methods can be applied only if foreground object and background scene can be

distinguished. On the other hand, using the 3D geometry information such as camera

motion and scene structure can improve the accuracy and efficiency of deblurring.

Some studies have been performed on deblurring by considering the camera motion

for a single image deblurring [3,28]. However, they do not deal with full (6-D) camera

motion; they simplify the camera motion as three degrees of freedom (DOF). This

can be a problem when the objects are not sufficiently distant from the camera.

Also, the 3D structure of the scene is not considered in [3, 28], while the depth of

scene point is highly correlated to blur kernel.

The dependency of pixel motion which is closely related to blur kernel to the

3D structure of the scene is clearly noted in the well known homography equation,

H = K
(
R− Tn⊤

d

)
K−1. The matrix R is the camera rotation matrix, T is the

camera translation vector, n and d are the normal vector from the camera to the

3D plane and the distance to the plane respectively. In Figure 2.2, blur kernels are

estimated at different 3D landmark positions and the image is deblurred using the
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Figure 2.3: Movement of the projected point by camera motion.

estimated kernel. Although there is no moving object and rotation of camera with

z-axis, the blur is non-uniform and a different kernel at different landmark gives the

wrong deblurring result. In visual SLAM, a camera motion and 3D point structure

of the scene are continuously estimated, then we can easily calculate the blur kernel

for each individual scene point using those estimates and get good deblur results.

2.3.3 Motion blur and 3D geometry

If the exposure time of camera is not infinitesimal and the camera moves fast, then

lights from an object are not projected to one image point. Rather, they make a

‘line’, and motion blur is generated. Figure 2.3 illustrates the projection process

of a 3D point by a moving camera. A superscript k is used for a frame index,

and a subscript t is used for time in capturing one image. Let L and xt be a 3D

scene position and its projected point in image, respectively, with homogeneous

representation. During exposure time t ∈ [t0, T ], the projection xt moves from
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the initial position xt0 to the final position xT , making a trajectory on the image.

The movements of pixels in an image can be represented by homography Ht, as

xt = Ht · xT . Since homography is non-uniform for general non-planar scene, Ht is

represented as a function of pixel position xT . In the image Ik at the frame index

k, the intensity of pixel xT can be represented as

Ik(xT ) =

∫ T

t0

∆Ik(xT , t)dt

=

∫ T

t0

1

T − t0
Iks (Ht · xT )dt,

(2.1)

where ∆Ik(xT , t) is a pixel intensity generated in an infinitesimal time dt, and Iks is

an intensity of the sharp image at t = T .

The relationship between the 3D scene point L and its projected point is given by

the equation xt = g((Pk
t )

−1·L), wherePk
t is the camera pose at frame index k defined

on the Special Euclidean group SE (3), which represents the rigid transformation of

camera composed of 3D translation and 3D rotation [36]. The function g(·) is a

perspective camera projection function with the camera intrinsic parameters. Then,

we can rewrite Equation (2.1) using the 3D geometry as

Ik(xT ) =

∫ T

t0

1

T − t0
Iks (Ht · xT )dt

=

∫ T

t0

1

T − t0
Iks (g((P

k
t )

−1 · L))dt.

(2.2)

In the motion deblurring algorithm based on the convolution model, the blur

kernel K is inferred from a sequence of homography H, then K is used to deconvolve

the blurred image. In a general situation of blur, the move of a pixel, equivalently H

or K, is not given (called blind deconvolution), and the problem is highly ill-posed.

To solve blind deconvolution, complicated methods based on the regularization such

as natural image statistics are used to estimate both the blur kernel K and the sharp
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Figure 2.4: Trajectories of projected point by camera rotation with different axes.

(a) x-axis rotation (pitching). (b) z-axis rotation (rolling). (c) y-axis rotation (yaw-

ing).

image Is. On the other hand, if we have the estimates of Pt and L, then we can

easily make the kernel K, and the problem becomes the non-blind deconvolution,

which is simpler and faster to solve than the blind deconvolution.

2.3.4 Blur kernel from 3D geometry

A 2D blur kernel represents the averaged trajectory of pixels in blurred image during

exposure time. If there is no object motion, only the camera motion makes this

trajectory, and it can be easily found from the 3D camera geometry. Various shapes
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of projected landmarks’ trajectories can be generated from various camera motions

composed of translation and rotation. Then the 2D blur kernel K(u) with the

domain u ∈ R
2 can be represented by the projected trajectory x̃t = h(g((Pk

t )
−1 ·L))

during the exposure time t ∈ [t0, T ], where the function h(·) is dehomogenization

such that x̃t = h(xt). With the indicator function δ(u) =





0, if u = (0, 0),

1, if else.

, the

resulting 2D blur kernel is

K(u) =
1

T − t0

∫ T

t0

δ(u− x̃t)dt. (2.3)

It is assumed that the velocity of pixel is constant during short exposure time, thus

all positions in blur kernel have constant weight value.

When the camera exposure time is very short, the blur kernel can be approxi-

mated as a straight line since the trajectory of projected pixel is short. In [37], the

approximation is applied and the blur kernel is easily computed from an inter-frame

difference of pixel position x̃k
T − x̃k−1

T . The blur kernels in [37] is simply parameter-

ized with the kernel direction and magnitude, and they are estimated for subdivided

small patches in image and used for patch-wise deconvolution.

However, this linear (straight line) approximation has some limitations. First, a

camera motion which has rotational component in camera principal axis (z-axis) can

bring significant errors in blur kernel. A pixel motion from small camera rotation

with pitch or yaw axes (x or y axes) is almost not curved, but camera rotation with

roll axis (z-axis) can make significant curvature in blur kernel. Figure 2.4 shows

the examples of projected point’s trajectory as a result of 8 degrees camera rotation

with different axis. The image size is 640 by 480 pixels2 and the starting point of

projection is (100, 100) pixels away from the image center. The average curvature
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value κ (κ = lim
∆x̃→0

∣∣∣∆ϕ
∆x̃

∣∣∣, ϕ is instant direction of line) of each trajectory is 0.0589,

0.0712, 0.4011 degree/pixel for x-axis, y-axis, and z-axis rotation of the camera,

respectively. This indicates that the curvature of motion blur from camera rolling

is not negligible in blur kernel approximation.

The second limitation of linear approximation is that the effect of radial dis-

tortion cannot be handled. Although a camera motion is pure translation, a pixel

motion in an image can be curved due to the camera lens distortion. To apply

approximated linear kernel, the radial distortion should be removed first.

To handle more general shape of blur kernel, therefore, a nonparametric repre-

sentation of blur kernel is used. The nonparametric blur kernel is calculated directly

from Equation (2.3), not using the linear approximation. Additionally, pixel-wise

blur kernels are estimated instead of patch-wise blur kernels, to handle in-plane

camera rotation where the length of blur kernel is varied from the distance to the

rotation center. In the practical implementation, the blur kernel is represented in

discrete form with N elements,

Ki,j =
1

N

N∑

n=1

δd((i, j) − x̃
t0+n

T−t0
N

), (2.4)

where δd(i, j) =





1, if (i2 + j2)1/2 < 0.5,

0, if else.

is the discrete indicator function com-

bined with respect to kernel coordinate (i, j). The intermediate pixel position

x̃
t0+n

T−t0
N

is calculated from the intermediate camera pose P
t0+n

T−t0
N

as x̃
t0+n

T−t0
N

=

h(g((P
t0+n

T−t0
N

)−1 · L)).

The intermediate camera pose P
t0+n

T−t0
N

can be calculated using the exponen-

tial map exp(·) and log map log(·) between SE (3) and its Lie algebra se(3). The

incremental difference between Pt0 and PT can be expressed in se(3) as ∆p =
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Figure 2.5: Overall procedure of the proposed algorithm.

log(P−1
t0 PT )/N . Then, the intermediate camera pose P

t0+n
T−t0
N

can be calculated

as

P
t0+n

T−t0
N

= Pt0 · exp(n∆p). (2.5)

Note that in deriving (2.5) we apply the approximation of the Baker-Campbell-

Hausdorff (BCH) formula [38] with the first two terms, which says that z satisfying

exp(z) = exp(x) exp(y) is given by

z = x+ y +
1

2
[x, y] +

1

12
[x, [x, y]] −

1

12
[y, [x, y]] + . . . , (2.6)

where [·, ·] is the matrix commutator given by [A,B] = AB −BA.

Since the visual SLAM applied in this study is sparse point feature based, most

pixels in image do not have its own 3D position information. For non-reconstructed

pixels, a depth value from nearest reconstructed landmark to it is given and the pixel

is reprojected to 3D space to get the rough 3D position of the pixel. The proposed

blur kernel estimation method can be more effectively used in dense reconstruction

system, where every pixel in image has its reconstructed 3D position.

2.3.5 Reconstruction error and blur kernel error

In the proposed blur kernel estimation, the accuracy of 3D reconstruction and camera

pose is directly related to the accuracy of blur kernel. Since 3D position error of
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Figure 2.6: The worst case that estimated blur kernel has maximum error with given

reprojection errors.

landmark and camera pose error are highly correlated, it is difficult to analyze

the effect those errors separately. However, those two errors are reflected in the

reprojection error of landmark, and we can investigate the effect of SLAM errors in

blur kernel estimation using the reprojection error. The relationship between the

reprojection error and the blur kernel error is explained below.

To simplify the error analysis, the blur kernel is assumed to be linear. As de-

scribed in [37], the length ℓ and the direction φ of linear blur kernel can be calculated

as

ℓ =
∣∣∣h(g((Pk

T )
−1 · L))− h(g((Pk−1

T )−1 · L))
∣∣∣ · (T − t0)

T
,

φ = arctan(
v

u
), [u, v]⊤ =

h(g((Pk
T )

−1 · L))− h(g((Pk−1
T )−1 · L))

T
.

(2.7)

Let ǫk−1
re and ǫkre be the reprojection error of landmark at frame k− 1 and k respec-

tively. Then the upper bound of magnitude error ǫℓ of blur kernel is derived using
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Equation (2.7) as,

|ǫℓ| =
∣∣ℓ− ℓ′

∣∣

=

∣∣∣∣ℓ−
∣∣∣(h(g((Pk

T )
−1 · L)) + ǫk−1

re )− (h(g((Pk−1
T )−1 · L)) + ǫkre)

∣∣∣ · (T − t0)

T

∣∣∣∣

≤
∣∣∣ǫk−1

re − ǫkre

∣∣∣ · (T − t0)

T
.

(2.8)

Where ℓ′ is the error included kernel magnitude. The upper bound of direction error

ǫφ can be easily derived from the figure 2.6, as

∣∣ǫφ
∣∣ =

∣∣φ− φ′
∣∣

≤ arctan




∣∣∣ǫk−1
re − ǫkre

∣∣∣
ℓ


 .

(2.9)

There are two error sources in 3D reconstruction and camera localization. First

one is wrong data association, and second one is measurement noise in feature po-

sition. Landmarks with a large reconstruction error, usually come from the wrong

data associations, can be handled by the outlier rejection. However, landmarks

with a small error due to measurement noise may not be filtered out by the outlier

rejection, and this might affect the accuracy of the blur kernel estimation.

When a landmark is reconstructed from N number of observations (images)

with measurement noise ǫn (n = 1, ..., N), the 3D position L of the landmark is

determined by minimizing the reprojection errors for all measurements. Then L will

be projected into next frames with the expected error
√

1
NΣN

n=1ǫ
n2. For example,

let the average measurement error of landmark position in image be 2 pixels, the

length of blur kernel be 20 pixles, and the camera exposure time be 50 percent

of frame interval. Then the expected reprojection error is also 2 pixels, and the

upper bound of magnitude and angle errors of linear blur kernel calculated from
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Figure 2.7: Results of deblurring in a presence of kernel error. (a) A blurred image.

(b) Deblurred images by kernels with translation and direction error. (c) Sharp

(unblurred) image taken at different moment for comparison.

Equation (2.8,2.9) is 2 pixels and 11.3 degrees. Although a blur kernel has errors

of those upper bound values, the deblurring result is not too degraded as shown in

fig 2.7 which shows the results of various kernel errors.

2.4 Visual SLAM and Deblurring

Figure 2.5 summarizes the overall procedure of the proposed visual SLAM algorithm.

First, a motion blur is predicted and a blurred version of landmark’s template is

approximated to perform the blur-robust data association. After data association

the camera pose is refined. Finally, the blur kernels for each landmark are built and

the blurred image is recovered using the obtained kernel to conduct the remaining

tasks for visual SLAM.

The proposed visual SLAM system is implemented based on [12] which uses a
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parallel processing of localization and mapping. The initial reconstruction is done

using two images with a user specified baseline, then the result is bundle adjusted to

obtain a more accurate map. As the camera moves, the camera pose is calculated by

minimizing reprojection errors of reconstructed landmarks, and new 3D landmarks

are registered with their appearances in a form of small patches. To handle the

viewpoint changes for landmarks, the landmark patches are updated by affine warp-

ing calculated from the camera pose. In the proposed blur-robust data association,

the patches are additionally blur adjusted using Equation (2.12).

An image pyramid is used to extract point features because high-level (low-

resolution) images are less sensitive to motion blur than low-level images. The

image pyramid has four levels and point features are detected using FAST-10 [39]

corner detector. Many successful data associations are from high-level images in

blurred images, and those are useful for calculating camera pose and estimating

blur kernels.

2.4.1 Blur-robust data association

Since the data association in visual SLAM can be regarded as a tracking of a small

patch, a tracking algorithm robust to motion blur can be a solution for handling

the motion blur for visual SLAM. In [40], the image region tracking with blurred

images is performed by blurring the template image, rather than deblurring the

current blurred image. [41] extended the blur model of [40] from the translational

blur to any complex blur, and [42] improved the efficiency of [40] by approximating

a blurred image using image derivatives. Those tracking methods are performed in

the 2D image space. On the other hand, using a 3D structure, we can easily predict

a motion blur using that information and give the predicted value as an initial value
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for the tracking to boost the tracking performances.

With a help of bundle adjustment, high accuracy of reconstruction and local-

ization can be achieved with unblurred scene although a monocular camera is used.

However, it is hard to estimate accurate Pk when the image is blurred, since point

features are used for calculating Pk, which are not robust to motion blur. The cam-

era pose Pk has to be estimated from detected feature points, but not enough points

are extracted in the blurred image and data association becomes difficult. To solve

this problem, a blur-robust data association method is proposed as follows.

First, the pose of camera is predicted for a new frame. The auto-regressive

process on P is used for camera pose prediction by assuming smooth camera motion.

The auto-regressive (AR) state dynamics ak is updated as

ak = a log((Pk−1
T )−1 ·Pk

T ), (2.10)

where a is the first-order AR process parameter. Then the new camera pose at

frame k can be predicted as

P̂k
T = Pk−1

T · exp(ak−1). (2.11)

The function log(·) and exp(·) are log maps and exponential maps, respectively, as

described in the previous section.

The predicted camera pose P̂k
T does not consider the observation of the current

image Ik, thus the value is not accurate and needs to be refined. In conventional

visual SLAM, point features are extracted from the current image and they are

matched with their stored appearances, for example 8 × 8 patches, of reconstructed

landmarks. For successful matches, subpixel refinement using patch alignment algo-

rithm such as inverse compositional algorithm [43] is performed to find an accurate
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position of the landmark. In a blurred image, however, the patch alignment is hard

to be achieved and this results in no or few features are successfully associated with

the landmarks.

To handle appearance differences between the stored landmark patches and the

blurred patches in the current image, a blurred version of the landmark patch is

generated using the estimated blur kernel. We can easily generate a blurred patch

by convolution with kernel from Equation (2.4). Using the predicted camera pose

from Equation (2.11), first a blur kernel K̂ is predicted and an initially blurred patch

Tb for the template patch Tp is synthesized using the obtained kernel as Tb = Tp ∗ K̂.

Using the patch Tb, the sliding window template matching is performed around the

projected position of each landmark to find the feature’s observed position roughly.

Since the initially blurred patch Tb is generated by predicted blur kernel K̂ which

is not exact, refinement of blur kernel as well as blurred patch using current obser-

vation needs be performed to achieve more accurate data association. The objec-

tive of blur kernel refinement is to find a blur kernel which satisfies the equation

Tobs = K ∗ Tb, where Tobs is the observed appearance of patch. This can be achieved

by iteratively minimizing the difference between Tobs and K ∗ Tb, but the convolu-

tion operation is replaced by the approximation method in [42] to avoid the large

computation time of convolution.

For a small patch transformation ∆Θ composed of x and y translation, the

deformed appearance T (∆Θ) of initially blurred patch Tb including blur effect can

be approximated by the second-order Taylor expansion as [37]

T (∆Θ) ≈ Tb + aJTb∆Θ+ b∆Θ⊤HTb∆Θ, (2.12)
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The constants a and b are related to the exposure time,

a =
t0 + T

2T
, b =

T 2 + T t0 + t20
3T 2

. (2.13)

and the matrices JTb and HTb are the Jacobian and the Hessian of the patch Tb.

Based on this approximation, the transformation vector ∆Θ is estimated by the

blur-robust version [42] of Efficient Second-order Minimization (ESM) [44] tracking

algorithm. The landmark patch’s position is then refined by ESM iteration, and

successfully matched and refined landmarks with sub-pixel accuracy are obtained

and will be used to estimate the accurate camera pose.

2.4.2 Deblurring for SLAM

After the blur-robust data association described in previous section, the data asso-

ciation outliers have to be filtered because ESM does not guarantee the result to be

global optimum. Any types of outlier filtering methods such as RANSAC can be

used, but simple threshold filtering based on the reprojection error is sufficient in

this study.

After the outlier rejection, the new camera pose Pk
T is calculated by minimizing

the sum of reprojection errors for inlier matches. The objective function is repre-

sented as

Pk
T = argmin

P

M∑

m=1

∥∥∥h(g(P−1 · Lm))− x̃m
obs

∥∥∥ , (2.14)

where mobs is the observed landmark position from data association. Then using

the kernel estimation method described in Section III, the blur kernel for all pixels

in the image can be obtained and image deblurring can be easily done using those

kernels. Figure 2.8 shows the example of estimated kernels at different landmarks

and corresponding deblurring result. We can deblur every input frame for further
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(a) (b)

(c)

Figure 2.8: Example of deblurred patches. (a) Blur kernels at each landmark. (b)

Partially deblurred image. (c) Close-up of patches (left: input, right: deblurred)

Figure 2.9: Extracted FAST-10 corners from the blurred (left) and deblurred (right)

image.
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vision tasks such as recognition, or only deblur the keyframes when new keyframe is

added to register new landmarks. In this study, the second option is chosen because

we focus on the SLAM performance and have to save the computational cost.

For the deblurring, Lucy-Richardson (LR) deconvolution algorithm [33] is applied

with total variational (TV) regularization. Let I(x) be the observed (blurred) pixel

intensity, and In(x) be the intermediate image during LR iteration. Then the LR

iteration is composed of estimating delta image Dn(x) = I(x)/
(
K ∗ In(x)

)
and

updating the deblurred (sharp) image In+1(x) = In(x)
(
K∗ ∗Dn(x)

)
, with the initial

solution I0(x) = I(x), where K∗ is adjoint kernel of K i.e., K∗
i,j = K−i,−j. Since

the estimated blur kernels have simple shape and short trajectory, a small number

of LR iteration is sufficient. In the experiment, the number of LR iteration is set

to 50, which takes about 300 millisecond in the proposed GPGPU implementation.

Different from the patch-wise deblurring in [37], the pixel-wise deblurring does not

suffer from the boundary effect which comes from discontinuities of blur kernel across

patches and FFT (Fast Fourier Transform) operation.

On the resulting deblurred image, the feature detector runs again and obtains

interest points for new landmark registration. Compared with the blurred image,

the restored (deblurred) image provides more good features for mapping. Figure 2.9

shows an example of a deblurred image and detected features using various feature

detectors. Several widely used feature detectors in visual SLAM systems are tested,

including Fast-10 detector, Harris corner detector and SURF detector.

FAST-10 corners with high cornerness values measured by the Shi and Tomasi

(ST) cornerness measure [45]. In the deblurred image, 2436 corners are extracted

and their average ST measure is 134.8 for 7 × 7 window. While, in blurred image,

only 557 corners are detected and their average ST measure is 81.2. This means that
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by deblurring images, we can obtain more good features to track. This is critical when

the camera moves fast for a number of frames. Without deblurring, it is hard to

obtain enough features for localization, then the accuracy of visual SLAM decreases

and sometimes the camera pose can be lost.

2.5 Experiments

In the experiment section, we will focus on two performance factors of the proposed

algorithm. One is the improvement of visual SLAM performance, and the other is

the image-deblurring quality. Point grey research’s Dragonfly 2 is used with the fish-

eye lens of 160◦ field of view for image capturing. The size of the input image is 640

× 480, and all tasks are processed with gray scale images. The experiments are done

on a 3.3GHz quad core PC and two threads (mapping thread and localization thread)

run on each core at the same time. For the GPU-based deconvolution, NVIDIA’s

GeForce GTX570 with 480 stream processors and 1280MB video memory is used.

When the blur-robust data association is activated, the average processing time

for all localization processes is about 30ms per frame, while it takes 12ms with no blur

handling. Thus the system ensures the frame rate of at least 30 fps. The processing

time for image deblurring is about 300ms, which is acceptable because the keyframes

are added infrequently, and adding keyframe is done at the background thread. The

main bottleneck is the LR iteration, thus advanced deconvolution algorithm and

GPGPU implementation may improve the computation speed. When the length of

blur kernel is less than 2 pixels, the deblurring is skipped and original input image

is used for mapping.

35



(a) (c) (g)

(b) (d) (h)(f)

(e)

Figure 2.10: Data association and mapping of SLAM systems with (bottom row)

and without (top row) the blur handling for translation-dominant camera motion.

Data association results of selected frames (a ∼ f). Results of mapping by each

system (g, h). The colors of landmarks in the scenes and the map represent the

different levels of image pyramids where the landmarks are extracted.

2.5.1 Performances of visual SLAM

The performance of proposed blur-handled visual SLAM algorithm is tested by com-

paring it with conventional keyframe-based SLAM [12]. First, the experiment on the

blur-robust data association is conducted for translation-dominant camera motion.

After the initial reconstruction and mapping for some frames, the camera moves

rapidly to make motion blur. With a smooth camera motion, both systems show

good data association results as shown in Figure 2.10-(a, b). When a motion blur

occurs, the number of tracked landmarks decreases without the blur-robust data

association (Figure 2.10-(c, d)). When the camera observes unmapped region (ma-

genta rectangles in Figure 2.10-(e, f)) where a motion blur exists, no new landmark

is registered to the map with the conventional system (Figure 2.10-(e)), while the
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(a) (c) (g)

(b) (d) (h)(f)

(e)

Figure 2.11: Data association and mapping of SLAM systems with (bottom row)

and without (top row) the blur handling for rotation-dominant camera motion. Data

association results of selected frames (a ∼ f). Results of mapping by each system

(g, h). The colors of landmarks in the scenes and the map represent the different

levels of image pyramids where the landmarks are extracted.

proposed system deblurs the image and extracts and registers new landmarks (Fig-

ure 2.10-(f)). As a result, conventional SLAM system fails to continue mapping, and

the resulting map is incomplete (Figure 2.10-(g)). On the other hand, the proposed

blur-handling system reconstructs the map of entire visited region (Figure 2.10-(h)).

The robustness of blur handling data association is also tested for rotation-

dominant motion, as shown in Figure 2.11. The camera moves left and then suddenly

rotates with z-axis. Without the blur handling data association, the number of

matched landmark decreases rapidly and finally the camera loses its pose and drifts,

while blur-handled system maintain its camera pose correctly.

The number of reconstructed landmarks and the number of tracked landmarks

are compared for the conventional SLAM system and the proposed blur-handled

system, respectively. The number of reconstructed landmarks demonstrates the
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Figure 2.12: Comparison of the numbers of total landmarks in maps, and the num-

bers of currently tracked landmarks in each frame.

contribution of the proposed deblurring for mapping, and the number of tracked

landmarks shows how the blur-robust data association improve the tracking quality.

Since the system frequently lose the camera pose without blur-robust data asso-

ciation, the keyframe-based relocalization [12] is used to recover the camera poses

to continuously compare the number of landmarks. Figure 2.12 shows the plots

of those values versus the frame index for the input sequence used in Figure 2.10.

Before the severe motion blur occurs (about the 250th frame), the numbers of land-

marks are similar for both systems. Under the motion blur, however, the number

of tracked landmarks rapidly decreases and the number of reconstructed landmarks

rarely increases in the system with no blur handling.

For real scene data, it is difficult to test the accuracy of localization and map-

ping of SLAM since it is hard to obtain ground truth data. Instead, the SLAM

performance is measured indirectly by measuring the reprojection errors for recon-
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Figure 2.13: Comparison of the reprojection error.

Table 2.1: Comparison of conventional and blur-handled system.

Total recon- Average # of Average

structed LM Tracked LM Reproj. Err

Conventional 273 60.1 2.27

Blur-handled 542 83.8 2.09
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(a) Input (b) Proposed (c) Uniform deblur (d) Nonuniform deblur

Figure 2.14: Comparison of image deblurring results for fast camera translation.

(a) Blurred input image. (b) Deblurred by the proposed method. (c) Uniform

deblurring [2]. (d) Non-uniform deblurring [3].

structed landmarks. The reprojection errors of the conventional SLAM system and

the proposed blur-handled system are compared until the conventional SLAM sys-

tem lost the camera pose. Figure 2.13 shows the results for the same sequence used

in Figure 2.10.

The performance comparison of the conventional system and the blur-handled

system by presenting the average values of above measured values is summarized

in Table 2.1. The total number of reconstructed landmarks is from the last frame

(720th frame), and the average number of tracked landmarks is calculated for all

frames. The average reprojection errors are calculated for first 250th frames, because

after the 250th frame the conventional SLAM system frequently loses the camera

pose and relies on the relocation.
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(a) Input (b) Proposed (c) Uniform deblur (d) Nonuniform deblur

Figure 2.15: Comparison of image deblurring results for fast camera rotation. (a)

Blurred input image. (b) Deblurred by the proposed method. (c) Uniform deblurring

[2]. (d) Non-uniform deblurring [3].

2.5.2 Deblurring qualities

To compare the performance of the SLAM-combined deblurring to other existing

deblurring algorithms, two types of motion blur with fast camera translation and

fast camera rotation are generated. Since the camera is moved by human hand, the

translation scene has some rotational component, and the rotation has also some

translational component, which are more general situation than pure translation

and pure rotation.

Figure 2.14 shows the deblurring result of the proposed algorithm for fast camera

translation, compared with other single image deblurring methods - the uniform

deblurring [2] and non-uniform deblurring [3]. The results of [2] and [3] are obtained

using the public software from each author. Although the results of the proposed

deblurring method suffer from some ringing artifacts, we can see that edges in objects

are recovered well in the results. The uniform deblurring method of [2] recovers sharp

images well for some regions since the camera translation makes almost uniform
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motion blur, but has more ringing artifacts than the result of the proposed method

since it does not consider the effect of scene depth. The non-uniform deblurring

of [3], which approximate a 6 DOF camera motion as a x-y-z rotation, does not

recover this motion blur from translational camera motion.

For a severe rotational motion blur as shown in Figure 2.15, the proposed method

also gives better deblurring results than others. The rotational motion blur is highly

non-uniform, thus the result of [2] is worse than its result for translational motion

blur. The non-uniform deblurring of [3] gives correct deblurring for some regions,

but overall quality is not satisfactory. The average computation time of [2] is 36

seconds by their C++ implementation with no hardware acceleration, and the av-

erage computation time of [2] is 30 minutes by their MATLAB implementation. On

the other hand, the SLAM-combined method requires about 300 ms per frame with

GPGPU hardware acceleration, which enables real time operation.

2.6 Summary

In this chapter, a new approach for handling motion blur in visual SLAM is pro-

posed. From a camera pose and a reconstructed 3D point structure, a motion blur

for each landmark can be easily predicted without any complicated image processing

algorithm. Then using the predicted motion blur and the blur-robust patch align-

ment methods, the data association of visual SLAM could be robust to motion blur,

thus estimating an accurate camera pose with a blurred scene is possible. A blur

kernel from the accurate camera pose is used to deblur the input image, and more

good features to track are obtained and the system can continue the SLAM process

for the next frames.
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Chapter 3

Sparse 3D Reconstruction and

Image Super-Resolution

3.1 Introduction

The resolution of image is one of important factors in various computer vision al-

gorithms. Especially in 3D reconstruction with a single camera, the accuracy of

camera pose and scene structure estimation is highly affected by image resolution.

Image resolution is an important factor for achieving sufficient accuracy of various

geometry-related computer vision algorithms including 3D reconstruction, since it

influence the feature detection, localization and matching. 3D reconstruction and

camera pose estimation requires high accuracy of pixel correspondence, i.e., sub-pixel

accuracy, and the higher resolution of image provides the more accurate estimation

results. Even in an image of a scene, the resolutions of objects vary according to

their sizes and depths. A small measurement error of pixel position does not bring

large errors in object position and camera pose when an object is close to the cam-
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SR template

Observed LR patch 1 Observed LR patch 2

Pixel Noises

Quantization errors

Figure 3.1: Illustration of similarity between landmark patches. Using the high-

resolution template can provide higher similarity than using low-resolution patches

by reducing the sensitivity of pixel noise and quantization error.

era, while, it does significantly when the object is far from the camera. Therefore, it

is necessary to enhance the image resolution to reduce the sensitivity to the image

measurement error caused by pixel noise or quantization error and achieve reliable

and accurate 3D reconstruction as illustrated in Figure 3.1. Furthermore, high-

resolution image helps the finding scene point correspondences in the case of large

scale difference between a stored template and an observed patch.

Image super-resolution, the method for enhancing image resolution, has two dif-

ferent approaches: reconstruction-based approach and learning-based approach. The

reconstruction-based approach, which is related to the proposed approach, infers the

high-resolution pixel by merging multiple observations of a target pixel. Multiple ob-
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servations are obtained by finding corresponding pixels through an image sequence.

Therefore, finding accurate pixel-wise correspondences is the key for the success of

the reconstruction-based super-resolution. For general scenes, these correspondences

can be obtained up to sub-pixel accuracy using optical flow algorithms. However,

optical flow in low-resolution images usually do not provide enough accuracy in cor-

respondences, producing unsatisfactory results. Several iterative methods [46, 47]

alternately estimate a high-resolution image and pixel correspondences, and show

better results. However, these methods usually take a very large amount of com-

putation time, and thus they are not appropriate for real-time applications such as

visual odometry or SLAM.

In this chapter, a method for image patch super-resolution that specialized for

3D reconstruction is proposed. Estimated camera motion and scene position from

the 3D reconstruction algorithm helps robust and accurate patch registration for

super-resolution. 6 degrees of freedom patch pose including 3D position and 3D

rotation is estimated in geometric particle filtering visual SLAM framework [22], and

this pose estimate is combined with the estimated camera pose to predict a patch

registration in image sequence. High resolution pixel estimation is performed by

back-projection [48] model, and implemented using extended Kalman filter (EKF),

which enables simultaneous estimation of high resolution images as well as accurate

patch pose.

There are several methods that have better performances than the Kalman

filter-based method for image super-resolution from image sequence, but Kalman

filter-based estimation is employed in this study because incremental estimation of

high-resolution patch with respect to currently observed images is important in 3D

reconstruction system. With the Kalman filter-based super-resolution, the 3D re-
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construction system can update the resolution of landmark patches for every time

step and use them for better data association, camera pose and landmark pose

estimation.

At the experiment section, the improvement of 3D reconstruction accuracy by

super-resolution is presented first, and then the results of image super-resolution is

compared with other multiple image super-resolution methods.

3.2 Patch-based Image Super-Resolution

Patch-based image super resolution using multiple images is one of the classical

problems in image processing and computer vision research. The basic theory of

this problem is formulated as back-projection method [48] where a latent high reso-

lution image is found by minimizing the reconstruction error between an observed

images and the simulated low resolution image from the estimated high resolution

image. To simulate an observed low resolution images from the estimated high res-

olution image, accurate image registration is required. Let T H be the currently

estimated high resolution image represented by 1D vector, and let T L
k be the se-

quence of simulated low resolution images, where k is the index of image sequence.

For notational simplicity, the subscript k is omitted when there is no ambiguity. The

relationship between T H an T L
k can be modeled by the combination of geometric

image warping Wk, spatial blurring Bk, and pixel down-sampling Dk as follows:

T L
k = Dk(Bk(Wk(T

H))). (3.1)

It is assumed that the spatial blurring and down-sampling functions are invariant

to image index i, thus Bk = B and Dk = D for all k. The reconstruction error Rk
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for the estimation of T H can be defined from the observed low resolution sequence

T O
k as

Rk = ‖T L
k − T

O
k ‖2 = ‖Dk(Bk(Wk(T

H)))− T O
k ‖2. (3.2)

Before the minimization of the error function (3.2) with respect to high-resolution

patch T H , the image warping Wk has to be estimated first. Generally, this is

achieved by applying image registration methods such as the inverse compositional

method (IC) [43] or the efficient second order minimization (ESM) [44] to image pair.

These registration methods, however, requires good initial solutions to converge

because the methods are based on the image derivative which can handle only small

update. Therefore, when a baseline of image pair is large, those registration methods

may fail and the super-resolution cannot be achieved correctly. Wide baseline of

image pair can be handled if we initialize the registration by wide baseline matching

methods, such as feature matching using feature descriptors. In the proposed 3D

reconstruction-combined method, this wide baseline matching can be more easily

achieved by utilizing 3D geometry. Data association of visual SLAM is performed by

projecting mapped landmarks into current view and finding corresponding feature

point in an observation image. This reduces search regions for feature matching,

and matched features can be found with higher speed and accuracy than image

only-based feature matching.

The minimization of reconstruction error given by the Equation (3.2) can achieved

by various method such as gradient-based local optimization and MRF-based global

optimization. Given that the observation images T O
k are sequentially obtained for

every frame, using filtering-based method such as Kalman filter is an effective solu-

tion. Several works successfully apply Kalman filter to image super-resolution meth-
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Figure 3.2: EKF steps for super-resolution of landmark template and example im-

ages for each step.

ods [49–52]. In Kalman filter-based image super resolution, a latent high-resolution

patch is initially set to upscaled reference patch. The latent high-resolution patch

is then gradually updated by minimizing the difference between a predicted low-

resolution patch and an observed low-resolution patch. The image warping W to

predict low-resolution patch can be given, or can be estimated simultaneously with

the high-resolution patch. In the proposed method, the image warping W is simul-

taneously estimated with respect to camera motion and landmark pose in a unified

filtering framework.

3.3 Simultaneous Landmark Pose and High-Resolution

Patch Estimation

Based on the particle filtering-based SLAM using locally planar landmarks [22], an

EKF-based 6-DOF landmark pose estimation with the back-projection [48] is pro-
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posed to estimate a high resolution image for landmark templates. The state vector

of EKF is composed of 6-DOF landmark poses and high resolution templates for reg-

istered landmarks, and they are updated using incoming input images. Figure 3.2

illustrates steps for EKF-based image super-resolution and its example images. The

state vector of high resolution landmark template, which is initially constructed by

upscaling an input image, is updated in the EKF formulation after the data as-

sociation of locally planar landmarks using the warping-based image registration

method. The 6-DOF landmark pose is simultaneously updated by EKF, and it

helps the super-resolution of template be more accurate. The image registration is

critical part of reconstruction-based super-resolution. The 3D geometry from SLAM

provides good initial solution for the 2D image-based fine registration of landmark

template which can be trapped in local optima with bad initial solution.

3.3.1 Particle filtering framework for simultaneous landmark pose

and high-resolution patch estimation

The proposed EKF-based image super-resolution is combined with the camera pose

estimation via Rao-Blackwellized particle filter (RBPF) framework [21,53,54]. There

are three unknowns that have to be estimated using this framework: the camera

trajectory P1:t composed of 6-DOF camera pose Pk at each time step t, the set of

6-DOF landmark poses L = {L1, ..., Lm, ..., LM}, and the high-resolution patches

TH = {T H,1, ...,T H,m, ...,T H,M} for each landmark, where m denotes the landmark

index and M is the number of registered landmarks in the map. The posterior

probability for these variables p(Pk) given with a set of observation y1:k can be
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factorized as follows:

p(P1:k,L,T
H |y1:k)

=p(L,TH |P1:k,y1:k)p(P1:k|y1:k)

=p(TH |L,P1:k,y1:k)p(L|P1:k,y1:k)p(P1:k|y1:k)

=
∏

M

p(T H |L,P1:k,y1:k)
∏

M

p(Lm|P1:k,y1:k)p(P1:k|y1:k).

(3.3)

In RBPF, the probability distribution of the camera trajectory P1:k and the land-

mark positions L are factorized and the factorized two distributions are estimated by

particle filter and kalman filter, respectively. Similarly, each probability distribution

in Equation (3.3) is estimated by different method depending on its characteristics.

The probability distribution of camera trajectory p(P1:k|y1:k) is approximated by

samples and their weights from importance sampling and resampling of particle fil-

ter on the manifold of Lie group, because direct calculation of the distribution is

intractable. The probability distribution of landmark poses L are individually esti-

mated by unscented Kalman filter [55] with respect to each samples from particle

filter. Except high-resolution patch estimation, the importance sampling of camera

pose and unscented Kalman filter estimation for landmark poses follow that of [22].

3.3.2 Kalman filter-based high-resolution patch estimation

For the high-resolution patch estimation by Kalman filter, the state vector is formed

by representing the high-resolution patch TH as a vector form. The initial value of

the state vector is obtained by upscaling the landmark patch using bicubic inter-

polation from the image where the landmark is registered. The covariance matrix

C of Kalman filter is set to be diagonal, which means that each pixel in the high-

resolution patch is estimated independently, to save computational cost. The initial
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Figure 3.3: High-resolution updates of landmark templates for selected frames. The

leftmost templates correspond to initial states obtained by upscaling the original

template with bicubic interpolation.

values of covariance matrix is equally given by constant σ2
0 .

After sampling camera pose Pk and updating landmark poses L, a single update

for probability distribution of each high-resolution patch estimation p(T H |L,P1:k,y1:k)

is performed. The prediction of low-resolution patch T̂ L
k is generated from the cur-

rent estimate of high-resolution patch T H using Equation (3.1). Similarly to the

approximation in [56], the Jacobian matrix for Kalman filter update can be simpli-

fied by the resampling weight w(T H ,T L) which can be obtained from the mapping

function by Equation (3.1). The jth element of state vector and covariance matrix

are then updated using the measurement noise covariance Cn which is a diagonal
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matrix having the constant elements Cn(j, j) = σ2
n for all j as follows:

K(j) = C(j, j)wj/(Cn(j, j) +
∑

j

C(j, j)w2
j )

T H
j ← T

H
j +K(j)(Rj)

C(j, j)← C(j, j)(1 − wjK(j)),

(3.4)

where Kj is the jth element of Kalman gain matrix, and Rj is the reconstruction

error of the jth element of the state vector for the kth observation patch, given by

Equation (3.2). For each time step k, a single Kalman filter update using Equa-

tion (3.4) is performed, and the latent high-resolution patch is gradually obtained.

The covariance matrix is regarded as converged when the mean of its diagonal el-

ements is below a predefined threshold, and then no more Kalman filter update is

performed. Figure 3.3 shows examples of gradually updated high-resolution tem-

plates.

3.4 Experiments

In the experiment, both the SLAM performance and the super-resolution perfor-

mance of the proposed method are evaluated. The improvement of SLAM perfor-

mance is evaluated by enabling and disabling the super-resolution part, and the

super-resolution performance is compare with other image-based method.

3.4.1 Improvement of SLAM performance

The SLAM performance can be evaluated by measuring the accuracy of camera

pose and landmark pose estimation, but it is difficult to obtain the ground truth of

both estimation. Therefore, the average error of landmark projection is measured
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Figure 3.4: 3D reconstruction result by the proposed method. Left: Input images

shown with estimated landmark poses. Right: Estimated camera trajectory and

landmark poses in 3D map.

Figure 3.5: Projected landmarks after camera pose estimation (white dotted lines)

and observed landmarks (red solid rectangles), which indicate the accuracy of SLAM

results indirectly.
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to evaluate the SLAM performance of the proposed method indirectly. Different

from the reprojection error of landmarks for point-based 3D reconstruction, the

projection error of planar landmark can be measured more precisely by employing

2D Homography. Given with four corner points of projected landmark and observed

patch in the image, 2D Homography corresponds to those points is calculated and the

measurement error can be defined by distance between the calculated Homography

and identity Homography in the manifold of the special linear group SL(3) [22].

If the camera pose and landmark poses are accurately estimated, then the error

of landmark projection should be small. Figure 3.5 shows the example of projected

landmarks (white solid rectangles) and their observed patches (red dotted rectangles)

with and without the proposed super-resolution method, and their corresponding

measurement error values. To project the landmarks onto images, the sample mean

of camera pose and landmark poses are used in the particle filter framework.

The average landmark projection errors for an example sequence with and with-

out the landmark patch super-resolution are plot in Figure 3.6. Initially, the error

values of two methods are almost same because the resolution of landmark patches is

not sufficiently enhanced. However, as more observations are incorporated for super-

resolution, more accurate estimation of camera and landmark poses is possible and

the average landmark projection error is reduced with the proposed method.

3.4.2 Super-resolution quality

The super-resolution results by the proposed method for indoor and outdoor image

sequence are presented in Figure 3.7 and Figure 3.8, respectively. It is shown that

details of target landmarks are recovered, and the sharpness of landmark textures

are improved. The sharpness of landmark texture is important in data associa-
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Figure 3.6: Plot of the average landmark projection error with and without the

proposed super-resolution.

tion process because sharp edges in texture contribute to accurate registration of

landmark patches.

The similarity between patches in terms of normalized cross correlation (NCC)

is compared in Figure 3.9. For real image data, the accuracy of data association of

landmark is difficult to measure because its ground truth is not available. There-

fore, the accuracy is indirectly measured by using the similarity between a landmark

template and observed patches. The super-resolution template is the most proba-

ble appearance of real landmark, thus the effect of pixel noise and quantization is

reduced in data association with super-resolution template.
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Observed LR patches SR template

Figure 3.7: Super-resolution results for building sequence. Left: Low-resolution

patches tracked in input images. Right: Super-resolution patches (×3) by the pro-

posed method.
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Observed LR patches SR template

Figure 3.8: Super-resolution results for poster sequence. Left: Low-resolution

patches tracked in input images. Right: Super-resolution patches (×3) by the pro-

posed method.
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Figure 3.9: Similarity between landmark patches. The super-resolution patches

provide higher NCC measures than low-resolution patches.

3.5 Summary

In this chapter, the sparse point-based 3D reconstruction is combined with super-

resolution of landmark patch. The problem of low-resolution of landmark patches

in the sparse point-based 3D reconstruction is overcome by explicitly enhancing the

resolution of landmark patches in the unified particle filtering framework. With the

help of 3D geometry the super-resolution landmark templates are easily obtained,

and reversely the super-resolution templates contribute to accurate 3D reconstruc-

tion results.
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Chapter 4

Dense 3D Reconstruction and

Image Deblurring

4.1 Introduction

Motion blur in images is an undesirable effect in various computer vision algorithms.

In particular, motion blur is a critical issue in the correspondence problem because

motion blur destroys the structure details of images. Consequently, numerous algo-

rithms that rely on pixel correspondence, such as optical flow, are severely affected

by motion blur.

The pixel correspondence is also important problem in the image-based 3D recon-

struction algorithms, e.g., stereo reconstruction and structure from motion. Among

these reconstruction algorithms, dense reconstruction algorithms [57–60], which re-

construct dense 3D structures from a single moving camera, frequently suffer from

severe motion blur due to camera shakes because the camera keeps moving by human

hands or mobile robots. To estimate primitive depth maps for full surface recon-
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struction, pixel correspondences for two or more images have to be estimated with

high accuracy. However, motion blur degrades the resolution of input images in a

blurred direction, and classical dense correspondence algorithms based on brightness

or gradient constancy fail to obtain correct pixel correspondences.

To handle motion blur for 3D reconstruction, deblurring methods, particularly

video deblurring [6,61–63], can be used by recovering input images. However, most

high-quality deblurring methods are inadequate for fast dense reconstruction sys-

tems, because these methods typically entail high computational cost but cannot

handle scene-depth variation in blur kernel estimation. Therefore, a blur-handling

method for 3D reconstruction is proposed, in which blur kernel and depth of pixel

are simultaneously estimated by adopting their dependency on each other.

A blur kernel from camera shake can be interpreted as a trajectory of a projected

3D scene point by camera motion during exposure time. Thus, the pixel-wise blur

kernel can be determined in a closed form when camera motion, exposure time, and

scene depth are given. In other words, estimating the scene depth is equivalent to

estimating the pixel-wise blur kernel when camera motion and exposure time are

known. These values are available in general dense reconstruction systems, where

exposure time can be obtained from camera hardware and camera motion can be

estimated by camera localization method.

In the proposed method, camera motion is estimated by image registration

method between a reference image and an warped observed image using a recon-

structed depth map, similarly to other 3D reconstruction algorithms [59]. Although

the estimated camera motion has errors, the proposed method can generate a more

reliable depth map than the conventional depth reconstruction methods that do not

consider motion blur, as compared in Figure 4.1 (b, c). The estimated depth map
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(a) (b)

(c) (d)

Figure 4.1: Depth reconstruction from five blurry images: (a) Sample from real

input images. (b) Result of the conventional variational depth reconstruction. (c)

Result of the proposed blur-aware depth reconstruction. (d) Deblurred image by

using the estimated depth-dependent blur kernel.
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can be converted into pixel-wise blur kernels by using 3D geometry, and non-uniform

deblurring can then be easily achieved, as shown in Figure 4.1 (d). The proposed

blur kernel estimation explicitly considers scene depth, thus it can provide improved

deblurring results compared with previous image or video deblurring methods that

disregard scene depth variation.

4.2 3D Geometry and Deblurring

Motion blur from camera shakes, rather than from object motion, has been solved

in many studies by considering camera geometry. However, few methods utilize

both camera geometry and scene geometry, i.e., scene depth. This means that most

methods that utilize camera geometry disregard the effect of scene depth variation.

The related studies on blur kernel estimation utilizing either camera geometry or

scene geometry are briefly reviewed here.

Camera motion and motion blur. The relationship between the camera geome-

try and motion blur has been studied in multiple image deblurring [62,64] and single

image deblurring [3, 28, 65] to address a method for removing non-uniform motion

blur attributed to camera shakes. In multiple image deblurring, camera motion is

parameterized by homography under the assumption of constant scene depth, and

blur kernels are derived from the estimated homographies. In single image deblur-

ring, non-uniform motion blur is represented by a finite number of basis functions

that related to camera motion or homography, and blur kernel is solved efficiently

with respect to these basis functions. However, the above methods do not consider

the effect of scene depth variation, which is an important factor that contribute to
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the non-uniformity of motion blur.

Joshi et al. [66] explicitly utilize a camera motion by estimating the camera mo-

tion from inertial measurement sensors. Their camera is equipped with accelerome-

ters and gyroscopes, and six degrees of freedom (DOF) camera motion is estimated

from the sensors and it generates accurate non-uniform blur kernels. While typical

image only-based blur estimation methods have limited range of measurable kernel

size because they utilize image priors which are valid only for a small region, [66] can

handle large size of blur kernels with the aid of additional sensors. The limitation

of this method is that it also assumes uniform scene depth. Thus, this method is

valid only for negligible depth variation or limited types of camera motion, such as

pure rotation.

Scene depth and motion blur. To address the depth variation in blur kernel

estimation, Xu and Jia [67] combined depth reconstruction by using stereopsis with

blur kernel estimation. Since motion blur in stereo image pair is almost identical, a

scene depth is easily estimated by classical stereo matching algorithm and the result

is used in their depth-dependent blur kernel estimation. Their depth-dependent

blur kernel estimation can be extended to single image deblurring, however, camera

motion is limited to translation in single image cases.

In-depth studies on the relationship between scene depth and motion blur were

conducted in [30, 68], which are closely related to the proposed method. These

methods use two or more images in estimating scene depth and recovering deblurred

images. However, these methods differ from our method; [30] assumes sideways

translational camera motion unlike the proposed method which deals with arbitrary

camera motion, a reference unblurred image is required in [68] while all input images
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can be blurred in the proposed method.

The proposed method considers both camera motion and the effect of scene

depth variation in handling motion blur. Although the proposed method has limited

applications because it requires multiple input images for camera motion estimation

in 3D reconstruction, the method has advantages of both handling large blur size

in [66] and handling depth variation in [67] without requiring additional inertial

sensors nor a stereo camera.

4.3 Blur-Aware Depth Reconstruction

Two image blur kernel estimation problem is converted into a depth estimation prob-

lem by utilizing camera motion obtained from camera localization algorithm in 3D

reconstruction. This section explains the two image motion blur estimation strategy

and then presents a method that converts the blur kernel estimation problem into a

depth estimation problem. Finally, the two image depth reconstruction process will

be extended to multiple image depth reconstruction.

4.3.1 Motion blur estimation from two images

Compared to the single image-based blur kernel estimation, blur kernel estimation

using two or more images has the advantage that it can utilize a motion estimation

across images, i.e., optical flow. Optical flow algorithms, however, cannot be directly

used for blur kernel estimation due to the following differences between optical flow

and pixel’s motion path in motion blur. First, optical flow provides only starting

point and end point of a pixel at two images, whereas pixel’s path in motion blur
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Figure 4.2: Commutative property of blur kernels. Top and middle: Synthesized

input images In−1 and In, the estimated blur kernels represented by motion vectors,

and their commutative convolution results. Bottom: Unblurred reference image,

ground truth motion vectors of In−1 with a color map, and the root-mean-square

(RMS) error between W−1
0,n−1(In−1) ∗ Kn and W−1

0,n(In) ∗ Kn−1 scaled by 10.

65



contains full intermediate trajectory of the pixel. Second, motion blur contains only

pixel’s motion during exposure time, but optical flow is independent from exposure

time. Therefore, we should carefully estimate a pixel’s motion between two images

with the consideration of motion blur to get the blur kernel of pixel.

Estimation of motion blur kernels from two images utilizes the idea that applying

the blur kernel of each image to the other image results in the same cumulatively

blurred images [4, 69]. Let In−1 and In be two consecutive blurred images in an

observed sequence, which have latent unblurred images Ln−1 and Ln, as well as blur

kernels Kn−1 and Kn, respectively. The blurred image by the pixel-wise blur kernel

Kn(x, y) is represented as follows:

In(x, y) = (Ln ∗ Kn(x, y))(x, y), (4.1)

where ∗ denotes the convolution operator that corresponds to blur operation, and

(x, y) represents a pixel coordinate. If there is no confusion, then the pixel coordinate

notation (x, y) for images In and Ln as well as the blur kernel Kn is omitted for

notational simplicity. For the two blur kernels Kn−1 and Kn as well as the reference

unblurred image L0, the following equality should hold by the commutative property

of convolution:

L0 ∗ Kn−1 ∗ Kn = L0 ∗ Kn ∗ Kn−1, (4.2)

and it gives

W−1
0,n−1(In−1) ∗ Kn =W−1

0,n(In) ∗ Kn−1, (4.3)

where W0,n is the image warping function such that Ln = W0,n(L0). An example

of estimated blur kernels and their convolution results are illustrated in Figure 4.2.

Based on Equation (4.3), we can derive the objective function to determine the

correct values of Kn−1 and Kn.
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Figure 4.3: Proposed motion blur model: The colored dots represent the pixel posi-

tions of a 3D scene point X for each time n, and the intensities at these positions are

represented by L. The convolution of pixel intensities along with the thick arrows

corresponds to the blurred kernels K which results in the blurred intensity I. The

blur kernel K corresponds to a part of pixel motion v in an exposure time.

There are four unknowns, W0,n−1, W0,n, Kn−1, and Kn in Equation (4.3), but

the dependency of blur kernel on the warping functions can reduce the number of

actual unknowns. Let vn = [un, vn]
⊤ be the 2D motion vector that corresponds to

the warping functionWn−1,n, such that Ln =Wn−1,n(Ln−1) ≡ Ln−1(x+un, y+vn).

Without motion blur, the warped image Ln from Ln−1 by a small motion vn can be

approximated by the second-order expansion [44]:

Ln =Wn−1,n(Ln−1)

≈ Ln−1 + JLn−1
vn +

1

2
v⊤
nHLn−1

vn,

(4.4)

where the matrices JLn−1
and HLn−1

represent the Jacobian and Hessian matrices,

respectively, for the image Ln−1 with respect to the x and y axes.

When motion blur is considered in the image warping between two images as

shown in Figure 4.3, the blurred and warped image In from Ln−1 is approximated
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with additional coefficients as follows [37,42]:

In =Wn−1,n(Ln−1) ∗ Kn

≈ Ln−1 + aJLn−1
vn +

1

2
bv⊤

nHLn−1
vn.

(4.5)

The coefficients a and b are determined by the exposure time τ ,

a =
τo + τc
2τc

, b =
τ2c + τcτo + τ2o

3τ2c
, (4.6)

where τo and τc denote open and close time of the camera shutter, respectively.

Time τ = 0 in capturing the image In corresponds to time τ = τc in capturing the

previous image In−1. If the exposure time is infinitesimal, then τo = τc holds, and

Equation (4.5) is equivalent to Equation (4.4). Reference [42] provides the detailed

derivation of this approximation.

As shown in Equation (4.5), which represents the parametrization of the blurred

image I by using motion vector v, the objective function that satisfies condition

(4.3) can be formulated by using only the motion vectors vn−1 and vn. First the

objective function is formulated from Equation (4.3),

argmin
Wn−1,Wn,Kn−1,Kn

∥∥∥W−1
0,n−1(In−1) ∗ Kn −W

−1
0,n(In) ∗ Kn−1

∥∥∥
1
. (4.7)

By substituting Equation (4.5) into Equation (4.7) for both In−1 and In, we

can obtain the objective function with respect to vn−1 and vn. First, the warping

function W0,n is applied to both sides of Equation (4.3) for simplification, which

yields

W0,n(W
−1
0,n−1(In−1)) ∗ Kn =W0,n(W

−1
0,n(In)) ∗ Kn−1

⇒Wn−1,n(In−1) ∗ Kn = In ∗ Kn−1.

(4.8)
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From the approximation of Equation (4.5) to the left-hand side of Equation (4.8)

up to the first-order, we have

Wn−1,n(In−1) ∗ Kn ≈ In−1 + aJIn−1
vn. (4.9)

Similarly, applying Equation (4.5) to the right-hand side of Equation (4.8) yields

In ∗ Kn−1 =W
−1
n−2,n−1(Wn−2,n−1(In) ∗ Kn−1)

≈ W−1
n−2,n−1(In + aJInvn−1),

(4.10)

and by Equation (4.4), we have

W−1
n−2,n−1(In + aJInvn−1)

≈(In + aJInvn−1)− J(In+aJInvn−1)vn−1

=In + aJInvn−1 − (JIn + av⊤
n−1HInvn−1)

=In + (a− 1)JInvn−1 − av⊤
n−1HInvn−1.

(4.11)

By subtracting the two terms, the objective function is obtained as follows:

argmin
vn−1,vn

‖(In−1 + aJIn−1
vn)− (In + (a− 1)JInvn−1 − av⊤

n−1HInvn−1)‖1. (4.12)

The first term in Equation (4.12) approximates the blurred appearance of In−1 by

the blur kernel of In, and the second term approximates the warped and blurred

appearance of In, by warping W−1
n−1,n and the blur kernel of In−1, respectively.

4.3.2 Motion blur estimation to depth estimation

Although the objective function is reduced to determining pixel-wise motion vectors

vn−1 and vn, this problem remains ill-posed because only one pixel correspondence

is given for the quadratic equation (4.12) of two variables. Therefore, an additional

constraint has to be incorporated to eliminate the ambiguities in vn−1 and vn. The
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ambiguities in motion or blur kernel estimation given two images has been addressed

in several previous works [4, 40, 69]. For example, the directions of the blur kernels

of two images are assumed to be known [69]; otherwise, additional input images are

used to refine the motion vectors of the two blurry images [4]. The proposed method

utilizes a camera motion and exposure time as additional constraints to resolve the

ambiguity in motion estimation. The use of camera motion has a similar advantage

as that of using known blur directions in [69]. However, the assumption of known

camera motion is more general than the assumption of known blur direction because

the former can address non-uniform blur kernels and any type of pixel motion, such

as curved pixel motion caused by camera rotation.

When camera motion and exposure time are known, the estimation of pixel-wise

blur kernels from two images is converted into an estimation of pixel-wise depth

value. In the proposed method, exposure time τo and τc are provided by camera

hardware, and camera pose at τ = τc is obtained from the registration-based camera

localization algorithm. Let Pτ
n ∈ SE(3) be the six DOF camera pose at time τ for the

nth image, which is represented by the special Euclidean group in three dimensions,

and let d be the inverse depth of pixel (the pixel coordinate notation is also omitted

for simplicity) with respect to the unblurred reference image L0. Inverse depth,

which is a reciprocal of depth, is used in the proposed model because inverse depth

has better convergence property in estimation than the original depth [70].

The 2D motion path of the projected pixel point (xτn, y
τ
n) at time τ corresponding

to inverse depth d is represented as follows:

(xτn, y
τ
n) = h(K((Pτ

n)
−1 ·X)),

X =
1

d
K−1 · (x, y, 1)⊤,

(4.13)
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where h(·) is the dehomogenization function, such that h((x, y, z)⊤) = (x/z, y/z),

K is the camera intrinsic matrix, and X is a 3D scene point corresponding to pixel

(x, y) at the reference image. The product of inverse camera pose P−1
t and the 3D

scene point X is defined as follows:

(Pτ
n)

−1 ·X = (Rτ
n)

⊤X− (Rτ
n)

⊤Tτ
n, (4.14)

where Rτ
n and Tτ

n are camera rotation and translation, respectively. Equation (4.13)

shows that the blur kernel K in Equation (4.3) can be calculated by using 3D geo-

metric quantities only. Thus, the kernel estimation problem is reformulated into an

estimation problem of inverse depth d.

Equation (4.13) shows that the pixel motions vn−1 = (xτcn−1, y
τc
n−1)−(xτcn−2, y

τc
n−2)

and vn = (xτcn , yτcn ) − (xτcn−1, y
τc
n−1) are functions of inverse depth d. The objective

function with respect to d can be derived by substituting Equation (4.13) into the

original objective function (4.12). To solve the objective function by means of the

convex optimization framework, the relationship between the pixel motions vn−1,

vn and a small update value of depth ∆d is linearized using the Jacobian matrices

Jvn−1
=

[
∂vn−1

∂d
∂un−1

∂d

]⊤
and Jvn =

[
∂vn
∂d

∂un

∂d

]⊤
as:

vn−1 = Jvn−1
∆d = Jvn−1

(d− d̄),

vn = Jvn∆d = Jvn(d− d̄).

(4.15)

where d̄ is an initial estimate of d. The objective function with respect to d is derived

from Equation (4.12) and Equation (4.15) as follows:

argmin
d
‖In−1 − In + {aJIn−1

Jvn + (1− a)JInJvn−1
}(d− d̄)

+ {aJ ⊤
vn−1
HInJvn−1

}(d− d̄)2‖1.

(4.16)
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Therefore, the motion blur estimation problem is now represented by the depth

estimation problem.

4.3.3 Depth reconstruction using multiple images

The proposed two view depth reconstruction can be easily extended to multiple

view depth reconstruction in a manner similar to that of other multiple image re-

construction methods [59, 60]. The use of multiple images provides more accurate

depth results by mitigating the effect of image noise. The objective function for the

depth reconstruction of multiple images is defined as the minimization of the sum of

the differences between the first image I1 and the other images In considering their

blurred appearances.

Given that Equation (4.16) is valid only with consecutive image indices n − 1

and n, we should modify Equation (4.16) to define the differences between the first

image I1 and other images In for n 6= 2. To this end, the first image I1 is warped

to simulate the (n − 1)th image In−1, such that I ′n−1 = W1,n−1(I1). The warping

function W1,n−1 is calculated by projecting and reprojecting the pixel of the first

image by using Equation (4.13). We can then replace In−1 in Equation (4.16) with

I ′n−1 and replace vn−1 with v1. By summing the differences of all image pairs, we

can obtain the following objective function for multiple image depth reconstruction:

argmin
d

N∑

n=2

‖I ′n−1 − In + {aJI′n−1
Jvn + (1− a)JInJv1

}(d− d̄)

+ {aJ ⊤
v1
HInJv1

}(d− d̄)2‖1.

(4.17)

Considering that the image warping W1,n−1 using Equation (4.13) requires es-

timated depth, the initial is first estimated first by using two consecutive images

I1 and I2 with N = 2. The number of used images N is then gradually increased
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to improve the depth accuracy. This procedure is combined with the coarse-to-fine

approach described in the next section.

4.4 Variational Optimization for Depth Reconstruction

To solve Equation (4.17) for all image pixels, the energy function is defined by

comprising the data and regularization terms with a scale parameter λ, such that

E = Ereg + λEdata. From Equation (4.17), the pixel-wise data cost ρ(d,w) for the

data term Edata =
∑

∀x,y ρ(d,w) is defined as follows:

ρ(d,w) =
1

N − 1

N∑

n=2

‖I ′n−1 − In + {aJI′n−1
Jvn + (1− a)JInJv1

}(d− d̄)

+ {aJ ⊤
v1
HInJv1

}(d− d̄)2 + βw‖1,

(4.18)

where w and β are the temporal illumination change term and its coefficient, re-

spectively, which are widely used in classical optical flow formulations. For handling

pixel noise and textureless regions, the data cost is combined with the Huber regu-

larization [71] given by

Ereg(d,w) =
∑

∀x,y

|∇d|αd
+ |∇w|αw , (4.19)

where ∇ denotes the gradient operator, and |∇|α denotes the Huber norm defined

by

|∇|α =





|∇|2

2α , if |∇| ≤ α

|∇| − α
2 , if |∇| > α

. (4.20)

The overall energy function for solving the depth map d has the form,

E =
∑

∀x,y

|∇d|αd
+ |∇w|αw + λρ(d,w). (4.21)
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In the implementation, the fixed values of parameters αd = αw = 0.005, β = 0.002

are used, and different values are used for the parameter λ depending on a test scene.

The minimization of Equation (4.21) is effectively achieved by using the first-

order primal-dual algorithm [23], which is designed for the optimization of continuous

variable convex functions. Given its fast convergence property, the algorithm is

widely used in various applications that require fast optimization performance. The

optimization procedure starts with an arbitrary initial depth d̄ and gradually updates

d by using the coarse-to-fine warping scheme described in Alg. 1. The coarse-to-fine

warping scheme is employed because solving Eqs. (4.16) or (4.17) by using the

optimization method is valid only for the small update ∆d. The Jacobian matrix

Jvn and the Hessian matrix Hvn are calculated for instance of every warping in outer

iteration, but not for every update of latent variables d and w to save computational

cost. The method for building blur kernel K from depth d will be described in

Section 4.5.

Image warping by approximation using the Jacobian and Hessian matrices limits

the warping to a simple 2D translation, but the intermediate warping and blurring

in the coarse-to-fine warping scheme (line 5 and 6 in Alg. 1) enables handling of a

curved motion path caused by camera rotation. Consequently, the proposed depth-

based blur model can address more general motion blur compared with [4], where

the blur kernel was assumed to be linear.

4.5 Deblurring by using Estimated Depth

This section describes building blur kernels from the estimated depth for deconvolution-

based image deblurring. Similar to the projective motion path model in [72], the
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Algorithm 1 Warping and updating for depth reconstruction

1: Initialization: d = d̄

2: repeat

3: Resize images and depth map to finer level

4: for n = 2 to N do

5: I ′n−1 ←W1,n−1(I1) ∗ Kn

6: In ←W
−1
n−1,n(In) ∗ K1

7: end for

8: repeat

9: Update depth d by solving Equation (4.16)

10: until Hit max iteration

11: until Reach the finest level

blur kernel Kn at pixel (x, y) is represented as a set of pixel positions {(xτi , yτi), i ∈

0, ...,M}, which corresponds to the motion path of pixel (x, y) during exposure time

as well as the weight kn(x
τi , yτi) for each pixel position. The superscript τi denotes

the M number of uniformly discretized intervals for exposure time τ , such that

τi = τo +
τc−τo
M i. The blurred image In can then be represented by

In(x, y) =
M∑

i=0

L(xτi , yτi)k(xτi , yτi)n. (4.22)

The weight of blur kernel should satisfy the constraint
∑M

i=0 kn(x
τi , yτi) = 1 to

preserve the image intensity, thus kn(x
τi , yτi) = 1/(M+1) holds for all i. To calculate

an intermediate pixel position (xτi , yτi) by using Equation (4.13), an intermediate

camera pose Pτi
n is interpolated by using the input camera poses Pτc

n−1 and Pτc
n on
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the manifold of SE(3) as follows:

Pτi
n = exp(

1

τc
(τo

τc − τo
M

i)∆P) ·Pτc
n−1, (4.23)

where ∆P is the camera motion between two input images, such that ∆P = log(Pτc
n ·

(Pτc
n−1)

−1).

The blur kernel generated by this method is used for image warping in depth

reconstruction as well as deblurring after obtaining the final depth map. Notably,

deblurring is not essential for 3D reconstruction purpose, and we can optionally

deblur input images for further computer vision tasks. By using the estimated kernel

Kn for each pixel, Richardson-Lucy deconvolution with total variation regularization

is performed similarly to [72]. Given that the pixel’s motion path in images for 3D

reconstruction is uncomplicated, a small number of Richardson-Lucy iterations (less

than 50) are sufficient to obtain satisfactory deblurring results.

4.6 Experiments

In the experiment, the analysis of several important parameters is initially presented,

then the comparative evaluations of the proposed method with other methods with

respect to depth reconstruction, optical flow estimation, and deblurring then follow.

The results of proposed method are obtained from gray scale images.

4.6.1 Analysis of the initial depth value

The initial value of depth for the proposed depth reconstruction is important, be-

cause the depth estimation is solved by variational optimization combined with a

coarse-to-fine scheme. Therefore, the optimization performance is tested by varying

the initial value of depth, as shown in Figure 4.4. The initial value d̄ is uniformly
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Input image 1 Input image 2 Ground truth depth

Figure 4.4: Depth maps for synthesized image set by using different initial depth

values d̄ at the coarsest level. The arbitrary initial values yield almost the similar

depth results.

assigned to all pixels at the coarsest level. We can verify that the optimization is

not excessively sensitive to the initial value and converges to similar results for an

arbitrary initial depth value only if the initial depth is not extremely far from the

true value.

4.6.2 Analysis of the number of input images

The performance gain achieved by multiple real images is shown in Figure 4.5. The

use of multiple images generally provides a more accurate depth map for real noisy

data. However, this is invalid when motion blur occurs in the image sequence.

With motion blur, finding the pixel correspondences becomes more difficult as the

number of image increases because motion blur varies for each image. Meanwhile,

the proposed blur-handled depth reconstruction provides a more accurate depth map
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Reference image Use 2 images Use 5 images

Number of inputs

Figure 4.5: Improvement of depth map accuracy for real sequence by increasing the

number of input blurry images.

as the number of input images increases.

4.6.3 Comparison of depth reconstruction results

The blur-robustness of the proposed algorithm is verified by comparing the depth

reconstruction results with the conventional variational depth reconstruction imple-

mented by removing the blur-handling parts of the proposed method. First, each

method is tested for unblurred sequence to show that each implementation works

correctly as shown in Figure 4.6 (a, c). The methods are then tested for blurred

sequence to compare their robustness to motion blur, as shown in Figure 4.6 (b, d).

The RMS error of the estimated depth are measured for the synthesized images and

presented in the figure.

4.6.4 Comparison of optical flow results

The effectiveness of the proposed blur handling is demonstrated by comparing the

optical flow results, i.e., vector vn, with those of other blur-robust method for op-

tical flow. The estimated depth map is converted into motion vectors by using

Equation (4.13) and then the motion vectors are compared with the results of the
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RMSE: 0.0053

RMSE: 0.0053

RMSE: 0.0170

RMSE: 0.0067

Figure 4.6: Depth reconstruction for synthetic and real sequences respectively com-

prises six unblurred (a, c) and blurred (b, d) images. From top to bottom: Input

images, variational depth reconstruction without blur handling, and the proposed

blur-robust reconstruction.
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OF comparison

(a) GT flow / Input image (b) Blur-robust OF [17]        (c) Proposed method

EPE: 2.1481 EPE: 0.2564

Figure 4.7: Comparison of optical flow and deblurring results. (a) Input image and

ground truth motion vector of synthetic data and two input images of real data. (b)

Blur-robust optical flow method in [4]. (c) Proposed method.
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blur-robust optical flow method in [4] to evaluate the pixel correspondence accuracy

between images. As described in Section 4.3.2, two additional images are used in [4]

as additional information, whereas camera motion is used in the proposed method.

The optical flow results are compared in Figure 4.7 with the average endpoint er-

ror (EPE), and deblurring results from the estimated motion vectors are shown to

verify the optical flow accuracy. By re-parameterizing the optical flow to depth, the

proposed method is found to be capable of handling more complex shape of motion

blur and thus achieves improved results.

4.6.5 Comparison of deblurring results

Finally, the deblurring results for real image data by the proposed method are com-

pared with the results of multiple image deblurring [6] as well as single image de-

blurring [5] as presented in Figure 4.8. The deblurring results by using blur kernels

from blur-aware optical flow [4] is also presented. The input image has a significant

depth variations in a vertical direction, which cannot be addressed by conventional

video deblurring methods. Thus, the input blurry image is partially recovered. On

the other hand, the proposed method successfully removes the motion blur by using

the depth-aware blur kernels.

4.7 Summary

The blur-robust 3D reconstruction method was presented in this chapter. The ap-

proximation technique for blurred appearance of image was successfully combined

with the depth map estimation framework based on the variational optimization.

The proposed geometry-combined blur estimation enabled handling of scene depth

81



(f) Proposed deblurring(e) Deblur using optical flow

(a) Input image 1

(d) Video deblurring

(c) Single image deblurring(b) Input image 2

Figure 4.8: Deblurring results for real image: (a, b) Sample images from input

sequence. (c) Single image deblurring [5]. (d) Video deblurring [6]. (e) Deblur using

optical flow [4]. (f) Proposed method.
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variation and large blur kernels, which are difficult in traditional image-only-based

deblurring methods. The proposed method can be applied to not only multiple im-

age 3D reconstruction, but also video deblurring only if the camera is calibrated for

its intrinsic parameters.
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Chapter 5

Dense 3D Reconstruction and

Image Super-Resolution

5.1 Introduction

Note that if we employ the information about the 3D scene geometry, the super-

resolution problem can be solved more efficiently since we can directly use it for

enhancing the accuracy of the correspondences. That is, with estimated camera

poses, the problem of finding pairwise pixel correspondences through an image se-

quence can be converted into estimating the depth value of corresponding pixels.

Although this converted problem has an error source related to the camera pose

error, because it is casted in a much lesser dimensional solution space than the

original pairwise correspondence problem, it can be solved much easily and faster.

Therefore, depth reconstruction and super-resolution problems are interrelated and

boost each other’s accuracy. So, in this study, the depth estimation is combined

with the high-resolution image estimation in a unified framework, and propose a

85



simultaneous solution to both problems.

In the proposed method, the depth estimation and image super-resolution are

formulated with a single convex energy function, which consists of data term and

regularization term. The solution is estimated by convex optimization of the en-

ergy function. Although both pixel correspondences (re-parameterized by depth)

and high-resolution image are estimated, the computational cost is not so expensive

compared to the conventional high-resolution image estimation only because an al-

ternating method such as EM is not used. Additionally, due to the simultaneous

estimation of depth and high-resolution image, the results of the two problems are

greatly enhanced.

5.2 Related Works

In this section, research combining 3D reconstruction and super-resolution that have

objectives similar to the proposed method are investigated first. The works on the

primal-dual algorithm for 3D reconstruction or super-resolution then follow.

5.2.1 3D reconstruction and image super resolution

In [18–20,73], the close relationship between super-resolution and 3D scene structure

is pointed out and their cooperative solution is studied. In [18], the super-resolution

is formulated with the calibrated 3D geometry and solved using the MAP-MRF

framework. Occlusions are effectively handled in their super-resolution method us-

ing depth information, but super-resolution does not contribute to depth map esti-

mation in this method. In [20], a method for increasing the accuracy of 3D video

reconstruction using multiple static cameras is presented. The 3D video is composed
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of texture images and 3D shapes, and increasing their accuracy is achieved by simul-

taneous super-resolution using MRF formulation and graph-cut [74]. High-quality

texture and 3D reconstruction is presented in [73] where texture and shape of a 3D

model are alternately estimated with joint energy functional. Compared to [73] the

proposed method has more challenging settings in which neither accurate camera

motions nor initial pixel correspondences are available.

The work most closely related to the proposed mehtod with respect to its objec-

tive is [19]. The authors formulate a full frame super-resolution problem combined

with a depth map estimation problem, and attempt to enhance the results of both

problems. However, their solution is not fully simultaneous but follows an EM-style

alternating method instead. They fix the current high-resolution image for the esti-

mation of the depth map, and vice versa. Graph-cut and iterated conditional modes

(ICM) are used for the depth and high-resolution image estimation, respectively, for

each iteration, which result in an inevitably large computation cost. In contrast,

the globally optimum solution is searched directly with a single convex energy func-

tion in the proposed method, and very fast optimization speed is achieved for the

real-time capability.

5.2.2 Primal-dual algorithm for 3D reconstruction and super-resolution

The formulation of the proposed algorithm is based on the variational approach,

especially the primal-dual algorithm [23–25]. The first-order primal-dual algorithm

is a very effective tool for convex variational problems due to its parallelizable char-

acteristics. The algorithm has been used in various computer vision problems, with

the wide use of parallel computing acceleration such as general-purpose computing

on graphics processing units (GPGPU).
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The first-order primal-dual algorithm has been applied recently for the 3D recon-

struction and super-resolution problems. In [59] and [60], a dense 3D reconstruction

is studied and its real-time implementations are demonstrated. They used conven-

tional energy functions consisting of photometric consistency-based data term and

L1 or Huber norm-based smoothness term, but achieved a breakthrough performance

in computation time using the primal-dual algorithm combined with the GPGPU

implementation.

In [75], the first-order primal-dual algorithm is applied to the super-resolution

problem. The reconstruction-based super-resolution is formulated by image down-

sampling, blurring, and warping, and then the latent high-resolution image is esti-

mated with the Huber norm regularization. This method achieves a fast computation

of high-quality super-resolution comparable to other methods, but has certain limi-

tations such that highly accurate initial image warping is required and no updating

procedure is involved in estimating the super-resolution.

The combination of 3D reconstruction and super-resolution is also formulated in

the first-order primal-dual framework. However, unlike [59] and [60], the proposed

super-resolution combined framework enables more accurate depth map estimation

with respect to its resolution. The proposed image super-resolution is also accel-

erated by finding pixel correspondences in a depth domain instead of optical flows

between images with the help of camera geometry obtained from the 3D reconstruc-

tion.
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5.3 Energy Model for Simultaneous Estimation of Depth

and Super-Resolution Image

In this study, a new energy function is proposed for a simultaneous estimation of

depth map and high-resolution image. The inputs are M × N size low-resolution

image sequence Ij ∈ R
MN and their corresponding camera poses Pj ∈ SE(3) with

j ∈ {0, ..., J}. Let g ∈ R
s2MN be the latent super-resolution image with the gray

scale, and d ∈ R
s2MN be the latent inverse depth map, where s is the predefined

upscale factor. The solution of g and d is estimated with respect to the refer-

ence view P1. The energy function to solve this problem is composed of the data

cost Edata based on the photometric constancy and the regularization cost Ereg for

smoothing undesirable artifacts. With the parameter λ which controls the degree

of regularization, the energy function has the form E(g,d) = Ereg + λEdata. The

super-resolution image g can also be the color, but the gray scale notation is used

here for simplicity and the color image results are shown in the experiment section.

5.3.1 Data cost

The derivation of data cost starts from the relationship between the high-resolution

image g for the reference image I1 and the low-resolution image Ij from an adjacent

view. With the camera internal parameter K including the focal length and the

principal point, the reprojected 3D position X of pixel (x, y) in I1 with the inverse

depth d(x, y) by the reference camera P1 is given by X = 1
d(x,y)K

−1 · (x, y, 1)⊤,

and its projection to the adjacent view with Pj is calculated as h(KPj,1
1

d(x,y)K
−1 ·

(x, y, 1)⊤), where Pj,1 = PjP
−1
1 and h is the dehomogenization function such that

h((x, y, z)⊤) = (x/z, y/z). Figure 5.1 illustrates these relationships.
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Figure 5.1: The relationship between the low-resolution input sequence Ij and the

super-resolution image g, induced by the depth map d: The photometric consistency

should hold for Ij and the simulated low-resolution image D ∗B ∗ g.
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For notational simplicity, the non-bold characters g and d are used for the pixel-

wise values g(x, y) and d(x, y), respectively, and their corresponding dual variables

later. The image warping W(Ij ,d), which transforms the image Ij to the reference

image I1, is defined by using the pixel projection and reprojection discussed above,

W(Ij ,d)(x, y) = Ij(h(KPj,1
1

d
K−1 · (x, y, 1)⊤)). (5.1)

Then, by the photometric consistency between the reference image and the adjacent

image, the equation

I1(x, y) = Ij(h(KPj,1
1

d
K−1 · (x, y, 1)⊤)) =W(Ij ,d)(x, y) (5.2)

holds for all j ∈ {0, ..., J} if the inverse depth d has the exact value. By incorporating

the image resolution degradation model, the equation

(D ∗B ∗ g)(x, y) = I1(x, y) =W(Ij ,d)(x, y) (5.3)

also holds for all j ∈ {0, ..., J}. Here, D and B are the downsampling and the

blurring operator, respectively. From the equality in Equation (5.3), we can set an

objective function which finds an optimum value of g and d, such that

argmin
g,d

J∑

j=1

‖D ∗B ∗ g − {W(Ij ,d)}‖1. (5.4)

To find the optimized value of d through an iterative update, the first-order

Taylor expansion to W(Ij ,d) is applied to approximate a change in image W(Ij ,d)

with respect to a small change of depth at the initial value d0,

W(Ij ,d) ≃ W(Ij ,d0) +
∂

∂d
W(Ij ,d)

∣∣∣∣
d=d0

· (d− d0). (5.5)

Then, the objective function (5.4) can be rewritten as a linearized form,

argmin
g,d

J∑

j=1

‖D ∗B ∗ g − {W(Ij ,d0) + Ijd · (d− d0)}‖1, (5.6)
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Figure 5.2: The shape of data cost ρ(g,d) for textured (left) and untextured (right)

region.

where Ijd is the simplified notation of the image derivative ∂
∂dW(Ij ,d), which can

be calculated pixel-wise using the chain-rule,

Ijd =
∂W(Ij ,d0)

∂d
=

∂W(Ij ,d0)

∂x

∂x

∂d
+

∂W(Ij ,d0)

∂y

∂y

∂d
. (5.7)

The blur kernel B is predefined with the simple Gaussian blur model, with the

standard deviation s and the kernel size of (s− 1)1/2. To handle the downsampling

operator D efficiently, the low-resolution input images are upscaled to the high-

resolution size sM × sN as Ij ∈ R
MN → Îj ∈ R

s2MN using bicubic interpolation

and the optimization process is performed with the resized image space Rs2MN . The

resulting data cost then has the form,

Edata =

∫

X,Y
ρ(g,d)

=

∫

X,Y

J∑

j=1

‖B ∗ g− {W(Îj ,d0) + Îjd(d− d0)}‖1.

(5.8)

Figure 5.2 shows an example of the convexity of data cost ρ(g,d) for different

image points. The shape of the cost function is obviously convex, but the shape
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of the function varies from image point to point according to the image gradient.

In a low texture region, the data cost is dominated by the high-resolution intensity

g than the depth d. Therefore, regularization is required to get a more plausible

solution for depth d.

5.3.2 Regularization

For image intensity g and inverse depth d, a Huber norm based regularization is

used to get a smoothed and discontinuity-preserved result. The Huber norm for g

is defined by following pixel-wise function:

‖∇g‖αg (x, y) =





|∇g|2

2αg
, if|∇g| ≤ αg

|∇g| −
αg

2 , if|∇g| > αg

, (5.9)

where ∇ is the linear operator that computes derivatives of x and y direction. The

Huber norm for ‖d‖αd
is defined in the same way. In the implementation of algo-

rithm, the parameters are set to αg = αd = 0.001.

By combining the data cost (6.7) and the regularization (6.9), the target energy

function E(g,d) is obtained by

E(g,d) =

∫

X,Y
‖∇g‖αg + ‖∇d‖αd

+ λρ(g,d). (5.10)

In the next section, the solution of this energy function is described.

5.4 Solution of Energy Function

5.4.1 Initial depth estimation

In the data cost (6.7), the first-order Taylor expansion, which can only handle a small

update for g, and d is applied. This step requires the starting point of optimization
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to be close to the global optimum. The initial value of g can be easily obtained

by upscaling the input image at reference view using simple bicubic interpolation.

However, the initial value of d should be estimated using the low-resolution input

sequence.

The cost function for initial depth estimation is easily obtained from Equa-

tion (6.7) and (5.10) by replacing B ∗ g and Îj with the low-resolution images I1

and Ij , respectively, and removing the regularization on g. The resulting energy

function for low-resolution depth map ď is

E(ď) =

∫

X,Y
‖ď‖αd

+ λ

J∑

j=1

‖I1 − {W(Ij , ď0) + Ij ď · (ď− ď0)}‖1. (5.11)

The equation (5.11) is actually a conventional formulation for depth map estimation.

The optimization of this energy function is almost similar to the optimization of

Equation (5.10), which will be explained below, so the optimization of (5.11) is

skipped here. The limitation of a small update also holds for Equation (5.11). Thus,

a coarse-to-fine approach is used to approach the global optimum of d gradually by

starting from an arbitrary initial solution, e.g., filled with 1.0. The depth result

obtained at the finest level is upscaled using bicubic interpolation and is fed to the

optimization of (5.10) as an initial value.

5.4.2 High-resolution image and depth estimation

Now the solution of Equation (5.10) is described based on the first-order primal-

dual optimization algorithm. By interpreting the objective function (5.10) as the

primal-dual formulation, we can rewrite it as a generic saddle point problem with

the dual variables p and q, which corresponds to g and d, respectively:

min
g,d

max
p,q
〈∇g,p〉+〈∇d,q〉+λ‖ρ(g,d)‖1−δP(p)−

αg

2
‖p‖22−δQ(q)−

αd

2
‖q‖22, (5.12)
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where 〈·, ·〉 denotes the scalar product, and the functions δP and δQ are the indicator

functions given as δP(p) =





0, if ‖p‖∞ ≤ 1

∞, if else.

and δQ(q) =





0, if ‖q‖∞ ≤ 1

∞, if else.

,

respectively.

This problem can be optimized through the iteration,

(p,q)n+1 = Rp,q

(
(p,q)n + σ∇(ḡ, d̄)n

)

(g,d)n+1 = Rg,d

(
(g,d)n − τ∇∗(p̄, q̄)n

)

(ḡ, d̄)n+1 = 2(g,d)n+1 − (ḡ, d̄)n.

(5.13)

where the operator ∇∗, the conjugate of ∇ as ∇∗ = − div, computes the divergence

[23], and ḡ and d̄ are the intermediate variables for the convergence of algorithm.

The initial value (g,d)0 is obtained from Section 4.1, and (p,q)0 is set to zero. The

operators Rp,q and Rp,q are the resolvent operators that search lower energy values

using subgradients. τ and σ are constants that control the convergence of primal

and dual variable, respectively. The resolvent operators will be discussed in more

detail.

The regularization term (5.10) is a typical form used in [23]. Thus, the resolvent

operator of the dual variables is a pixel-wise projection

Rp,q(p, q) =

(
p

max(1, |p|)
,

q

max(1, |q|)

)
. (5.14)

On the other hand, the data cost has a difference with the standard form in previous

primal-dual algorithm applications. This difference comes from the summation of

absolute value in the data cost for image sequence. Since L1 norm is used for the

difference between two images, there are some critical (non-differentiable) points in

their summation. Therefore, these non-differentiability should be handled in the
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optimization procedure. The minimization of similar cost function is introduced

in [60], but the solution space of [60] is for the depth map only, so the minimization

can be efficiently achieved by evaluating and sorting all critical points. On the

other hand, the solution space of the problem is composed of depth map and image

intensity, so there are J2 critical points. Searching them is not straightforward, and

thus optimization by evaluating and sorting critical points is inefficient. Instead, the

general gradient descent and critical point searching are combined to accelerate the

minimization procedure.

Let per-image data cost ‖ρj(g,d)‖1 = ‖B ∗ g − {W(Îj ,d0) + Îjd · (d − d0)}‖1,

then we can write ρ(g,d) as

ρ(g,d) =

J∑

j=1

‖ρj(g,d)‖1 =

J∑

j=1

sgn(ρj(g,d)) · ρj(g,d), (5.15)

where sgn(·) is a signum function. Then the derivatives of (5.15) are calculated as

∂ρ(g,d) =

J∑

j=1

sgn(ρj(g,d)) ·

(
1,−Îj

⊤

d

)
. (5.16)

The domain of resolvent operator is divided into two intervals based on the cost ρ

and the magnitude of gradient ‖∂ρ‖22, and the gradient descent search and critical

point search are applied by

Rg,d(g, d) =





(g, d) − τλ
(
∂ρ(g, d)

)
,

if ρ(g, d) > τλ‖∂ρ(g, d)‖22

(g, d) −
ρ∗j (g,d)·∂ρ

∗

j (g,d)

‖∂ρj∗(g,d)‖
2

2

,

if ρ(g, d) < τλ‖∂ρ(g, d)‖22

, (5.17)

where

j∗ = argmin
{j|ρj(g,d)·sgn(∇ρ(g,d))>0}

‖ρj(g, d)‖1. (5.18)
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The operation of the second case in (5.17) is searching the closest critical point with

a lower cost value by (5.18), and moving the variable to this critical point. By

iterating Equation (5.13) and checking the amount of changes in total cost (5.10),

we can terminate the iteration and can get the final results of g and d.

5.5 Implementation of 3D Reconstruction

5.5.1 Camera localization

To use the proposed depth map estimation and super-resolution algorithm in the

single camera 3D reconstruction system, the camera localization algorithm needs

to be incorporated. Before the depth map is estimated for an initial few frames,

the sparse point-based SLAM is performed for camera localization. After the initial

depth map is created, the image registration method similar to the 2.5D image

registration in [59] is used between the input frame and the pre-warped image from

the estimated high-resolution image and depth map to estimate a new camera pose

PJ+1 as:

PJ+1 = argmax
P

∫

X,Y
‖g(x, y) − IJ+1(h(KPP−1

1

1

d
K−1 · (x, y, 1)⊤)‖. (5.19)

The optimization of this function can be achieved by predicting PJ+1 using the

motion dynamics and iteratively approaching to optimum value using the gradient-

based method.

There are advantages to estimating a camera pose using high-resolution image

g. The image registration can be robust to image degradation such as image noise,

downsampling, and blurring. Since the input images are the degraded version of a

scene by those effects, the recorded images are different from the real appearance of
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the scene. The estimated image g can be regarded as the most probable appearance

of a real scene, because it is estimated from a number of instance images.

5.5.2 Map management

The proposed method estimates an inverse depth map instead of 3D points of sparse

features or full 3D surface; hence, the map does not increase continuously. The depth

map is reconstructed for some selected keyframes, and the relationship between

depth maps is calculated and stored as a relative representation [13]. Although the

depth map-based representation does not provide a visually attractive 3D surface,

it has the advantage that the depth map merging step which takes large amount of

computation is not required in this representation.

When the overlap between the reconstructed depth map and the current input

image goes below threshold, the estimation of new depth map and high-resolution

image is then performed. The overlapped depth map is propagated to new depth

estimation and used as an initial value. The relative pose between the previous

keyframe and the new keyframe is stored, and the current camera pose is set to

identity. The camera poses for subsequent frames are estimated with respect to the

current keyframe’s pose.

5.6 Experiments

The proposed algorithm is implemented using NVIDIA’s CUDA for GPGPU paral-

lelization, and the implementation is tested by using 3.3GHz quad core processor and

GeForce GTX 570 which has 480 stream processors. The algorithm performance is

evaluated by three factors; super-resolution result, depth map estimation result, and
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(a) GT image  (b) LR image       (c) SR image         (d) GT depth        (e) LR depth      (f) SR depth 

Figure 5.3: Depth map estimation and super-resolution results on the synthesized

low-resolution image sequences Bull, Poster, Sawtooth, and Venus in [7]. (a) Original

images. (b) Synthesized low-resolution images. (c) Super resolution images. (d)

Ground truth depth. (e) Depth map without super-resolution. (f) Depth map with

super-resolution.

registration error for camera localization. The proposed algorithm is evaluated by

performing a quantitative analysis using synthetic data and a feasibility test using

real image sequence.

5.6.1 Results on simulated data

The images and depth maps from [7] which have no occlusion information are used

as a simulated data. For a given high-resolution image and its ground truth depth

map from a reference view, the low-resolution image set is synthesized by warping

99



(a) Ground truth           (b) Bicubic iterpol.         (c) Q.Shan et al.          (d) Video Enhancer

(e) Seq. Flow + SR      (f) Seq. Depth + SR   (g) Simult. Flow + SR  (h) Simult. Depth + SR

Figure 5.4: Comparison of super-resolution results (× 4) on the synthesized Venus

sequence with other super-resolution methods.

and downsampling the high-resolution image. The virtual camera motion is simu-

lated with a combination of arbitrary translation and rotation, and 20 low-resolution

images of one-fourth scale (for example, 109 × 96 size for Venus image data) are ob-

tained. The super-resolution image and depth map are estimated with their original

scale, and their errors with respect to ground truth are calculated.

Figure 5.3 shows the results on synthetic data. The low-resolution images and

depth maps Figure 5.3-(b, e) are obtained by bicubic interpolation of the input

images and initial depth maps. From the results of the proposed algorithm shown

in Figure 5.3-(c, f), we can see the improved depth map result as well as super-

resolution image. In the closed-up region, the low-resolution input image has a de-

graded texture which makes depth estimation difficult. By recovering high-resolution
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(a) Ground truth                          (b) Bicubic iterpol.                          (c) Q.Shan et al.                         (d) Video Enhancer

(e) Seq. Flow + SR                      (f) Seq. Depth + SR                     (g) Simult. Flow + SR                 (h) Simult. Depth + SR

Figure 5.5: Comparison of super-resolution results (× 4) on the synthesized Bull

sequence with other super-resolution methods.

texture using super-resolution, we can also recover the correct depth map.

Various methods for the super-resolution are tested to analyze the accuracy and

efficiency of the proposed algorithm. To test the contribution of the simultaneous

estimation of depth map and high-resolution images, the simultaneous implementa-

tion is replaced with the sequential method. In the sequential algorithm, the energy

function (5.10) is minimized with a fixed g obtained from the bicubic interpolation

of reference view, and then g is estimated with the obtained d fixed. The result

of sequential method is shown in Figure 5.4-(f), where we can see the limitation of

sequential methods in the quantitative analysis in Table 5.1.

The efficiency of depth based formulation for super-resolution is also verified by

comparing the results and computation time with the pairwise correspondence (op-

tical flow) based formulation in which the optical flow vectors between the reference

view and the other view are estimated simultaneously. The objective has a form
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Table 5.1: PSNR (in dB), SSIM (Structural similarity, closer to 1 is better), and

computation time (in second) of various super-resolution algorithm.

Image Bicubic [76] [77]
Seq. Flow Seq. Depth Sim. Flow Sim. Depth

+SR +SR +SR +SR

Bull
PSNR 15.69 16.08 16.59 16.78 16.76 16.82 16.83

SSIM 0.77 0.7762 0.79 0.78 0.78 0.79 0.79

Poster
PSNR 13.71 12.69 13.98 13.65 13.67 13.85 13.87

SSIM 0.54 0.57 0.57 0.56 0.56 0.57 0.57

Sawtooth
PSNR 12.67 12.63 13.17 12.91 12.86 13.20 13.19

SSIM 0.66 0.67 0.69 0.67 0.67 0.69 0.69

Venus
PSNR 15.14 14.75 15.66 15.74 15.74 15.87 15.86

SSIM 0.71 0.71 0.72 0.72 0.72 0.73 0.73

Avg. comp. time - 22.93 1.21 19.05 1.625 18.26 0.97

similar to Equation (5.6) as follow:

argmin
g,v1,...,vJ

J∑

j=1

‖D ∗B ∗ g − {W(Ij ,vj) + Ij
⊤
vj
· (vj − vj0)}‖1, (5.20)

where W(Ij ,vj) is the image warping by flow vj , and Ijvj
is the image derivative

in the x and y direction, respectively. The results are shown in Figure 5.4-(g),

together with its sequential estimation version in Figure 5.4-(e). Figure 5.4-(g)

shows very similar accuracy with the proposed algorithm shown in Figure 5.4-(h),

but it and its sequential version take much more computation time due to their

high dimensional (2×J +1) solution space. Another comparison of super-resolution

results for the synthesized Bull sequence is presented in Figure 5.5 and Table 5.1

summarizes the PSNR, SSIM, and computation time for each algorithm, together

with the results from other high-performance super-resolution algorithms [76] and

[77] whose executables are available for public.
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(a) LR image (Bicubic)                 (b) SR image            (c) Depth from LR image           (d) Depth with SR

Figure 5.6: Depth map estimation and super-resolution results on the real image

sequences. (a) Input images. (b) Super resolution images. (c) Depth map without

super-resolution. (d) Depth map with super-resolution.
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(a) Input (NN interpol.)             (b) Bicubic iterpol.        (b) Q.Shan et al.    (c) Video Enhancer

(e) Seq. Flow + SR     (f) Seq. Depth + SR    (g) Simult. Flow + SR  (h) Simult. Depth + SR

Figure 5.7: Comparison of super-resolution results on the real image sequences.

5.6.2 Results on real sequence

Different from the synthesized data, the real data have camera pose errors because it

is estimated from the real image sequence. Therefore, the effect of camera pose error

in the proposed algorithm can be analyzed using a real data set. A wide FOV camera

is used for the effective 3D reconstruction, and the radial distortion is removed

in advance. Figure 5.6 shows the reconstructed depth map and super-resolution

images, and Figure 5.7 shows the comparison of various super-resolution algorithms

previously discussed in the simulated data experiments. The results indicate that

the camera pose error is not an important error factor for super-resolution.
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Figure 5.8: Plot of registration error for camera localization with high-resolution

and low-resolution image and depth map for outdoor sequence.

5.6.3 Camera localization performance

The improvement of the camera localization performance is measured by registration

error from Equation (5.19) through the image sequence. For a fair comparison, the

original input images are used in the registration error calculation, because super-

resolution images can reduce the photometric errors by themselves. Thus, only the

depth map and the camera pose can affect the registration error, and the system

which has a consistent depth map and camera trajectory through the whole sequence

will have a lower average registration error. The plot of registration error for indoor

sequence is shown in Figure 5.8. The average per-pixel registration error (with

intensity interval [0, 255]) with the high-resolution estimation is 1.430, whereas it is

1.752 for the camera localization with low-resolution images and depth map.

5.7 Summary

A novel optimization framework for simultaneous super-resolution and depth map

estimation is proposed. Two closely related problems are formulated by a single

convex problem using the camera geometry and solved efficiently by the first-order
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primal-dual algorithm. The proposed simultaneous solution gives results compa-

rable to other high-performance algorithms for each problem, but takes much less

computation time. Thus, the proposed framework can be applied to real-time 3D

reconstruction systems for improving their accuracy.

106



Chapter 6

Dense 3D Reconstruction,

Image Deblurring, and

Super-Resolution

6.1 Introduction

The deblurring and super-resolution methods for dense 3D reconstruction presented

in Chapter 4 and 5 are combined in this chapter. In fact, the deblurring and super-

resolution problems are closely related to each other. Deblurring can be regarded

as a temporal super-resolution that the resolution of image sequence increases with

respect to time axis. Reversely, super-resolution can be interpreted as a deblurring

of defocus blur for an upscaled image. Therefore, the joint problem of deblurring

and super-resolution for a video or image sequence can be formulated and has been

addressed in several works [63,78,79].

By incorporating the motion blur and super-resolution model considered in the
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Figure 6.1: The relationship between the blurred low-resolution input sequence Ij

and the sharp high-resolution image L. The photometric consistency should hold

for Ij and the simulated low-resolution image D ∗B ∗ Kj ∗ L.

energy function for depth map estimation, a new energy function for the simulta-

neous estimation of high-resolution depth map and blur kernels for deblurring is

proposed in this chapter. Both motion blur process and image downsampling pro-

cess are modeled in the proposed energy function to synthesize low-resolution blurry

images from latent high-resolution image and depth map. The synthesized images

are then compared with observed low-resolution images to update latent variables.

At first, the convergence of the proposed energy function is analyzed, and then the

optimization of the energy function is presented in this chapter.
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Figure 6.2: The modified model to formulate a energy function with respect to g

and d. The photometric consistency should hold for the cumulatively blurred image

K1 ∗ Ij and the simulated low-resolution image D ∗B ∗ Kj ∗ g.

6.2 Energy Model for Simultaneous Estimation of Depth

and Recovered Image

The main ideas used in the deblurring or super-resolution combined dense recon-

struction method described in the previous chapters are incorporated to propose the

unified energy function for the simultaneous estimation of a high-resolution depth

map and images as well as blur kernels for removing motion blur in high-resolution

image. An ideal energy function to obtain both high-resolution depth map and high-

resolution deblurred image is to use them as latent variables for the energy function

as illustrated in Figure 6.1. However, a direct estimation of deblurred image with-

out deconvolution is very difficult as we can see that most deblurring methods apply

explicit deconvolution after the blur kernel estimation. In the proposed method,
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therefore, the latent variable for the energy function is given by a high-resolution

version of the blurry reference image instead of its deblurred image as illustrated in

Figure 6.2. The final deblurred high-resolution image, denoted by LH
1 , is obtained

by applying deconvolution with the estimated blur kernel K1 for the reference image

to the estimated high-resolution image g which satisfies the equation g = LH
1 ∗ K1.

The total latent variables in the energy function are a high-resolution image g

and a depth map d with respect to the reference image I1 which is from an input

image sequence Ij, j ∈ [1, ...,M ]. The data cost of energy function is defined by the

difference between the cumulatively blurred images similarly to deblurring model in

Chapter 4. The latent high-resolution image g is warped to jth view and blurred by

kernel Kj , and the jth observed is blurred by kernel K1 that is blur kernel for the

reference image. Their difference is then computed and used to update values of g

and d.

Let D and B be the donwsampling operator and Kj be the blur kernel for

jth input image. Synthesizing a blurred low-resolution image is then composed of

downsampling and blurring operation by D and K as follows:

gL
j = D ∗B ∗ Kj ∗ g. (6.1)

The blur kernel K is given by pixel-wise, and the notation for pixel index is also

omitted here for notational simplicity. Since the estimation is performed on the

high-resolution image space for g and d, the input image Ij is upscaled to high-

resolution scale, and the upscaled image is represented by Îj. The downsampling

operation is then not required for synthesizing gL
j and the synthesized image ĝL

j is

modeled as

ĝL
j = B ∗ Kj ∗ g. (6.2)
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The commutative property holds between Gaussian blur B and motion blur K, and

Equation (6.3) can be rewritten as

ĝL
j = Kj ∗B ∗ g = Kj ∗ g

B . (6.3)

where gB is the Gaussian blurred version of the latent high-resolution image g.

By applying the approximation of blurred image described in Equation (4.5) up

to the first order, the current estimate of latent image g is transformed to simulate

the jth observed blurry image gLj as follows:

ĝL
j ≃ gB + agB

j,d(d− d̄), (6.4)

where d̄ is an initial depth for the optimization, and gB
j,d is the derivative of g with

respect to depth d for jth view, which can be calculate by the chain-rule:

gB
j,d =

∂gB
j,d

∂d
=

∂gB
j,d

∂x

∂x

∂d
+

∂gB
j,d

∂y

∂y

∂d
. (6.5)

The approximation of Equation (6.4) is only valid for a small difference value (d− d̄),

thus the coarse-to-fine approach is used again in the optimization of the proposed

cost function.

By replacing the Gaussian blurred image B∗g in Equation (5.6) with the motion

blurred image gLj,d, we obtain the pixel-wise data cost ρ(g, d) for the simultaneous

estimation of latent image and scene depth as follows:

ρ(g, d) =

J∑

j=0

‖{g + agLj,d(d− d̄)} − {WL
j (Ij , d̄) + ILj,d(d− d̄)}‖1, (6.6)

which can be rewritten as

ρ(g, d) =

J∑

j=0

‖g −WL
j (Ij , d̄) + (agLj,d − ILj,d)(d− d̄)‖1, (6.7)
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where WL
j is a function that warps the observation image Ij into the reference view

given with a depth. The derivative ILj,d is given similarly to Equation (5.7),

ILj,d =
∂WL

j (Ij , d− d̄)

∂d
=

∂WL
j (Ij , d− d̄)

∂x

∂x

∂d
+

∂WL
j (Ij , d− d̄)

∂y

∂y

∂d
. (6.8)

In the super-resolution combined 3D reconstruction method, the Huber norm

based regularization is used for both latent high-resolution image and depth map.

However, the L1 norm based regularization term in the Huber regularization can

generate negative effects on estimation of latent high-resolution image g because it

destroys motion blurred edges in the latent image, not recovering the sharp image

using their actual blur kernels. Therefore, the regularization is only applied to latent

depth map d with the Huber norm as follows:

‖∇d‖αd
=





|∇d|2

2αd
, if|∇d| ≤ αd

|∇d| − αd

2 , if|∇d| > αd

. (6.9)

The overall energy function is then given by

E(g,d) = Ereg(g,d) + λEdata(g,d)

=
∑

∀x,y

‖∇d‖αd
+ λρ(g, d).

(6.10)

Before investigating a solution of the proposed energy function, an analysis of the

function is presented in the next section.

6.3 Analysis of Energy Function

The convergence of the proposed cost function needs to be discussed before its

solution is studied. The regularization cost in Equation (6.10) is same as the regu-

larization cost used in the previous chapters which is easy to optimize. On the other
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Figure 6.3: An example of the shape of pixel-wise data cost ρ(g, d) at an image edge

(indicated by the yellow circle).

hand, the data cost is composed of two derivative terms gLj,d and ILj,d, thus the con-

vexity may differ from that of the previous problems. The theoretic analysis of the

cost function is difficult because the cost function differs from pixel to pixel. Thus,

the empirical analysis is alternatively performed. Figure 6.3 presents an example

shape of the pixel-wise data cost ρ(g, d) at an image edge from four images. The

example shows that the data cost is balanced with depth d and pixel intensity g and

their optimum point can be easily found. The first-order primal-dual algorithm is

employed again, and the proposed cost function is solved by using the coarse-to-fine

approach. The data cost is a sum of L1 norms, thus there can exist several critical

points in the cost function and the critical point search is used in the update of a

primal variable.

6.4 Experiments

The proposed deblurring and super-resolution combined method is evaluated with

synthesized image sequences as well as real image sequences. The deblurring and
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super-resolution results for each data are compared with the results by methods that

deblurring and super-resolution are sequentially performed.

6.4.1 Synthesized data

The synthetic data is obtained by warping a reference image using its ground truth

depth map, and integrating the warped images for a specified exposure time, and

Gaussian blurring and downsampling are applied in the warping process. Due to the

downscale operation, the degree of motion blur is weekly observed in the synthesized

low-resolution image, but it still makes the depth estimation difficult.

The results of high-resolution depth map and image estimation of synthetic data

Bull and Cloth sequence are presented in Figure 6.4 and Figure 6.5, respectively,

compared with the depth maps obtained from low-resolution images without motion

blur model and upscaled input images by bicubic interpolation. We can see that

without consideration of motion blur for low-resolution input images, the result-

ing depth maps have severe errors. Although the parameter λ which controls the

smoothness of depth map increases, the errors of depth map without consideration

of motion blur do not decrease as shown in Figure 6.6.

The effectiveness of the proposed simultaneous blur kernel estimation and super-

resolution method is tested by comparing the results with sequential methods that

blur kernel estimation and super-resolution are performed sequentially. Two sequen-

tial implementations are tested here. The first method, denoted by Seq. DB-SR,

performs depth estimation with motion blur model from Chapter 4 and deblurs low-

resolution input images with estimated blur kernels. High-resolution depth map and

image estimation from Chapter 5 then follows using the deblurred low-resolution

images. Reversely, the second method denoted by Seq. SR-DB, performs super-
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(a)

(b) (c) (d)

Figure 6.4: High-resolution depth and image estimation on synthetic data Bull : (a)

Low-resolution blurred input images. (b) Ground truth depth map and image. (c)

Low-resolution depth map without motion blur model and upscaled image using

bicubic interpolation. (d) Results by the proposed method.
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(a)

(b) (c) (d)

Figure 6.5: High-resolution depth and image estimation on synthetic data Cloth:

(a) Low-resolution blurred input images. (b) Ground truth depth map and image.

(c) Low-resolution depth map without motion blur model and upscaled image using

bicubic interpolation. (d) Results by the proposed method.
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 ! "#$  ! %#$  ! &#$ Ground truth

Figure 6.6: Depth map without consideration of motion blur is not improved al-

though the smoothness parameter λ is tuned.

Seq. DB-SR Seq. SR-DB Simultaneous

Figure 6.7: Comparison of high-resolution depth and image estimation by the

sequential methods (Seq. DB-SR Seq. SR-DB) and the proposed simultaneous

method.
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resolution first and then performs deblurring later. The result of each method is

shown in Figure 6.7. Seq. DB-SR suffers from artifacts of deblurring low-resolution

image in its super-resolution task, and Seq. SR-DB has difficulties in finding accu-

rate correspondence of pixels since it does not consider the effect of motion blur. On

the other hand, the proposed method provides better results by considering both

motion blur and super-resolution models in its depth estimation.

(a)

(b) (c) (d)

Figure 6.8: High-resolution depth and image estimation on real image sequence

Desk : (a) Low-resolution blurred input images. (b) Depth map and deblurred image

using original high-resolution images. (c) Low-resolution depth map without motion

blur model and upscaled image using bicubic interpolation. (d) Results by the

proposed method.
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(a)

(b) (c) (d)

Figure 6.9: High-resolution depth and image estimation on real image sequence

House: (a) Low-resolution blurred input images. (b) Depth map and deblurred

image using original high-resolution images. (c) Low-resolution depth map without

motion blur model and upscaled image using bicubic interpolation. (d) Results by

the proposed method.

6.4.2 Real data

The proposed method is also tested by using real image data. The low-resolution

sequences are obtained by downsampling the real blurry image sequences used in

Chapter 4. The input images and results for Desk and House data set are presented
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in Figure 6.8 and Figure 6.9, respectively. With the proposed super-resolution com-

bined motion blur-aware 3D reconstruction, the results of reconsturction are much

better than the reconstruction results without considering motion blur and super-

resolution model as compared in (c) and (d) of Figure 6.8 and Figure 6.9. The

deblurring results of proposed method are very close to deblurring results by the

original high-resolution images.

6.5 Summary

The 3D reconstruction method that can address both motion blur and low-resolution

problem is presented. The modeling of motion blur and super-resolution is effec-

tively unified by a single optimization framework to estimate high-resolution image,

depth map, and blur kernels for deblurring. Different from the image enhancement

results by sequentially performing deblurring and super-resolution, the results by

the proposed does not suffer from the error amplification in early stage.
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Chapter 7

Conclusion

7.1 Summary of Dissertation

In this dissertation, various 3D reconstruction methods combined with image en-

hancement have been presented. In particular, handling motion blur and low image

resolution is addressed for both sparse point-based 3D reconstruction and dense

depth reconstruction. It is apparent that image quality degradation is an important

issue in 3D reconstruction, but conventional image enhancement methods have rarely

been applied to 3D reconstruction systems due to their high computational costs.

The proposed methods in this dissertation utilizes 3D geometry of camera and target

scenes to obtain information for enhancing degraded input images such as blur ker-

nels for motion deblurring and and pixel correspondences for super-resolution. This

geometric information makes the 3D reconstruction methods robust to those image

degradation factors, and makes fast and accurate image enhancement possible.

In Chapter 2, the motion blur problem is addressed for sparse point-based recon-

struction, and the effective blur-robust data association is proposed. The approx-

121



imation method for motion blurred appearances of landmark patches is incorpo-

rated with the 3D geometry estimation in visual SLAM, and the mapped landmarks

are then robustly matched even with blurred images. Furthermore, non-uniformly

blurred images are easily recovered by using the obtained kernel for each landmark,

and new landmarks can be extracted and registered to the map. In Chapter 3, image

super-resolution is incorporated with the visual SLAM system that locally planar

landmarks are mapped to the map with their poses. The high-resolution patches

are simultaneously estimated with landmark poses and camera pose via the Rao-

Blackwellized particle filter framework. The super-resolution patches improve the

accuracy of data association of landmarks, and the poses of camera and landmarks

are also accurately estimated.

The deblurring and super-resolution approaches for sparse point-based 3D re-

construction are then extended to dense 3D reconstruction method. The geometric

relationship between 3D reconstruction and image enhancement is applied in dense

reconstruction, and the energy function for blur-aware depth map estimation is

proposed in Chapter 4, and the energy function for simultaneous depth map and

high-resolution image estimation is proposed in Chapter 5. Finally, the unified en-

ergy function for depth estimation with deblurring and super-resolution is proposed

in Chapter 6. The proposed energy functions are effectively solved by the continuous

optimization based on the first-order primal-dual algorithm, and the parallel imple-

mentation of the optimization enables a fast depth map generation which is essential

for the single camera-based reconstruction. In the proposed depth estimation, blur

kernels for deblurring or pixel registrations for super-resolution are simultaneously

obtained with the depth map, and those are utilized for the fast enhancement of

input images.
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In addition to the accuracy improvement of 3D reconstruction by enhanced input

images, the proposed geometry-aware image enhancement also has a performance

gain compared with conventional image enhancement methods, with respect to en-

hancement accuracy as well as computation speed. The problems of traditional

image enhancement methods, such as handling scene depth variation for blur kernel

estimation and time-consuming pixel-wise correspondence estimation, are efficiently

addressed by utilizing 3D geometry information. This complementary estimation of

3D reconstruction and image enhancement is the main contribution of this study.

7.2 Future Works

For sparse point-based 3D reconstruction, deblurring and super-resolution are ap-

plied to different visual SLAM systems depending on their characteristics. In the fu-

ture works, deblurring for filtering-based SLAM and super-resolution for optimization-

based SLAM should be investigated, respectively. The major difference of filtering-

based SLAM compared to optimization-based SLAM is that a camera and landmarks

in filtering-based SLAM have uncertainties in their poses, thus handling these un-

certainties should be addressed. To apply super-resolution for optimization-based

SLAM, another estimation method for high-resolution patch estimation instead of

Kalman filter should be studied. Furthermore, more general approaches for deblur-

ring and super-resolution that can be applied to any types of visual SLAM need to

be investigated.

In the current study, a basic 3D reconstruction model which relies only on pixel

correspondence is tested. More sophisticated models for 3D reconstruction can im-

prove the accuracy of reconstruction result. For example, using the visibility and
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occlusion model can provide more reliable depth estimation in object boundaries as

well as improved image enhancement results. In super-resolution, the downsampling

and blurring model is 3D geometry-dependent, but a simple constant model is used

in the current implementation. If 3D geometry is considered in the downsampling

and blurring model, then more accurate super-resolution results can be obtained.

The proposed image enhancement method can be used not only for 3D recon-

struction system, but also for general video enhancement if the camera intrinsic

parameters are calibrated. Reversely, various advanced techniques for image en-

hancement for a single image or a video can be added to improve the result of

proposed method. Therefore, incorporating both approaches is believed to be a

valuable research.
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국문 초록

영상기반 3차원복원은 컴퓨터비전의기본적인연구 주제가운데하나로최근

몇 년간 많은 발전이 있어왔다. 특히 자동 로봇을 위한 네비게이션 및 휴대 기기를

이용한 증강 현실 등에 널리 활용될 수 있는 단일 카메라를 이용한 3차원 복원 기

법은 복원의 정확도, 복원 가능 범위 및 처리 속도 측면에서 많은 실용 가능성을 보

여주고 있다. 그러나 그 성능은 여전히 조심스레 촬영된 높은 품질의 입력 영상에

대해서만 시험되고 있다. 움직이는 단일 카메라를 이용한 3차원 복원의 실제 동작

환경에서는입력 영상이 화소 잡음이나움직임에 의한번짐 등에 의하여 손상될수

있고, 영상의 해상도 또한 정확한 카메라 위치 인식 및 3차원 복원을 위해서는 충

분히 높지 않을 수 있다. 많은 연구에서 고성능 영상 화질 향상 기법들이 제안되어

왔지만 이들은일반적으로 높은계산 비용을 필요로 하기때문에 실시간 동작능력

이 중요한 단일 카메라 기반 3차원 복원에 사용되기에는 부적합하다.

본 논문에서는 보다 정확하고 안정된 복원을 위하여 영상 개선이 결합된 새로

운 단일 카메라 기반 3차원 복원 기법을 다룬다. 이를 위하여 영상 품질이 저하되

는 중요한 두 요인인 움직임에 의한 영상 번짐과 낮은 해상도 문제가 각각 점 기반

복원 및 조밀 복원 기법들과 결합된다. 영상 품질 저하를 포함한 영상 획득 과정은

카메라 및 장면의 3차원 기하 구조와 관측된 영상 사이의 관계를 이용하여 모델링

할 수 있고, 이러한 영상 품질 저하 과정을 고려함으로써 정확한 3차원 복원을 하

는 것이 가능해진다. 또한, 영상번짐 제거를 위한번짐 커널 또는 영상의초해상도

복원을 위한 화소 대응 정보 등이 3차원 복원 과정과 동시에 얻어지는것이 가능하
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여, 영상 개선이 보다 간편하고 빠르게 수행될 수 있다. 제안되는 기법은 3차원 복

원과 영상 개선 문제를 동시에 해결함으로써 각각의 결과가 상호 보완적으로 향상

된다는 점에서 그 장점을 가지고 있다. 본 논문에서는 실험적 평가를 통하여 제안

되는 3차원 복원 및 영상 개선의 효과성을 입증하도록 한다.

주요어: 영상 기반 3차원 복원, 비주얼 슬램, 영상 개선, 영상 번짐 제거, 초해상도

영상 복원.

학번: 2006-21271

138



감사의 글

박사는 스스로 연구할 능력이 있는 사람이라고 들어왔는데 학위 논문의 마지막

페이지를 쓰고 있는 지금도 아직 제가 그러한 자격이 있는지는 의문이 듭니다. 그

럼에도 부족한 저를 끊임없는 열정과 가르침으로 이끌어주신 이경무 교수님께서

계셨기에 무사히 학위 과정을 마치게 되지 않았나 생각합니다. 교수님으로부터 배

운 연구자의자세를 항상 감사하고기억하여 연구실의명성에 누가 되지 않도록최

선을 다하겠습니다. 미완의 학위 논문이 보다 온전해 질 수 있도록 여러 차례의 심

사를 통하여 지도해주신 서울대 이상욱 교수님, 서강대 이상욱 교수님, 한양대 박

종일 교수님과 임종우 교수님께도 고개숙여 감사드립니다.

컴퓨터비전이라는학문이매력적이기도하였지만 7년간의연구실생활이웃음

으로가득할수있었던것은가족같은연구실선후배님들덕분이었습니다. 정말많

은 분들과 함께 하였습니다. 현목형, 우연형, 영기형, 민수형, 준영이형, 동우형, 준

석형, 영민형, 효찬형, 주용형, 정현형, 원식이, 정민이, 태현이, 희수, 상돈이, 효진

이, 준하, 유민이, 병주, 광모, 명섭이, 장훈이까지, 모두들 연구에 몰두하느라학교

에 있는 동안 유흥의 시간을 많이 가지지 못한 것이 아쉽지만 앞으로 자주 만나뵈

면서 그 아쉬움을 풀 수 있었으면 좋겠습니다. 세미나 시간 등을 통하여 좋은 말씀

자주 해주신 윤일동 교수님, 박인규 교수님, 그리고 함께 연구해서 든든하였던 신

호처리 연구실의 선후배님들께도 고마운 마음을 전하고 싶습니다.

제 오랜 학업의 마침을 누구보다 기뻐하실 분은 아버지, 어머니가 아닐까 생각

합니다. 두 분의저에 대한 믿음과 희생은어떤 말로도 감사하기힘들 것 같습니다.

139



이제 그 은혜에 조금이나마 보답할 수 있도록 노력하겠습니다. 또한 항상 든든한

힘이 되어 준 누나와 매형에게도 고맙다는 말 전하고 싶습니다. 끝으로 대학원 기

간 동안 언제나 옆에서 응원해주고 생활의 활력이 되어 준 혜진이, 그 동안 바쁘다

는 핑계로 늘 소홀했던 것에 미안하고, 이제는 제가 더 많은 힘이 되어 줄 수 있도

록 하겠습니다.

그 동안 도움주신 다른 모든 분들께 다시 한 번 감사드리며, 그 보답의 길은 보

다 세상에 이로운 연구를 하는 것이라 다짐하며 감사의 글을 마칩니다.

140


	1. Introduction
	2. Sparse 3D Reconstruction and Image Deblurring
	3. Sparse 3D Reconstruction and Image Super-Resolution
	4. Dense 3D Reconstruction and Image Deblurring
	5. Dense 3D Reconstruction and Image Super-Resolution
	6. Dense 3D Reconstruction, Image Deblurring, and Super-Resolution
	7. Conclusion


<startpage>2
1. Introduction 21
2. Sparse 3D Reconstruction and Image Deblurring 33
3. Sparse 3D Reconstruction and Image Super-Resolution 63
4. Dense 3D Reconstruction and Image Deblurring 79
5. Dense 3D Reconstruction and Image Super-Resolution 105
6. Dense 3D Reconstruction, Image Deblurring, and Super-Resolution 127
7. Conclusion 141
</body>

